Exemplo n.º 1
0
def check_output_pubkey(q: Octets,
                        script: Octets,
                        control: Octets,
                        ec: Curve = secp256k1) -> bool:
    q = bytes_from_octets(q)
    script = bytes_from_octets(script)
    control = bytes_from_octets(control)
    if len(control) > 4129:  # 33 + 32 * 128
        raise BTClibValueError("Control block too long")
    m = (len(control) - 33) // 32
    if len(control) != 33 + 32 * m:
        raise BTClibValueError("Invalid control block length")
    leaf_version = control[0] & 0xFE
    preimage = leaf_version.to_bytes(1, "big") + var_bytes.serialize(script)
    k = tagged_hash(b"TapLeaf", preimage)
    for j in range(m):
        e = control[33 + 32 * j:65 + 32 * j]
        if k < e:
            k = tagged_hash(b"TapBranch", k + e)
        else:
            k = tagged_hash(b"TapBranch", e + k)
    p_bytes = control[1:33]
    t_bytes = tagged_hash(b"TapTweak", p_bytes + k)
    p = int.from_bytes(p_bytes, "big")
    t = int.from_bytes(t_bytes, "big")
    # edge case that cannot be reproduced in the test suite
    if t >= ec.n:
        raise BTClibValueError("Invalid script tree hash")  # pragma: no cover
    P = (p, secp256k1.y_even(p))
    Q = secp256k1.add(P, mult(t))
    return Q[0] == int.from_bytes(q, "big") and control[0] & 1 == Q[1] % 2
Exemplo n.º 2
0
def test_double_mult() -> None:
    H = second_generator(secp256k1)
    G = secp256k1.G

    # 0*G + 1*H
    T = double_mult(1, H, 0, G)
    assert T == H
    T = multi_mult([1, 0], [H, G])
    assert T == H

    # 0*G + 2*H
    exp = mult(2, H)
    T = double_mult(2, H, 0, G)
    assert T == exp
    T = multi_mult([2, 0], [H, G])
    assert T == exp

    # 0*G + 3*H
    exp = mult(3, H)
    T = double_mult(3, H, 0, G)
    assert T == exp
    T = multi_mult([3, 0], [H, G])
    assert T == exp

    # 1*G + 0*H
    T = double_mult(0, H, 1, G)
    assert T == G
    T = multi_mult([0, 1], [H, G])
    assert T == G

    # 2*G + 0*H
    exp = mult(2, G)
    T = double_mult(0, H, 2, G)
    assert T == exp
    T = multi_mult([0, 2], [H, G])
    assert T == exp

    # 3*G + 0*H
    exp = mult(3, G)
    T = double_mult(0, H, 3, G)
    assert T == exp
    T = multi_mult([0, 3], [H, G])
    assert T == exp

    # 0*G + 5*H
    exp = mult(5, H)
    T = double_mult(5, H, 0, G)
    assert T == exp
    T = multi_mult([5, 0], [H, G])
    assert T == exp

    # 0*G - 5*H
    exp = mult(-5, H)
    T = double_mult(-5, H, 0, G)
    assert T == exp
    T = multi_mult([-5, 0], [H, G])
    assert T == exp

    # 1*G - 5*H
    exp = secp256k1.add(G, T)
    T = double_mult(-5, H, 1, G)
    assert T == exp
Exemplo n.º 3
0
mprvkey = 1 + secrets.randbelow(ec.n - 1)
print(f"\nmaster prvkey: {hex(mprvkey).upper()}")

# Master Pubkey:
mpubkey = mult(mprvkey, ec.G)
print(f"Master Pubkey: {hex(mpubkey[0]).upper()}")
print(f"               {hex(mpubkey[1]).upper()}")

r = secrets.randbits(ec.nlen)
print(f"\npublic random number: {hex(r).upper()}")

rbytes = r.to_bytes(ec.nsize, "big")
nKeys = 3
for i in range(nKeys):
    ibytes = i.to_bytes(ec.nsize, "big")
    hd = hf(ibytes + rbytes).digest()
    offset = int_from_bits(hd, ec.nlen) % ec.n
    q = (mprvkey + offset) % ec.n
    Q = mult(q, ec.G, ec)
    print(f"\nprvkey #{i}: {hex(q).upper()}")
    print(f"Pubkey #{i}: {hex(Q[0]).upper()}")
    print(f"           {hex(Q[1]).upper()}")

# Pubkeys could also be calculated without using prvkeys
for i in range(nKeys):
    ibytes = i.to_bytes(ec.nsize, "big")
    hd = hf(ibytes + rbytes).digest()
    offset = int_from_bits(hd, ec.nlen) % ec.n
    Q = ec.add(mpubkey, mult(offset, ec.G, ec))
    assert Q == mult((mprvkey + offset) % ec.n, ec.G, ec)