def cac_opt(quantized_prototxt): net = caffe_pb2.NetParameter() with open(quantized_prototxt) as f: s = f.read() txtf.Merge(s,net) base_net = caffe_pb2.NetParameter() compiled_net_str = caffe.compile_net(quantized_prototxt, caffe.TEST, "MKLDNN") txtf.Merge(compiled_net_str, base_net) new_net = copy.deepcopy(net) avg_pool_layers = [index for index, value in enumerate(base_net.layer) if value.type == 'Pooling' and value.pooling_param.pool == 1] #max=0 ave=1 layer_infos = [(value, index) for index, value in enumerate(new_net.layer)] for index in avg_pool_layers: up_quantize, has_concat = find_up_quantize(base_net, index) down_quantize = find_down_quantize(base_net, index) if up_quantize and down_quantize: new_net_up_index = find_index_by_name(base_net.layer[up_quantize].name, layer_infos) new_net_down_index = find_index_by_name(base_net.layer[down_quantize].name, layer_infos) if not has_concat: new_net.layer[new_net_down_index].quantization_param.scale_in[:]=new_net.layer[new_net_up_index].quantization_param.scale_out[:] else: new_net.layer[new_net_down_index].quantization_param.scale_in[:]=new_net.layer[new_net_up_index].quantization_param.scale_in[:] print([new_net.layer[new_net_up_index].name,new_net.layer[new_net_down_index].name]) with open(quantized_prototxt, 'w') as f: f.write(str(new_net)) print('cac opt done')
def force_fp32_opt(quantized_prototxt): net = caffe_pb2.NetParameter() with open(quantized_prototxt) as f: s = f.read() txtf.Merge(s, net) base_net = caffe_pb2.NetParameter() compiled_net_str = caffe.compile_net(quantized_prototxt, caffe.TEST, "MKLDNN") txtf.Merge(compiled_net_str, base_net) new_net = copy.deepcopy(net) quantize_layers_indexes = [ index for index, value in enumerate(base_net.layer) if value.type in quantize_layers ] layer_infos = [(value, index) for index, value in enumerate(new_net.layer)] layer_bottom_name_map = {} for index, layer in enumerate(base_net.layer): for bottom in layer.bottom: if bottom not in layer_bottom_name_map.keys(): layer_bottom_name_map[bottom] = [index] else: layer_bottom_name_map[bottom].append(index) for index in quantize_layers_indexes: if int(base_net.layer[index].quantization_param.bw_layer_out) != 32: force_fp32 = True if base_net.layer[index].top[0] in layer_bottom_name_map.keys(): bottom_layer_indexes = layer_bottom_name_map[ base_net.layer[index].top[0]] for bottom_layer_index in bottom_layer_indexes: next_layer = base_net.layer[bottom_layer_index] if next_layer.top == next_layer.bottom and next_layer.type not in int8_layers: force_fp32 = True break if next_layer.type in int8_layers: force_fp32 = False if force_fp32 or index == np.max(quantize_layers_indexes): new_net_index = find_index_by_name(base_net.layer[index].name, layer_infos) new_net.layer[ new_net_index].quantization_param.scale_out[:] = [1.0] new_net.layer[ new_net_index].quantization_param.bw_layer_out = 32 print(new_net.layer[new_net_index].name) with open(quantized_prototxt, 'w') as f: f.write(str(new_net)) print('force_fp32 done')
pprint.pprint(cfg) while not os.path.exists(args.caffemodel) and args.wait: print('Waiting for {} to exist...'.format(args.caffemodel)) time.sleep(10) #caffe.set_mode_gpu() #caffe.set_device(args.gpu_id) net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] imdb = get_imdb(args.imdb_name) imdb.competition_mode(args.comp_mode) if not cfg.TEST.HAS_RPN: imdb.set_proposal_method(cfg.TEST.PROPOSAL_METHOD) if args.quantized_prototxt == None: test_net(net, imdb, max_per_image=args.max_per_image, vis=args.vis) else: (blobs, params, top_blobs_map, bottom_blobs_map, conv_top_blob_layer_map, conv_bottom_blob_layer_map, winograd_bottoms, winograd_convolutions) = sample_net(args.prototxt, net, imdb, args.sample_iters, args.quant_mode, args.enable_1st_conv_layer) (inputs_max, outputs_max, inputs_min) = sampling.calibrate_activations(blobs, conv_top_blob_layer_map, conv_bottom_blob_layer_map, winograd_bottoms, args.calibration_algos, "SINGLE", args.conv_algo) params_max = sampling.calibrate_parameters(params, winograd_convolutions, "DIRECT", args.quant_mode.upper(), args.conv_algo) calibrator.generate_sample_impl(args.prototxt, args.quantized_prototxt, inputs_max, outputs_max, inputs_min, params_max, args.enable_1st_conv_layer) compiled_net_str = caffe.compile_net(args.prototxt, caffe.TEST, "MKLDNN") raw_net_basename = os.path.basename(args.prototxt) compile_net_path = "./compiled_" + raw_net_basename with open(compile_net_path, "w") as f: f.write(compiled_net_str) calibrator.transform_convolutions(args.quantized_prototxt, compile_net_path, top_blobs_map, bottom_blobs_map, args.unsigned_range, args.concat_use_fp32, args.unify_concat_scales, args.conv_algo, args.enable_1st_conv_layer)
while not os.path.exists(args.caffemodel) and args.wait: print('Waiting for {} to exist...'.format(args.caffemodel)) time.sleep(10) #caffe.set_mode_gpu() #caffe.set_device(args.gpu_id) net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] imdb = get_imdb(args.imdb_name) imdb.competition_mode(args.comp_mode) if not cfg.TEST.HAS_RPN: imdb.set_proposal_method(cfg.TEST.PROPOSAL_METHOD) if cfg.TEST.PROPOSAL_METHOD == 'rpn': imdb.config['rpn_file'] = args.rpn_file if args.quantized_prototxt == None: test_net(net, imdb, max_per_image=args.max_per_image, vis=args.vis) else: (blobs, params, top_blobs_map, bottom_blobs_map, conv_top_blob_layer_map, conv_bottom_blob_layer_map, winograd_bottoms, winograd_convolutions) = sample_net(args.prototxt, net, imdb, args.sample_iters, args.quant_mode, args.enable_1st_conv_layer) (inputs_max, outputs_max, inputs_min) = sampling.calibrate_activations(blobs, conv_top_blob_layer_map, conv_bottom_blob_layer_map, winograd_bottoms, args.calibration_algos, "SINGLE", args.conv_algo) params_max = sampling.calibrate_parameters(params, winograd_convolutions, "DIRECT", args.quant_mode.upper(), args.conv_algo) calibrator.generate_sample_impl(args.prototxt, args.quantized_prototxt, inputs_max, outputs_max, inputs_min, params_max, args.enable_1st_conv_layer) compiled_net_str = caffe.compile_net(args.prototxt, caffe.TEST, "MKLDNN") raw_net_basename = os.path.basename(args.prototxt) compile_net_path = "./compiled_" + raw_net_basename with open(compile_net_path, "w") as f: f.write(compiled_net_str) calibrator.transform_convolutions(args.quantized_prototxt, compile_net_path, top_blobs_map, bottom_blobs_map, args.unsigned_range, args.concat_use_fp32, args.unify_concat_scales, args.conv_algo, args.enable_1st_conv_layer)