Exemplo n.º 1
0
def joinBlock(name, opn, n, inputA, inputB, train=True):
    trainparam = []
    trainparam2 = []
    if train:
        trainparam = [dict(lr_mult=1, decay_mult= 1),dict(lr_mult=1, decay_mult= 1)]
        trainparam2 = [dict(lr_mult=1, decay_mult= 1),dict(lr_mult=1, decay_mult= 1),dict(lr_mult=1, decay_mult= 1)]
    else:
        trainparam = [dict(lr_mult=0, decay_mult= 0),dict(lr_mult=0, decay_mult= 0)]
        trainparam2 = [dict(lr_mult=0, decay_mult= 0),dict(lr_mult=0, decay_mult= 0),dict(lr_mult=0, decay_mult= 0)]
    #if global_stat:
        #trainparam2 = [dict(lr_mult=0, decay_mult= 0),dict(lr_mult=0, decay_mult= 0),dict(lr_mult=0, decay_mult= 0)]
    #TRAINABLE???? TODO
    s = list(name)
    del s[0]
    if s[0] == 'B':
        del s[0]
    nname = "".join(s)
    if upsample == False:
        convolution_param = dict(num_output=opn, kernel_size=2, stride=2, pad=0, weight_filler = dict(type='xavier'))
        n["upsample"+name] = L.Deconvolution(n[inputA], convolution_param=convolution_param, param=trainparam, name="upsampleparam"+nname) 
    else:
        convolution_param = dict(num_output=opn, kernel_size=2, stride=2, pad=0, weight_filler = dict(type='constant', value=0.0), bias_term=False)
        n["upsample"+name] = L.Deconvolution(n[inputA], convolution_param=convolution_param
                             ,param=[dict(lr_mult=0, decay_mult= 0)], name="upsampleparam"+nname)

    n["upsampleB"+name] = L.BatchNorm(n["upsample"+name], use_global_stats=global_stat, param=trainparam2, name="upsampleBparam"+nname)#, param=[{"lr_mult":0},{"lr_mult":0},{"lr_mult":0}])
    n[inputB] = L.BatchNorm(n[inputB], use_global_stats=global_stat, param=trainparam2, name=nname+"param")#, param=[{"lr_mult":0},{"lr_mult":0},{"lr_mult":0}])
    #ACHTUNG BEI BATCHNORM upsampleB genau da drunter !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    n["concat"+name] = L.Concat(n["upsampleB"+name], n[inputB], concat_param=dict(axis=1))
    return n, "concat"+name
	def Upsample(self, bottom, name='upsample', factor=2, n_out=3, lr_mult=None, decay_mult=None):

		def get_kernel_size(f):
			return 2 * f - f % 2

		def get_pad(f):
			return int( np.ceil( (f-1) / 2.) )

		up_k = get_kernel_size(factor)
		up_s = factor
		up_p = get_pad(factor)

		
		conv_params = {'num_output': n_out, 'group': n_out, \
						'kernel_size': up_k, 'pad': up_p, 'stride': up_s, \
						'weight_filler': {'type': 'bilinear'}, 'bias_term': False}

		if lr_mult is not None:			
			params = []
			for lr, decay in zip(lr_mult, decay_mult):
				p = self.layer_param.copy()
				p['lr_mult'] = lr
				p['decay_mult'] = decay
				params.append(p)

			return L.Deconvolution( bottom, name=name, param=params, convolution_param=conv_params)
		else:		
			return L.Deconvolution( bottom, name=name, convolution_param=conv_params)
Exemplo n.º 3
0
def fcn(split, tops):
    n = caffe.NetSpec()
    n.data, n.label = L.Python(module='nyud_layers',
            layer='NYUDSegDataLayer', ntop=2,
            param_str=str(dict(nyud_dir='../data/nyud', split=split,
                tops=tops, seed=1337)))

    # the base net
    n.conv1_1, n.relu1_1 = conv_relu(n.data, 64, pad=100)
    n.conv1_2, n.relu1_2 = conv_relu(n.relu1_1, 64)
    n.pool1 = max_pool(n.relu1_2)

    n.conv2_1, n.relu2_1 = conv_relu(n.pool1, 128)
    n.conv2_2, n.relu2_2 = conv_relu(n.relu2_1, 128)
    n.pool2 = max_pool(n.relu2_2)

    n.conv3_1, n.relu3_1 = conv_relu(n.pool2, 256)
    n.conv3_2, n.relu3_2 = conv_relu(n.relu3_1, 256)
    n.conv3_3, n.relu3_3 = conv_relu(n.relu3_2, 256)
    n.pool3 = max_pool(n.relu3_3)

    n.conv4_1, n.relu4_1 = conv_relu(n.pool3, 512)
    n.conv4_2, n.relu4_2 = conv_relu(n.relu4_1, 512)
    n.conv4_3, n.relu4_3 = conv_relu(n.relu4_2, 512)
    n.pool4 = max_pool(n.relu4_3)

    n.conv5_1, n.relu5_1 = conv_relu(n.pool4, 512)
    n.conv5_2, n.relu5_2 = conv_relu(n.relu5_1, 512)
    n.conv5_3, n.relu5_3 = conv_relu(n.relu5_2, 512)
    n.pool5 = max_pool(n.relu5_3)

    # fully conv
    n.fc6, n.relu6 = conv_relu(n.pool5, 4096, ks=7, pad=0)
    n.drop6 = L.Dropout(n.relu6, dropout_ratio=0.5, in_place=True)
    n.fc7, n.relu7 = conv_relu(n.drop6, 4096, ks=1, pad=0)
    n.drop7 = L.Dropout(n.relu7, dropout_ratio=0.5, in_place=True)

    n.score_fr = L.Convolution(n.drop7, num_output=40, kernel_size=1, pad=0,
        param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])
    n.upscore2 = L.Deconvolution(n.score_fr,
        convolution_param=dict(num_output=40, kernel_size=4, stride=2,
            bias_term=False),
        param=[dict(lr_mult=0)])

    n.score_pool4 = L.Convolution(n.pool4, num_output=40, kernel_size=1, pad=0,
        param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])
    n.score_pool4c = crop(n.score_pool4, n.upscore2)
    n.fuse_pool4 = L.Eltwise(n.upscore2, n.score_pool4c,
            operation=P.Eltwise.SUM)
    n.upscore16 = L.Deconvolution(n.fuse_pool4,
        convolution_param=dict(num_output=40, kernel_size=32, stride=16,
            bias_term=False),
        param=[dict(lr_mult=0)])

    n.score = crop(n.upscore16, n.data)
    n.loss = L.SoftmaxWithLoss(n.score, n.label,
            loss_param=dict(normalize=False, ignore_label=255))

    return n.to_proto()
Exemplo n.º 4
0
def fcn(split):
    n = caffe.NetSpec()
    n.data, n.sem, n.geo = L.Python(module='siftflow_layers',
            layer='SIFTFlowSegDataLayer', ntop=3,
            param_str=str(dict(siftflow_dir='../data/sift-flow',
                split=split, seed=1337)))

    # the base net
    n.conv1_1, n.relu1_1 = conv_relu(n.data, 64, pad=100)
    n.conv1_2, n.relu1_2 = conv_relu(n.relu1_1, 64)
    n.pool1 = max_pool(n.relu1_2)

    n.conv2_1, n.relu2_1 = conv_relu(n.pool1, 128)
    n.conv2_2, n.relu2_2 = conv_relu(n.relu2_1, 128)
    n.pool2 = max_pool(n.relu2_2)

    n.conv3_1, n.relu3_1 = conv_relu(n.pool2, 256)
    n.conv3_2, n.relu3_2 = conv_relu(n.relu3_1, 256)
    n.conv3_3, n.relu3_3 = conv_relu(n.relu3_2, 256)
    n.pool3 = max_pool(n.relu3_3)

    n.conv4_1, n.relu4_1 = conv_relu(n.pool3, 512)
    n.conv4_2, n.relu4_2 = conv_relu(n.relu4_1, 512)
    n.conv4_3, n.relu4_3 = conv_relu(n.relu4_2, 512)
    n.pool4 = max_pool(n.relu4_3)

    n.conv5_1, n.relu5_1 = conv_relu(n.pool4, 512)
    n.conv5_2, n.relu5_2 = conv_relu(n.relu5_1, 512)
    n.conv5_3, n.relu5_3 = conv_relu(n.relu5_2, 512)
    n.pool5 = max_pool(n.relu5_3)

    # fully conv
    n.fc6, n.relu6 = conv_relu(n.pool5, 4096, ks=7, pad=0)
    n.drop6 = L.Dropout(n.relu6, dropout_ratio=0.5, in_place=True)
    n.fc7, n.relu7 = conv_relu(n.drop6, 4096, ks=1, pad=0)
    n.drop7 = L.Dropout(n.relu7, dropout_ratio=0.5, in_place=True)

    n.score_fr_sem = L.Convolution(n.drop7, num_output=33, kernel_size=1, pad=0,
        param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])
    n.upscore_sem = L.Deconvolution(n.score_fr_sem,
        convolution_param=dict(num_output=33, kernel_size=64, stride=32,
            bias_term=False),
        param=[dict(lr_mult=0)])
    n.score_sem = crop(n.upscore_sem, n.data)
    # losses to make score happy (o.w. loss_sem)
    n.loss = L.SoftmaxWithLoss(n.score_sem, n.sem,
            loss_param=dict(normalize=False, ignore_label=255))

    n.score_fr_geo = L.Convolution(n.drop7, num_output=3, kernel_size=1, pad=0,
        param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])
    n.upscore_geo = L.Deconvolution(n.score_fr_geo,
        convolution_param=dict(num_output=3, kernel_size=64, stride=32,
            bias_term=False),
        param=[dict(lr_mult=0)])
    n.score_geo = crop(n.upscore_geo, n.data)
    n.loss_geo = L.SoftmaxWithLoss(n.score_geo, n.geo,
            loss_param=dict(normalize=False, ignore_label=255))

    return n.to_proto()
Exemplo n.º 5
0
def fcn(split):
    n = caffe.NetSpec()
    pydata_params = dict(split=split, mean=(104.00699, 116.66877, 122.67892),
            seed=1337)
    if split == 'train':
        pydata_params['sbdd_dir'] = '../data/sbdd/dataset'
        pylayer = 'SBDDSegDataLayer'
    else:
        pydata_params['voc_dir'] = '../data/pascal/VOC2011'
        pylayer = 'VOCSegDataLayer'
    n.data, n.label = L.Python(module='voc_layers', layer=pylayer,
            ntop=2, param_str=str(pydata_params))

    # the base net
    n.conv1, n.relu1 = conv_relu(n.data,96,ks=11,stride=4,pad=100)
    n.pool1 = max_pool(n.relu1)

    n.lrn1 = lrn(n.pool1)

    n.conv2, n.relu2 = conv_relu(n.lrn1, 256, ks=5, stride=1, pad=2, group=2)
    n.pool2 = max_pool(n.relu2)

    n.lrn2 = lrn(n.pool2)

    n.conv3, n.relu3 = conv_relu(n.lrn2, 384, ks=3, stride = 1, pad=1)
    n.conv4, n.relu4 = conv_relu(n.relu3, 384, ks=3, stride = 1, pad=1, group=2)
    n.conv5, n.relu5 = conv_relu(n.relu4, 256, ks=3, stride = 1, pad=1, group=2)
    n.pool5 = max_pool(n.relu5)


    # fully conv
    n.fc6, n.relu6 = conv_relu(n.pool5, 4096, ks=6, stride = 1, pad=0)
    n.drop6 = L.Dropout(n.relu6, dropout_ratio=0.5, in_place=True)
    n.fc7, n.relu7 = conv_relu(n.drop6, 4096, ks=1, stride = 1, pad=0)
    n.drop7 = L.Dropout(n.relu7, dropout_ratio=0.5, in_place=True)
    n.score_fr = L.Convolution(n.drop7, num_output=21, kernel_size=1, pad=0, stride = 1,
        param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])
    n.upscore2 = L.Deconvolution(n.score_fr,
        convolution_param=dict(num_output=21, kernel_size=5, stride=2,
            bias_term=False),
        param=[dict(lr_mult=0)])
   
    n.score_pool2 = L.Convolution(n.lrn2, num_output=21, kernel_size=1, pad=0,
        param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])
    n.score_pool2c = crop(n.score_pool2, n.upscore2)
    n.fuse_pool2 = L.Eltwise(n.upscore2, n.score_pool2c, operation=P.Eltwise.SUM)
    n.upscore16 = L.Deconvolution(n.fuse_pool2,
        convolution_param=dict(num_output=21, kernel_size=31, stride=16,
            bias_term=False),
        param=[dict(lr_mult=0)])

    n.score = crop(n.upscore16, n.data)
    n.loss = L.SoftmaxWithLoss(n.score, n.label,
            loss_param=dict(normalize=True, ignore_label=255))

    return n.to_proto()
def fcn(split, num_classes=None):
    n = caffe.NetSpec()
    n.data = L.Input(shape=[dict(dim=[1, 3, 500, 500])])

    # conv1
    n.conv1_1, n.relu1_1 = conv_relu(n.data, 64, pad=100)
    n.conv1_2, n.relu1_2 = conv_relu(n.relu1_1, 64)
    n.pool1 = max_pool(n.relu1_2)

    # conv2
    n.conv2_1, n.relu2_1 = conv_relu(n.pool1, 128)
    n.conv2_2, n.relu2_2 = conv_relu(n.relu2_1, 128)
    n.pool2 = max_pool(n.relu2_2)

    # conv3
    n.conv3_1, n.relu3_1 = conv_relu(n.pool2, 256)
    n.conv3_2, n.relu3_2 = conv_relu(n.relu3_1, 256)
    n.conv3_3, n.relu3_3 = conv_relu(n.relu3_2, 256)
    n.pool3 = max_pool(n.relu3_3)

    # score
    n.score_fr = L.Convolution(n.pool3, num_output=num_classes, kernel_size=1, pad=0,
                               param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])

    # deconv : 8x
    n.upscore = L.Deconvolution(n.score_fr,
                                convolution_param=dict(num_output=num_classes, kernel_size=16,
                                                       stride=8, bias_term=False),
                                param=[dict(lr_mult=0)])
    n.score = crop(n.upscore, n.data)

    return n.to_proto()
Exemplo n.º 7
0
def mynet():
    data, label = L.DummyData(
        shape=[dict(dim=[8, 1, 28, 28]),
               dict(dim=[8, 1, 1, 1])],
        transform_param=dict(scale=1. / 255),
        ntop=2)

    # CAFFE = 1
    # MKL2017 = 3
    kwargs = {'engine': 3}
    conv1 = L.Convolution(data,
                          kernel_size=[3, 4, 5],
                          num_output=3,
                          pad=[1, 2, 3])
    bn1 = L.BatchNorm(conv1, **kwargs)
    relu1 = L.ReLU(bn1, **kwargs)

    convargs = {
        'param':
        [dict(lr_mult=1, decay_mult=1),
         dict(lr_mult=2, decay_mult=2)],
        'convolution_param':
        dict(num_output=64,
             kernel_size=2,
             stride=2,
             engine=P.Convolution.CAFFE,
             bias_filler=dict(type='constant', value=0),
             weight_filler=dict(type='xavier'))
    }
    deconv1 = L.Deconvolution(relu1, **convargs)

    return to_proto(deconv1)
Exemplo n.º 8
0
def deconv(netspec,
           input_node,
           num_output,
           scope,
           ks=4,
           stride=2,
           pad=1,
           std=0.01):
    """
    :param input_node:
    :param num_output:
    :param ks:
    :param stride:
    :param pad:
    :param std:
    :return:
    """
    n = netspec
    n.node = L.Deconvolution(input_node,
                             convolution_param=dict(
                                 num_output=num_output,
                                 kernel_size=ks,
                                 stride=stride,
                                 pad=pad,
                                 weight_filler=dict(type='xavier'),
                                 bias_filler=dict(type='constant', value=0)),
                             param=[dict(lr_mult=0)],
                             name='%s' % scope)
    return n.node
Exemplo n.º 9
0
def fpn_block(net):
  use_relu=False
  use_bn=False
  ConvBNLayer(net, 'stage2_tb', 'newC1', use_bn, use_relu, 128, 1, 0, 1)
  ConvBNLayer(net, 'stage3_tb', 'newC2', use_bn, use_relu, 128, 1, 0, 1)
  ConvBNLayer(net, 'stage4_tb', 'newC3', use_bn, use_relu, 128, 1, 0, 1)
  ConvBNLayer(net, 'ext1/fe1_2', 'p4', use_bn, use_relu, 128, 1, 0, 1)
  net.upP4 = L.Deconvolution(net.p4, convolution_param=dict(kernel_size=4, stride=2, group=128, num_output=128, pad=1, bias_term=False, weight_filler=dict(type='bilinear')), param=[dict(lr_mult=0, decay_mult=0)])
  net.p3 = L.Eltwise(net['newC3'], net.upP4)
  ConvBNLayer(net, 'p3', 'p3_lateral', use_bn, use_relu, 128, 1, 0, 1)
  net.upP3 = L.Deconvolution(net.p3_lateral, convolution_param=dict(kernel_size=4, stride=2, group=128, num_output=128, pad=1, bias_term=False, weight_filler=dict(type='bilinear')),param=[dict(lr_mult=0, decay_mult=0)])
  net.p2 = L.Eltwise(net['newC2'], net.upP3)
  ConvBNLayer(net, 'p2', 'p2_lateral', use_bn, use_relu, 128, 1, 0, 1)
  net.upP2 = L.Deconvolution(net.p2_lateral, convolution_param=dict(kernel_size=4, stride=2, group=128, num_output=128, pad=1, bias_term=False, weight_filler=dict(type='bilinear')),param=[dict(lr_mult=0, decay_mult=0)])
  net.p1 = L.Eltwise(net['newC1'], net.upP2)
  return net
Exemplo n.º 10
0
 def test_nd_conv(self):
     """
     ND conv maps the same way in more dimensions.
     """
     n = caffe.NetSpec()
     # define data with 3 spatial dimensions, otherwise the same net
     n.data = L.Input(shape=dict(dim=[2, 3, 100, 100, 100]))
     n.conv = L.Convolution(n.data,
                            num_output=10,
                            kernel_size=[3, 3, 3],
                            stride=[1, 1, 1],
                            pad=[0, 1, 2])
     n.pool = L.Pooling(n.conv,
                        pool=P.Pooling.MAX,
                        kernel_size=2,
                        stride=2,
                        pad=0)
     n.deconv = L.Deconvolution(n.pool,
                                num_output=10,
                                kernel_size=4,
                                stride=2,
                                pad=0)
     ax, a, b = coord_map_from_to(n.deconv, n.data)
     self.assertEquals(ax, 1)
     self.assertTrue(len(a) == len(b))
     self.assertTrue(np.all(a == 1))
     self.assertEquals(b[0] - 1, b[1])
     self.assertEquals(b[1] - 1, b[2])
Exemplo n.º 11
0
    def upconv(self,
               run_shape,
               bottom,
               num_output_dec,
               num_output_conv,
               weight_std=0.01,
               kernel_size=[2],
               stride=[2]):
        # Shape update rules
        update = RunShapeUpdater()
        update.fmaps_update = lambda x: num_output_dec
        update.shape_update = lambda x: [
            kernel_size[min(i,
                            len(kernel_size) - 1)] * x[i]
            for i in range(0, len(run_shape[-1].shape))
        ]
        self.update_shape(run_shape, update)

        deconv = L.Deconvolution(bottom,
                                 convolution_param=dict(
                                     num_output=num_output_dec,
                                     kernel_size=kernel_size,
                                     stride=stride,
                                     pad=[0],
                                     dilation=[1],
                                     group=num_output_dec,
                                     weight_filler=dict(type='constant',
                                                        value=1),
                                     bias_term=False),
                                 param=dict(lr_mult=0, decay_mult=0))

        # The convolution buffer and weight memory
        weight_mem = fsize * num_output_conv * num_output_dec
        conv_buff = fsize * run_shape[-1].fmaps
        for i in range(0, len(run_shape[-1].shape)):
            conv_buff *= 2
            conv_buff *= run_shape[-1].shape[i]

        # Shape update rules
        update.conv_buffer_mem_update = lambda x: conv_buff
        update.weight_mem_update = lambda x: weight_mem
        update.fmaps_update = lambda x: num_output_conv
        update.shape_update = lambda x: [
            x[i] for i in range(0, len(run_shape[-1].shape))
        ]
        self.update_shape(run_shape, update)

        conv = L.Convolution(deconv,
                             num_output=num_output_conv,
                             kernel_size=[1],
                             stride=[1],
                             pad=[0],
                             dilation=[1],
                             group=1,
                             param=[dict(lr_mult=1),
                                    dict(lr_mult=2)],
                             weight_filler=dict(type='gaussian',
                                                std=weight_std),
                             bias_filler=dict(type='constant'))
        return deconv, conv
Exemplo n.º 12
0
def upsample(bottom, stride, nout=1, name=None):
  s, k, pad = stride, 2 * stride, int(ceil(stride-1)/2)
  if not name:
    name = "upsample%d"%s
  return L.Deconvolution(bottom, name=name, convolution_param=dict(num_output=nout, bias_term=False, 
    kernel_size=k, stride=s, pad=pad, weight_filler = dict(type="bilinear"), group=nout), 
    param=[dict(lr_mult=0, decay_mult=0)])
Exemplo n.º 13
0
def fcn(split, tops):
    n = caffe.NetSpec()
    n.color, n.hha, n.label = L.Python(module='nyud_layers',
                                       layer='NYUDSegDataLayer',
                                       ntop=3,
                                       param_str=str(
                                           dict(nyud_dir='../data/nyud',
                                                split=split,
                                                tops=tops,
                                                seed=1337)))
    n = modality_fcn(n, 'color', 'color')
    n = modality_fcn(n, 'hha', 'hha')
    n.score_fused = L.Eltwise(n.score_frcolor,
                              n.score_frhha,
                              operation=P.Eltwise.SUM,
                              coeff=[0.5, 0.5])
    n.upscore = L.Deconvolution(n.score_fused,
                                convolution_param=dict(num_output=40,
                                                       kernel_size=64,
                                                       stride=32,
                                                       bias_term=False),
                                param=[dict(lr_mult=0)])
    n.score = crop(n.upscore, n.color)
    n.loss = L.SoftmaxWithLoss(n.score,
                               n.label,
                               loss_param=dict(normalize=False,
                                               ignore_label=255))
    return n.to_proto()
Exemplo n.º 14
0
def add_yolo_loss(net,out_layer=0,version='yolov2'):
  bottom = net.tops.keys()[-1]


  if version is 'yolov2' :
    net.conv_global = L.Convolution(net[bottom], kernel_size=1, stride=1,name='conv_global',
                    num_output=125,  pad=0, bias_term=True, weight_filler=dict(type='xavier'), bias_filler=dict(type='constant'))
    net.RegionLoss = L.RegionLoss(net.conv_global,net.label,num_class=20,coords=4,num=5,softmax=1,jitter=0.2,rescore=0,object_scale=5.0,noobject_scale=1.0,class_scale=1.0,
					coord_scale=1.0,absolute=1,thresh=0.6,random=0,biases=[1.08,1.19,3.42,4.41,6.63,11.38,9.42,5.11,16.62,10.52], include={'phase':caffe.TRAIN})
    return net.conv_global,net.conv_global
  else :
  
    #net.conv_global1 = L.Convolution(net[bottom], kernel_size=1, stride=1,name='conv_global1',
    #            num_output=75,  pad=0, bias_term=True, weight_filler=dict(type='msra'), bias_filler=dict(type='constant'))
    net.Yolov3Loss1 = L.Yolov3(net[bottom],net.label,num_class=20,num=3,object_scale=5.0,noobject_scale=1.0,class_scale=1.0,side=13,
				coord_scale=1.0,thresh=0.6,anchors_scale=32,use_logic_gradient=False,mask=[3,4,5],biases=[10,14,23,27,37,58,81,82,135,169,344,319], include={'phase':caffe.TRAIN})
    
    net.upsample = L.Deconvolution(net[bottom],param=dict(lr_mult=0, decay_mult=0),convolution_param=dict(kernel_size=4,stride=2,pad=1,group=75,bias_term=False,num_output=75,weight_filler=dict(type='bilinear')))
    x = L.Eltwise(net.upsample, out_layer)
    #net.conv_global2 = L.Convolution(x, kernel_size=1, stride=1,name='conv_global2',
    #            num_output=75,  pad=0, bias_term=True, weight_filler=dict(type='msra'), bias_filler=dict(type='constant'))                
    net.Yolov3Loss2 = L.Yolov3(x,net.label,num_class=20,num=3,object_scale=5.0,noobject_scale=1.0,class_scale=1.0,side=26,
				coord_scale=1.0,thresh=0.6,anchors_scale=16,use_logic_gradient=False,mask=[0,1,2],biases=[10,14,23,27,37,58,81,82,135,169,344,319], include={'phase':caffe.TRAIN}) 
                
    return net[bottom],x
Exemplo n.º 15
0
def unet2(bottom, ch, deconv):
    def block1(bottom):
        return unet_conv(bottom, 256, 128, se=True)

    def block2(bottom):
        conv1 = unet_conv(bottom, 64, 128, se=True)
        ub1 = unet_branch(conv1, block1, 128, 128, 4)
        conv2 = unet_conv(ub1, 64, 64, se=True)
        return conv2

    conv1 = unet_conv(bottom, 32, 64, se=False)
    ub1 = unet_branch(conv1, block2, 64, 64, 16)
    conv2 = conv_relu(ub1, 64)
    if deconv:
        return L.Deconvolution(conv2,
                               convolution_param=dict(num_output=ch,
                                                      kernel_size=4,
                                                      pad=3,
                                                      stride=2))
    else:
        return L.Convolution(conv2,
                             kernel_size=3,
                             stride=1,
                             num_output=ch,
                             pad=0)
Exemplo n.º 16
0
def deconvolution_layer(net,
                        inputlayer,
                        layername,
                        kernel_size,
                        stride,
                        pad,
                        num_output,
                        w_lr=1.0,
                        b_lr=1.0,
                        init_bias=0.0):
    parname_stem = layername
    deconv = L.Deconvolution(inputlayer,
                             convolution_param=dict(
                                 num_output=num_output,
                                 group=num_output,
                                 kernel_size=kernel_size,
                                 stride=stride,
                                 pad=pad,
                                 weight_filler=dict(type="bilinear"),
                                 bias_filler=dict(type="constant",
                                                  value=init_bias)),
                             param=[
                                 dict(name="par_%s_deconv_w" % (parname_stem),
                                      lr_mult=w_lr),
                                 dict(name="par_%s_conv_b" % (parname_stem),
                                      lr_mult=b_lr)
                             ])
    net.__setattr__(layername, deconv)
    return deconv
Exemplo n.º 17
0
def Deconvolution(caffe_net,
                  layer_idx,
                  bottom_blob,
                  out_planes,
                  kernel_size=2,
                  stride=2,
                  padding=0,
                  skip_connect=None):
    names = ['deconv{}'.format(layer_idx)]
    caffe_net[names[0]] = L.Deconvolution(bottom_blob,
                                          param={
                                              "lr_mult": 1,
                                              "decay_mult": 1
                                          },
                                          convolution_param=dict(
                                              num_output=out_planes,
                                              bias_term=False,
                                              kernel_size=kernel_size,
                                              stride=stride,
                                              pad=padding))
    bottom_blob = caffe_net[names[0]]

    if skip_connect is not None:
        caffe_net['res{}'.format(layer_idx)] = L.Eltwise(
            bottom_blob, skip_connect, operation=P.Eltwise.SUM, coeff=[1, 1])
        bottom_blob = caffe_net['res{}'.format(layer_idx)]

    return bottom_blob, layer_idx + 1
Exemplo n.º 18
0
def upconv(run_shape, bottom, num_output_dec, num_output_conv, weight_std=0.01, kernel_size=[2], stride=[2]):
    # Shape update rules
    update =  [lambda x: 0, lambda x: 0, lambda x: num_output_dec]
    update += [[lambda x: x, lambda x: x, lambda x: x]]
    update += [[lambda x, i=i: kernel_size[min(i,len(kernel_size)-1)] * x for i in range(0,len(run_shape[-1][4]))]]
    update_shape(run_shape, update)
    
    deconv = L.Deconvolution(bottom, convolution_param=dict(num_output=num_output_dec, kernel_size=kernel_size, stride=stride, pad=[0], kstride=[1], group=num_output_dec,
                                                            weight_filler=dict(type='constant', value=1), bias_term=False),
                             param=dict(lr_mult=0, decay_mult=0))

    # The convolution buffer and weight memory
    weight_mem = fsize * num_output_conv * num_output_dec
    conv_buff = fsize * run_shape[-1][2]
    for i in range(0,len(run_shape[-1][4])):        
        conv_buff *= 2
        conv_buff *= run_shape[-1][4][i]
    
    # Shape update rules
    update =  [lambda x: conv_buff, lambda x: weight_mem, lambda x: num_output_conv]
    update += [[lambda x: x, lambda x: x, lambda x: x]]
    update += [[lambda x, i=i: x for i in range(0,len(run_shape[-1][4]))]]
    update_shape(run_shape, update)

    conv = L.Convolution(deconv, num_output=num_output_conv, kernel_size=[1], stride=[1], pad=[0], kstride=[1], group=1,
                            param=[dict(lr_mult=1),dict(lr_mult=2)],
                            weight_filler=dict(type='gaussian', std=weight_std),
                            bias_filler=dict(type='constant'))
    return deconv, conv
Exemplo n.º 19
0
def make_upsample(bottom, num_classes):
    return L.Deconvolution(
        bottom,
        param=[dict(lr_mult=0, decay_mult=0)],
        convolution_param=dict(
            bias_term=False, num_output=num_classes, kernel_size=16, stride=8,
            group=num_classes, pad=4, weight_filler=dict(type="bilinear")))
Exemplo n.º 20
0
def upsample_merge(n, data, to_upsample, width, iters):
    deconv = L.Deconvolution(to_upsample,
                             convolution_param=dict(num_output=width,
                                                    kernel_size=2,
                                                    stride=2,
                                                    weight_filler=get_filler(),
                                                    bias_filler=dict([
                                                        ('type', 'constant'),
                                                        ('value', 0)
                                                    ])),
                             param=[{
                                 "lr_mult": 1,
                                 "decay_mult": 1
                             }, {
                                 "lr_mult": 2,
                                 "decay_mult": 0
                             }])
    prelu = L.PReLU(deconv)
    concat = L.Concat(data, prelu)
    netset(n, "concat_up_" + str(width), concat)

    left = left_branch(concat, width * 2, iters)
    netset(n, "left_branch_up_" + str(width), left)

    eltwise = L.Eltwise(concat, left, operation=P.Eltwise.SUM)
    netset(n, "elementwise_up_" + str(width), eltwise)
    return L.PReLU(eltwise, in_place=True)
Exemplo n.º 21
0
def vgg16_ssd_seg(source, bbox_seg_data_param, kwargs, use_batchnorm=False, lr_mult=1):

        net = caffe.NetSpec()

        net.data, net.bbox, net.seg = L.BBoxSegData(name="data", annotated_data_param=bbox_seg_data_param,
                data_param=dict(batch_size=8, backend=P.Data.LMDB, source=source),
                ntop=3, **kwargs)

        net.cls_specific_bbox, net.binary_mask, net.cls = L.SelectBinary(net.bbox, net.seg, random_select=True, num_class=20, ntop=3)

        VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True,
                   dropout=False, pool_mask=True, freeze_all=True)

        AddExtraLayers(net, use_batchnorm, lr_mult=0)

        # class vector embedding deconvolution net for class-specific semantic segmentation
        net.cls_reshape = L.Reshape(net.cls, shape=dict(dim=[0, 0, 1, 1]))

        # add top-down deconvolution net
        # mbox_source_layers = ['conv4_3', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2']
        AddExtraTopDownLayers(net, use_batchnorm=True, lr_mult=1)

        DeVGGNetBody(net, from_layer='deconv6_1', fully_conv=True, reduced=True, dilated=True,
                     dropout=False, pool_mask=True)

        dekwargs = {
            'weight_filler': dict(type='xavier'),
            'bias_filler': dict(type='constant', value=0)}
        deparam = {'param': [dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)]}
        net.seg_score = L.Deconvolution(net.derelu1_1, convolution_param=dict(num_output=2, pad=1, kernel_size=3, **dekwargs), **deparam)

        net.seg_loss = L.SoftmaxWithLoss(net.seg_score, net.binary_mask, loss_param=dict(ignore_label=255))

        return net.to_proto()
Exemplo n.º 22
0
def coord_net_spec(ks=3, stride=1, pad=0, pool=2, dstride=2, dpad=0):
    """
    Define net spec for simple conv-pool-deconv pattern common to all
    coordinate mapping tests.
    """
    n = caffe.NetSpec()
    n.data = L.Input(shape=dict(dim=[2, 1, 100, 100]))
    n.aux = L.Input(shape=dict(dim=[2, 1, 20, 20]))
    n.conv = L.Convolution(n.data,
                           num_output=10,
                           kernel_size=ks,
                           stride=stride,
                           pad=pad)
    n.pool = L.Pooling(n.conv,
                       pool=P.Pooling.MAX,
                       kernel_size=pool,
                       stride=pool,
                       pad=0)
    # for upsampling kernel size is 2x stride
    try:
        deconv_ks = [s * 2 for s in dstride]
    except:
        deconv_ks = dstride * 2
    n.deconv = L.Deconvolution(n.pool,
                               num_output=10,
                               kernel_size=deconv_ks,
                               stride=dstride,
                               pad=dpad)
    return n
Exemplo n.º 23
0
def deconv(prev, nout, ks=4, stride=2, bias_term=False):
    return layers.Deconvolution(prev,
                                convolution_param=dict(num_output=nout,
                                                       kernel_size=ks,
                                                       stride=stride,
                                                       bias_term=bias_term),
                                param=[dict(lr_mult=0)])
Exemplo n.º 24
0
def upconv(netconf, bottom, num_output_dec, num_output_conv, kernel_size=[2], stride=[2], stable_mode=False):
    # Stable mode is the more numerically stable pathway
    if stable_mode:
        deconv = L.Deconvolution(bottom, convolution_param=dict(num_output=num_output_dec, kernel_size=kernel_size, stride=stride, pad=[0], group=num_output_dec,
                                 weight_filler=dict(type='constant', value=1), bias_term=False),
                                 param=dict(lr_mult=0, decay_mult=0))
    
        conv = L.Convolution(deconv, num_output=num_output_conv, kernel_size=[1], stride=[1], pad=[0], group=1,
                             param=[dict(lr_mult=1),dict(lr_mult=2)],
                             weight_filler=dict(type='msra'),
                             bias_filler=dict(type='constant'))
        return conv
    else:
        deconv = L.Deconvolution(bottom, convolution_param=dict(num_output=num_output_conv, kernel_size=kernel_size, stride=stride, pad=[0], group=1,
                                                            weight_filler=dict(type='msra'), bias_filler=dict(type='constant')),param=[dict(lr_mult=1),dict(lr_mult=2)])
        return deconv
Exemplo n.º 25
0
def deconv_bn_relu(bottom, num_output, pad=0, kernel_size=3, stride=1):
    deconv = L.Deconvolution(bottom,
                             param=[dict(lr_mult=1, decay_mult=1)],
                             convolution_param=dict(
                                 num_output=num_output,
                                 pad=pad,
                                 kernel_size=kernel_size,
                                 stride=stride,
                                 weight_filler=dict(type='msra'),
                                 bias_term=0,
                                 engine=engine))
    bn = L.BatchNorm(deconv,
                     in_place=True,
                     use_global_stats=use_global_stats,
                     param=[dict(lr_mult=0),
                            dict(lr_mult=0),
                            dict(lr_mult=0)])
    scale = L.Scale(bn,
                    in_place=True,
                    axis=1,
                    filler=dict(type='constant', value=1),
                    bias_term=1,
                    bias_filler=dict(type='constant', value=0))
    relu = L.ReLU(scale, in_place=True, engine=engine)
    return deconv, bn, scale, relu
Exemplo n.º 26
0
def deconv_act(netconf, bottom, num_output, kernel_size=[3], stride=[1], pad=[0], dilation=[1], group=1, activation='relu'):
    deconv = L.Deconvolution(bottom, convolution_param=dict(kernel_size=kernel_size, stride=stride, dilation=dilation,
                                num_output=num_output, pad=pad, group=group,
                                weight_filler=dict(type='msra'),
                                bias_filler=dict(type='constant')), param=[dict(lr_mult=1),dict(lr_mult=2)])
    
    # Activation
    if activation == 'relu':
        relu = L.ReLU(deconv, in_place=True, negative_slope=netconf.relu_slope)
        last = relu
    if activation == 'tanh':
        tanh = L.Tanh(deconv, in_place=True)
        last = tanh
    if activation == 'sigmoid':
        sigm = L.Sigmoid(deconv, in_place=True)  
        last = sigm  
    
    if (netconf.dropout > 0):
        drop = L.Dropout(last, in_place=True, dropout_ratio=netconf.dropout)
        last = drop
    
    if (netconf.use_batchnorm == True):
        bnltrain = L.BatchNorm(last, in_place=True, include=[dict(phase=0)],
                          param=[dict(lr_mult=0,decay_mult=0),dict(lr_mult=0,decay_mult=0),dict(lr_mult=0,decay_mult=0)],
                          batch_norm_param=dict(use_global_stats=False, moving_average_fraction=netconf.batchnorm_maf))
        bnltest = L.BatchNorm(last, in_place=True, include=[dict(phase=1)],
                          param=[dict(lr_mult=0,decay_mult=0),dict(lr_mult=0,decay_mult=0),dict(lr_mult=0,decay_mult=0)],
                          batch_norm_param=dict(use_global_stats=True, moving_average_fraction=netconf.batchnorm_maf))
        last = {bnltrain, bnltest}  
    return last
Exemplo n.º 27
0
def deconv(input, num_output, kernel_size, stride, pad):
    return L.Deconvolution(input,
                           convolution_param=dict(bias_term=False,
                                                  num_output=num_output,
                                                  kernel_size=kernel_size,
                                                  stride=stride,
                                                  pad=pad))
Exemplo n.º 28
0
def conv1_autoencoder(split, batch_sz):
    n = caffe.NetSpec()
    n.data, n.label = L.ImageData(image_data_param=dict(source=split,
                                                        batch_size=batch_sz,
                                                        new_height=height,
                                                        new_width=width,
                                                        is_color=False),
                                  ntop=2)
    n.silence = L.Silence(n.label, ntop=0)
    n.flatdata_i = L.Flatten(n.data)

    n.conv1 = conv(n.data, 5, 5, 64, pad=2)
    n.bn1 = L.BatchNorm(n.conv1,
                        use_global_stats=False,
                        in_place=True,
                        param=[{
                            "lr_mult": 0
                        }, {
                            "lr_mult": 0
                        }, {
                            "lr_mult": 0
                        }])
    n.scale1 = L.Scale(n.bn1, bias_term=True, in_place=True)
    n.relu1 = L.ReLU(n.scale1, relu_param=dict(negative_slope=0.1))
    n.pool1 = max_pool(n.relu1, 2, stride=2)

    n.code = conv(n.pool1, 5, 5, 64, pad=2)

    n.upsample1 = L.Deconvolution(n.code,
                                  param=dict(lr_mult=0, decay_mult=0),
                                  convolution_param=dict(
                                      group=64,
                                      num_output=64,
                                      kernel_size=4,
                                      stride=2,
                                      pad=1,
                                      bias_term=False,
                                      weight_filler=dict(type="bilinear")))
    n.deconv1 = conv(n.upsample1, 5, 5, 1, pad=2)
    n.debn1 = L.BatchNorm(n.deconv1,
                          use_global_stats=False,
                          in_place=True,
                          param=[{
                              "lr_mult": 0
                          }, {
                              "lr_mult": 0
                          }, {
                              "lr_mult": 0
                          }])
    n.descale1 = L.Scale(n.debn1, bias_term=True, in_place=True)
    n.derelu1 = L.ReLU(n.descale1, relu_param=dict(negative_slope=0.1))

    n.flatdata_o = L.Flatten(n.derelu1)
    n.loss_s = L.SigmoidCrossEntropyLoss(n.flatdata_o,
                                         n.flatdata_i,
                                         loss_weight=1)
    n.loss_e = L.EuclideanLoss(n.flatdata_o, n.flatdata_i, loss_weight=0)

    return str(n.to_proto())
Exemplo n.º 29
0
def deconv_crop_layer(bottom, bottom2,num_out, size_kerbel,size_stride,num_offset):
    deconv1 = L.Deconvolution(bottom,
                              convolution_param = dict(num_output = num_out, kernel_size = size_kerbel, stride = size_stride),
                                                       param = [{'lr_mult':0,'decay_mult':1},{'lr_mult':0, 'decay_mult':0}])
    feature_dsn = L.Crop(deconv1,bottom2,
                          crop_param = dict(axis = 2, offset = num_offset))

    return feature_dsn
Exemplo n.º 30
0
def generate_net():
    n = caffe.NetSpec()

    n.data = L.Data(source=TRAIN_LMDB_DATA_FILE,
                    backend=P.Data.LMDB,
                    batch_size=1,
                    ntop=1,
                    transform_param=dict(scale=1. / 255))
    n.label = L.Data(source=TRAIN_LMDB_LABEL_FILE,
                     backend=P.Data.LMDB,
                     batch_size=1,
                     ntop=1)

    # the base net
    n.conv1, n.relu1 = conv_relu(n.data, 11, 96, stride=4, pad=100)
    n.pool1 = max_pool(n.relu1, 3, stride=2)
    n.norm1 = L.LRN(n.pool1, local_size=5, alpha=1e-4, beta=0.75)
    n.conv2, n.relu2 = conv_relu(n.norm1, 5, 256, pad=2, group=2)
    n.pool2 = max_pool(n.relu2, 3, stride=2)
    n.norm2 = L.LRN(n.pool2, local_size=5, alpha=1e-4, beta=0.75)
    n.conv3, n.relu3 = conv_relu(n.norm2, 3, 384, pad=1)
    n.conv4, n.relu4 = conv_relu(n.relu3, 3, 384, pad=1, group=2)
    n.conv5, n.relu5 = conv_relu(n.relu4, 3, 256, pad=1, group=2)
    n.pool5 = max_pool(n.relu5, 3, stride=2)

    # fully conv
    n.fc6, n.relu6 = conv_relu(n.pool5, 6, 4096)
    n.drop6 = L.Dropout(n.relu6, dropout_ratio=0.5, in_place=True)
    n.fc7, n.relu7 = conv_relu(n.drop6, 1, 4096)
    n.drop7 = L.Dropout(n.relu7, dropout_ratio=0.5, in_place=True)

    # weight_filler=dict(type='gaussian', std=0.0001), bias_filler=dict(type='constant')
    n.score_fr_ = L.Convolution(
        n.drop7,
        num_output=2,
        kernel_size=1,
        pad=0,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)])

    n.upscore_ = L.Deconvolution(n.score_fr_,
                                 convolution_param=dict(
                                     num_output=2,
                                     kernel_size=63,
                                     stride=32,
                                     group=2,
                                     bias_term=False,
                                     weight_filler=dict(type='bilinear')),
                                 param=[dict(lr_mult=0)])

    n.score = crop(n.upscore_, n.data)
    n.loss = L.SoftmaxWithLoss(n.score,
                               n.label,
                               loss_weight=1,
                               loss_param=dict(normalize=False,
                                               ignore_label=255))

    return n.to_proto()