Exemplo n.º 1
0
    def __init__(self, lemmatization=False):
        Model.__init__(self, lemmatization)

        self.sampler = InstanceHardnessThreshold(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.product(),
            bug_features.component(),
            bug_features.is_mozillian(),
            bug_features.bug_reporter(),
            bug_features.blocked_bugs_number(),
            bug_features.priority(),
            bug_features.has_cve_in_alias(),
            bug_features.comment_count(),
            bug_features.comment_length(),
            bug_features.reporter_experience(),
            bug_features.number_of_bug_dependencies()
        ]

        cleanup_functions = [
            bug_features.cleanup_url,
            bug_features.cleanup_fileref,
            bug_features.cleanup_hex,
            bug_features.cleanup_dll,
            bug_features.cleanup_synonyms,
            bug_features.cleanup_crash,
        ]

        self.extraction_pipeline = Pipeline([
            ('bug_extractor', bug_features.BugExtractor(feature_extractors, cleanup_functions, rollback=True, rollback_when=self.rollback)),
            ('union', ColumnTransformer([
                ('data', DictVectorizer(), 'data'),

                ('title', self.text_vectorizer(min_df=0.0001), 'title'),

                ('comments', self.text_vectorizer(min_df=0.0001), 'comments'),
            ])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor='cpu_predictor')
Exemplo n.º 2
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.calculate_importance = False

        self.sampler = InstanceHardnessThreshold(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.product(),
            bug_features.component(),
            bug_features.is_mozillian(),
            bug_features.bug_reporter(),
            bug_features.blocked_bugs_number(),
            bug_features.priority(),
            bug_features.has_cve_in_alias(),
            bug_features.comment_count(),
            bug_features.comment_length(),
            bug_features.reporter_experience(),
            bug_features.number_of_bug_dependencies(),
        ]

        cleanup_functions = [
            feature_cleanup.url(),
            feature_cleanup.fileref(),
            feature_cleanup.hex(),
            feature_cleanup.dll(),
            feature_cleanup.synonyms(),
            feature_cleanup.crash(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(
                    feature_extractors,
                    cleanup_functions,
                    rollback=True,
                    rollback_when=self.rollback,
                ),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(min_df=0.0001), "title"),
                    (
                        "comments",
                        self.text_vectorizer(min_df=0.0001),
                        "comments",
                    ),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
Exemplo n.º 3
0
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.sampler = InstanceHardnessThreshold(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.product(),
            bug_features.component(),
            bug_features.is_mozillian(),
            bug_features.bug_reporter(),
            bug_features.blocked_bugs_number(),
            bug_features.priority(),
            bug_features.has_cve_in_alias(),
            bug_features.comment_count(),
            bug_features.comment_length(),
            bug_features.reporter_experience(),
            bug_features.number_of_bug_dependencies(),
        ]

        cleanup_functions = [
            feature_cleanup.url(),
            feature_cleanup.fileref(),
            feature_cleanup.hex(),
            feature_cleanup.dll(),
            feature_cleanup.synonyms(),
            feature_cleanup.crash(),
        ]

        self.extraction_pipeline = Pipeline(
            [
                (
                    "bug_extractor",
                    bug_features.BugExtractor(
                        feature_extractors,
                        cleanup_functions,
                        rollback=True,
                        rollback_when=self.rollback,
                    ),
                ),
                (
                    "union",
                    ColumnTransformer(
                        [
                            ("data", DictVectorizer(), "data"),
                            ("title", self.text_vectorizer(min_df=0.0001), "title"),
                            (
                                "comments",
                                self.text_vectorizer(min_df=0.0001),
                                "comments",
                            ),
                        ]
                    ),
                ),
            ]
        )

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")