Exemplo n.º 1
0
def test(net_file,model_topdir,predict_file,gpunum,trialnum,outdir,keyword):

    caffe.set_device(gpunum)
    caffe.set_mode_gpu()

    best_trial,best_iter = getBestRunAll(model_topdir,trialnum,'train.err',keyword)
    model_dir = join(model_topdir,'trial'+str(best_trial))
    model_file = os.path.join(model_dir,'train_iter_'+best_iter+'.caffemodel')
    system(' '.join(['cp',model_file,join(outdir,'bestiter.caffemodel')]))
    outfile = os.path.join(outdir,'bestiter.pred')

    with open(join(outdir,'bestiter.info'),'w') as f:
	f.write('best_trial\tbest_iter\n')
	f.write('%d\t%s\n' % (best_trial,best_iter))

    net = caffe.Net(net_file, model_file,caffe.TEST)
    predict_dir = os.path.dirname(predict_file)
    with open(predict_file,'r') as f:
        files = [x.strip() for x in f]

    with open(outfile,'w') as f:
        for batchfile in files:
            fi    = h5py.File(batchfile, 'r')
            dataset = np.asarray(fi['data'])
            out = net.forward_all(data=dataset)
            prob = np.vstack(np.asarray(out['prob']))
            for out in prob:
                f.write('%s\n' % '\t'.join([str(x) for x in out]))
Exemplo n.º 2
0
def setCaffeMode(gpu, device = 0):
    """Initialise caffe"""
    if gpu:
        caffe.set_mode_gpu()
        caffe.set_device(device)
    else:
        caffe.set_mode_cpu()
def justCheckGradients(solver_file,deploy_file,model_file):
    model=model_file
    print model
    print os.path.exists(model);

    caffe.set_device(1)
    caffe.set_mode_gpu()

    solver=caffe.SGDSolver(solver_file);
    solver.net.forward();

    net=caffe.Net(deploy_file,model);

    print list(net._layer_names);
    print net.blobs.keys();
    # return
    net.blobs['data'].data[...]=solver.net.blobs['data'].data;
    net.blobs['thelabelscoarse'].data[...]=solver.net.blobs['thelabelscoarse'].data;

    net.forward();
    # print net.blobs['thelabelscoarse'].data[:10,0,0,0,0];
    # print net.blobs['reshapefc8'].data[0,39,0,:]
    net.backward();
    # print net.blobs.keys();

    layers_to_explore=['conv1','conv2','conv3','conv4','conv5','fc6_fix','fc7_fix','fc8_fix']
    ratios=getRatios(net,layers_to_explore);

    for layer_name in ratios.keys():
        print layer_name,ratios[layer_name];
def model_creation_fromsuperclass(model_name):
        caffe.set_device(1)
        caffe.set_mode_gpu()
        in_model_name = root + 'training/train_val_superevent.prototxt'
        in_weight_name = root + 'snapshot/'+model_name
        out_weight_name = root + 'snapshot/segment_fromsuperclass_frombegin_iter_100000_start.caffemodel'
        print out_weight_name
        in_net = caffe.Net(in_model_name,
                    in_weight_name,
                    caffe.TEST)
        out_model_name = root + 'train_val_fromsuper.prototxt'
        out_net = caffe.Net(out_model_name,
                    in_weight_name,
                    caffe.TEST)

        # a = in_net.params['conv1'][0].data
        # b = in_net.params['conv1'][1].data
        # print a.shape, b.shape
        a = in_net.params['fc8_multevent1'][0].data
        b = np.zeros((23,a.shape[1]))
        for i in xrange(23):
            b[i,:] = a[dict_subcategory2[i],:]
        out_net.params['fc8_multevent2'][0].data[...] = b
        out_net.params['fc8_multevent2_p'][0].data[...] = b


        a = in_net.params['fc8_multevent1'][1].data
        b = np.zeros((23,))
        for i in xrange(23):
            b[i] = a[dict_subcategory2[i]]
        out_net.params['fc8_multevent2'][1].data[...] = b
        out_net.params['fc8_multevent2_p'][1].data[...] = b

        out_net.save(out_weight_name)
  def init(self):
    image_net = self.image_net
    caffe.set_device(0)
    caffe.set_mode_gpu()
    if image_net == 'caffenet':
      convnet_proto = './caffe/models/bvlc_reference_caffenet/deploy.prototxt'
      convnet_model = './caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'
    elif image_net == 'vggnet':
      convnet_proto = './caffe/models/vggnet/VGG_ILSVRC_16_layers_deploy.prototxt'
      convnet_model = './caffe/models/vggnet/VGG_ILSVRC_16_layers.caffemodel'
    else:
      raise StandardError('Unknown CNN %s' % image_net)

    self.net = caffe.Net(convnet_proto, convnet_model, caffe.TEST)

    if image_net == 'caffenet':
      self.transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape})
      self.transformer.set_transpose('data', (2, 0, 1))
      self.transformer.set_mean('data', np.array([104, 117, 123]))
      self.transformer.set_raw_scale('data', 255)
      self.transformer.set_channel_swap('data', (2, 1, 0))
      self.BATCH_SIZE = 100
      self.net.blobs['data'].reshape(self.BATCH_SIZE, 3, 227, 227)
    elif image_net == 'vggnet':
      self.transformer = caffe.io.Transformer({'data': self.net.blobs['data'].data.shape})
      self.transformer.set_transpose('data', (2, 0, 1))
      self.transformer.set_mean('data', np.array([103.939, 116.779, 123.68]))
      self.transformer.set_raw_scale('data', 255)
      self.transformer.set_channel_swap('data', (2, 1, 0))
      self.BATCH_SIZE = 100
      self.net.blobs['data'].reshape(self.BATCH_SIZE, 3, 224, 224)

    self.image_net = image_net
    self.initialized = True
    print "Done initializing image feature extractor"
def main(input, output, disp, gpu):
    make_sure_path_exists(input)
    make_sure_path_exists(output)

    # should be picked up by caffe by default, but just in case
    # add by macpod
    if gpu:
        caffe.set_mode_gpu();
        caffe.set_device(0);
        
    frame = np.float32(PIL.Image.open(input+'/0001.jpg'))
    frame_i = 1
    
    # let max nr of frames
    nrframes =len([name for name in os.listdir('./input') if os.path.isfile(name)])

    for i in xrange(frame_i,nrframes):
        frame = deepdream(
            net, frame, end = layersloop[frame_i % len(layersloop)], disp=disp, iter_n=5)
        saveframe = output + "/%04d.jpg" % frame_i
        PIL.Image.fromarray(np.uint8(frame)).save(saveframe)
        newframe = input + "/%04d.jpg" % frame_i
        frame = morphPicture(saveframe, newframe) # give it back 50% of original picture
        frame = np.float32(frame)
        frame_i += 1
def detectFace(img_path,threshold):
    img = cv2.imread(img_path)
    caffe_img = img.copy()-128
    origin_h,origin_w,ch = caffe_img.shape
    scales = tools.calculateScales(img)
    out = []
    for scale in scales:
        hs = int(origin_h*scale)
        ws = int(origin_w*scale)
        scale_img = cv2.resize(caffe_img,(ws,hs))
        scale_img = np.swapaxes(scale_img, 0, 2)
        net_12.blobs['data'].reshape(1,3,ws,hs)
        net_12.blobs['data'].data[...]=scale_img
	caffe.set_device(0)
	caffe.set_mode_gpu()
	out_ = net_12.forward()
        out.append(out_)
    image_num = len(scales)
    rectangles = []
    for i in range(image_num):    
        cls_prob = out[i]['cls_score'][0][1]
        roi      = out[i]['conv4-2'][0]
        out_h,out_w = cls_prob.shape
        out_side = max(out_h,out_w)
        rectangle = tools.detect_face_12net(cls_prob,roi,out_side,1/scales[i],origin_w,origin_h,threshold[0])
        rectangles.extend(rectangle)
    return rectangles
Exemplo n.º 8
0
def evaluate_caffe_nn(train_data, valid_data, test_data):
    import caffe
    from caffe import layers as L, params as P
    import caffe_utils as utils

    def gen_net(net_path, data_shape, label_shape):
        net = caffe.NetSpec()
        
        net.data = L.Input(shape=dict(dim=list(data_shape)))
        net.label = L.Input(shape=dict(dim=list(label_shape)))
        
        net.fc0 = L.InnerProduct(net.data, num_output=30, weight_filler=dict(type='xavier'))
        net.relu0 = L.ReLU(net.fc0, in_place=True)
        net.output = L.InnerProduct(net.relu0, num_output=10, weight_filler=dict(type='xavier'))

        net.loss = L.SoftmaxWithLoss(net.output, net.label)
        net.accuracy = L.Accuracy(net.output, net.label)
        
        with open(net_path, 'w') as f:
            f.write(str(net.to_proto()))

    def gen_solver(solver_path, net_path):
        from caffe.proto import caffe_pb2

        params = caffe_pb2.SolverParameter()

        params.train_net = net_path
        
        params.type = 'SGD'
        params.momentum = 0.9
        params.base_lr = 0.5

        params.lr_policy = 'step'
        params.gamma = 0.999
        params.stepsize = 1

        params.weight_decay = 0.0003

        with open(solver_path, 'w') as f:
            f.write(str(params))

    batch_size = 1024
    data_shape = (batch_size, train_data[0][0].size)
    label_shape = (batch_size, 1)
    train_blobs = utils.as_dl_blobs(train_data, batch_size, data_shape, label_shape)
    valid_blobs = utils.as_dl_blobs(valid_data, batch_size, data_shape, label_shape)
    test_blobs = utils.as_dl_blobs(test_data, batch_size, data_shape, label_shape)

    net_path = 'temp/net.prototxt'
    solver_path = 'temp/solver.txt'
    gen_net(net_path, data_shape, label_shape)
    gen_solver(solver_path, net_path)

    caffe.set_device(0)
    caffe.set_mode_gpu()

    solver = caffe.SGDSolver(solver_path)

    utils.train(solver, train_blobs, valid_blobs, 50, 5)
    print('caffe nn: %.2f%%' % (utils.evaluate(solver, test_blobs)))
Exemplo n.º 9
0
 def __init__(self, weights_path, image_net_proto, lstm_net_proto,
              vocab_path, device_id=-1):
   if device_id >= 0:
     caffe.set_mode_gpu()
     caffe.set_device(device_id)
   else:
     caffe.set_mode_cpu()
   # Setup image processing net.
   phase = caffe.TEST
   self.image_net = caffe.Net(image_net_proto, weights_path, phase)
   image_data_shape = self.image_net.blobs['data'].data.shape
   self.transformer = caffe.io.Transformer({'data': image_data_shape})
   channel_mean = np.zeros(image_data_shape[1:])
   channel_mean_values = [104, 117, 123]
   assert channel_mean.shape[0] == len(channel_mean_values)
   for channel_index, mean_val in enumerate(channel_mean_values):
     channel_mean[channel_index, ...] = mean_val
   self.transformer.set_mean('data', channel_mean)
   self.transformer.set_channel_swap('data', (2, 1, 0))
   self.transformer.set_transpose('data', (2, 0, 1))
   # Setup sentence prediction net.
   self.lstm_net = caffe.Net(lstm_net_proto, weights_path, phase)
   self.vocab = ['<EOS>']
   with open(vocab_path, 'r') as vocab_file:
     self.vocab += [word.strip() for word in vocab_file.readlines()]
   assert(self.vocab[1] == '<unk>')
   self.vocab_inv = dict([(w,i) for i,w in enumerate(self.vocab)])
   net_vocab_size = self.lstm_net.blobs['predict'].data.shape[2]
   if len(self.vocab) != net_vocab_size:
     raise Exception('Invalid vocab file: contains %d words; '
         'net expects vocab with %d words' % (len(self.vocab), net_vocab_size))
Exemplo n.º 10
0
def caffe_set_device(gpu=True, devid='0'):
	if gpu:
		caffe.set_mode_gpu()	
		os.environ["CUDA_VISIBLE_DEVICES"] = devid
		caffe.set_device(int(devid))
	else:
		caffe.set_mode_cpu()
Exemplo n.º 11
0
def setup():
    global resnet_mean
    global resnet_net
    global vqa_net
    # data provider
    vqa_data_provider_layer.CURRENT_DATA_SHAPE = EXTRACT_LAYER_SIZE

    # mean substraction
    blob = caffe.proto.caffe_pb2.BlobProto()
    data = open( RESNET_MEAN_PATH , 'rb').read()
    blob.ParseFromString(data)
    resnet_mean = np.array( caffe.io.blobproto_to_array(blob)).astype(np.float32).reshape(3,224,224)
    resnet_mean = np.transpose(cv2.resize(np.transpose(resnet_mean,(1,2,0)), (448,448)),(2,0,1))

    # resnet
    caffe.set_device(GPU_ID)
    caffe.set_mode_gpu()

    resnet_net = caffe.Net(RESNET_LARGE_PROTOTXT_PATH, RESNET_CAFFEMODEL_PATH, caffe.TEST)

    # our net
    vqa_net = caffe.Net(VQA_PROTOTXT_PATH, VQA_CAFFEMODEL_PATH, caffe.TEST)

    # uploads
    if not os.path.exists(UPLOAD_FOLDER):
        os.makedirs(UPLOAD_FOLDER)

    if not os.path.exists(VIZ_FOLDER):
        os.makedirs(VIZ_FOLDER)

    print 'Finished setup'
def train():
    with open('./seg_low_res_model/proto_train.prototxt', 'w') as f:
        f.write(str(segmodel.generate_model('train', config.N)))

    caffe.set_device(config.gpu_id)
    caffe.set_mode_gpu()

    solver = caffe.get_solver('./seg_low_res_model/solver.prototxt')
    if config.weights is not None:
        solver.net.copy_from(config.weights)

    cls_loss_avg = 0.0
    avg_accuracy_all, avg_accuracy_pos, avg_accuracy_neg = 0.0, 0.0, 0.0
    decay = 0.99

    for it in range(config.max_iter):
        solver.step(1)

        cls_loss_val = solver.net.blobs['loss'].data
        scores_val = solver.net.blobs['fcn_scores'].data.copy()
        label_val = solver.net.blobs['label'].data.copy()

        cls_loss_avg = decay*cls_loss_avg + (1-decay)*cls_loss_val
        print('\titer = %d, cls_loss (cur) = %f, cls_loss (avg) = %f'
            % (it, cls_loss_val, cls_loss_avg))

        # Accuracy
        accuracy_all, accuracy_pos, accuracy_neg = compute_accuracy(scores_val, label_val)
        avg_accuracy_all = decay*avg_accuracy_all + (1-decay)*accuracy_all
        avg_accuracy_pos = decay*avg_accuracy_pos + (1-decay)*accuracy_pos
        avg_accuracy_neg = decay*avg_accuracy_neg + (1-decay)*accuracy_neg
        print('\titer = %d, accuracy (cur) = %f (all), %f (pos), %f (neg)'
              % (it, accuracy_all, accuracy_pos, accuracy_neg))
        print('\titer = %d, accuracy (avg) = %f (all), %f (pos), %f (neg)'
              % (it, avg_accuracy_all, avg_accuracy_pos, avg_accuracy_neg))
Exemplo n.º 13
0
    def __init__(self,params):

        self.dimension = params['dimension']
        self.dataset = params['dataset']
        self.pooling = params['pooling']
        # Read image lists
        with open(params['query_list'],'r') as f:
            self.query_names = f.read().splitlines()

        with open(params['frame_list'],'r') as f:
            self.database_list = f.read().splitlines()

        # Parameters needed
        self.layer = params['layer']
        self.save_db_feats = params['database_feats']

        # Init network
        if params['gpu']:
            caffe.set_mode_gpu()
            caffe.set_device(0)
        else:
            caffe.set_mode_cpu()
        print "Extracting from:", params['net_proto']
        cfg.TEST.HAS_RPN = True
        self.net = caffe.Net(params['net_proto'], params['net'], caffe.TEST)
def set_caffe_mode(gpu):
    if gpu == 0: # cpu mode
        caffe.set_mode_cpu()
    else: # gpu mode
        caffe.set_device(0)
        caffe.set_mode_gpu()
    return 0
Exemplo n.º 15
0
def main(args_list):
    args = parse_args(args_list)

    print('Called with args:')
    print(args)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    cfg.GPU_ID = args.gpu_id

    print('Using config:')
    pprint.pprint(cfg)

    while not os.path.exists(args.caffemodel) and args.wait:
        print('Waiting for {} to exist...'.format(args.caffemodel))
        time.sleep(10)

    caffe.set_mode_gpu()
    caffe.set_device(args.gpu_id)
    net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST)
    net.name = os.path.splitext(os.path.basename(args.caffemodel))[0]

    imdb = get_imdb(args.imdb_name)
    imdb.competition_mode(args.comp_mode)
    if not cfg.TEST.HAS_RPN:
        imdb.set_proposal_method(cfg.TEST.PROPOSAL_METHOD)

    test_net(net, imdb, max_per_image=args.max_per_image, vis=args.vis)
Exemplo n.º 16
0
def init_caffe_net(gpu_id, raw_image_size, crop_size, batch_size):
    '''
     Initialize caffe configuration.
     The function is used to extract the RGB images.
     If your dataset contains gray images, set the channels 3 to 1 and comment the image preprocessing in transposing and channels changing.
    '''
    caffe.set_mode_gpu()
    caffe.set_device(int(gpu_id)) # {0, 1, 2, 3} to four GPUs you want to choose.
    # The train_val.prototxt file defination.
    model_def = '/home/u514/caffe-i/caffe-master/caffe/models/vgg/vgg_2048/deploy-bak.prototxt'
    # The pre-trained model.
    caffemodel = '/home/u514/caffe-i/caffe-master/caffe/models/vgg/vgg_2048/pretrain_ilsvrc2012_vgg_2048.caffemodel'
    # The mean file of the image set used to train the model.
    mean_file = '/home/u514/caffe-i/caffe-master/caffe/models/vgg/vgg_2048/vgg_mean.npy'
    net = caffe.Net(model_def, caffemodel, caffe.TEST)

    transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
    transformer.set_transpose('data', (2, 0, 1)) # (H,W,C) to (C,H,W)
    transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))
    transformer.set_raw_scale('data', int(raw_image_size))
    transformer.set_channel_swap('data', (2, 1, 0)) # RGB to BGR

    # Set batch size (default: 50).
    net.blobs['data'].reshape(int(batch_size), 3, int(crop_size), int(crop_size))
    return net, transformer
Exemplo n.º 17
0
    def __init__(self, model_def_file, pretrained_model_file, mean_file,
                 raw_scale, class_labels_file, bet_file, image_dim, gpu_mode, gpu_device):
        logging.info('Loading net and associated files...')
        if gpu_mode:
            caffe.set_device(gpu_device)
            caffe.set_mode_gpu()
        else:
            caffe.set_mode_cpu()
        self.net = caffe.Classifier(
            model_def_file, pretrained_model_file,
            image_dims=(image_dim, image_dim), raw_scale=raw_scale,
            mean=np.load(mean_file).mean(1).mean(1), channel_swap=(2, 1, 0)
        )

        with open(class_labels_file) as f:
            labels_df = pd.DataFrame([
                {
                    'synset_id': l.strip().split(' ')[0],
                    'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0]
                }
                for l in f.readlines()
            ])
        self.labels = labels_df.sort('synset_id')['name'].values

        self.bet = cPickle.load(open(bet_file))
        # A bias to prefer children nodes in single-chain paths
        # I am setting the value to 0.1 as a quick, simple model.
        # We could use better psychological models here...
        self.bet['infogain'] -= np.array(self.bet['preferences']) * 0.1
Exemplo n.º 18
0
	def setup_net(self):
		caffe.set_mode_gpu()
		caffe.set_device(0)
		netFiles  = cfg.get_caffe_net_files(self.prms_.netName)
		self.net_ = caffe.Net(netFiles.deployFile,
				netFiles.netFile, caffe.TEST)
		self.cls_ = cfg.dataset2classnames(self.prms_.trainDataSet)
Exemplo n.º 19
0
def test(net_file,model_file,predict_file,gpunum,outdir,outputlayer):
    caffe.set_device(gpunum)
    caffe.set_mode_gpu()
    if not exists(outdir):
        makedirs(outdir)
    outfile = os.path.join(outdir,'bestiter.pred')
    outputlayer_split = outputlayer.split('_')
    outputlayer_cnt = len(outputlayer_split)
    flag = False
    outdata = []

    net = caffe.Net(realpath(net_file), realpath(model_file),caffe.TEST)
    with open(predict_file,'r') as f:
        files = [x.strip() for x in f]

    with open(outfile,'w') as f:
        for batchfile in files:
            fi    = h5py.File(batchfile, 'r')
            dataset = np.asarray(fi['data'])
            out = net.forward_all(data=dataset,blobs=outputlayer_split)
            for i in range(outputlayer_cnt):
                if not flag:
                    outdata.append( np.vstack(np.asarray(out[outputlayer_split[i]])) )
                else:
                    outdata[i] = np.vstack((outdata[i],np.vstack(np.asarray(out[outputlayer_split[i]]))))
            flag = True
        for out in outdata[0]:
            f.write('%s\n' % '\t'.join([str(x) for x in out]))

    with open(join(outdir,'bestiter.pred.params.pkl'),'wb') as f:
        cPickle.dump((outdata,outputlayer_split),f,protocol=cPickle.HIGHEST_PROTOCOL)
def main(args):
    caffe.set_device(0)
    caffe.set_mode_gpu()
    blob, next_layer = parse_prototxt(args.model, args.layer)
    net = caffe.Net(args.model, args.weights, caffe.TEST)
    # Channelwise for conv
    impact = np.zeros(net.blobs[blob].shape[1])
    for i in xrange(args.num_iters):
        net.forward()
        f = net.blobs[blob].data.copy()
        loss = net.blobs['loss'].data.copy()
        for n in xrange(f.shape[1]):
            net.blobs[blob].data[...] = f.copy()
            net.blobs[blob].data[:, n] = 0
            net.forward(start=next_layer)
            delta = net.blobs['loss'].data - loss
            impact[n] += delta.sum()
    # Normalize
    if args.normalize:
        assert impact.max() > 0, "No neuron has positive impact"
        scale = np.log(9) / impact.max()
        impact *= scale
    else:
        batch_size = net.blobs[blob].shape[0]
        impact /= (batch_size * args.num_iters)
    # Save
    np.save(args.output, impact)
Exemplo n.º 21
0
def run_crfasrnn(inputfile, outputfile, gpudevice):
    MODEL_FILE = 'TVG_CRFRNN_new_deploy.prototxt'
    PRETRAINED = 'TVG_CRFRNN_COCO_VOC.caffemodel'
    IMAGE_FILE = inputfile

    if gpudevice > 0:
        #Do you have GPU device?
        has_gpu = 1
        #which gpu device is available?
        gpu_device=gpudevice#assume the first gpu device is available, e.g. Titan X
    else:
        has_gpu = 0


    if has_gpu==1:
        caffe.set_device(gpu_device)
        caffe.set_mode_gpu()
        tic()
        net = caffe.Segmenter(MODEL_FILE, PRETRAINED,True)
        toc()
    else:
        caffe.set_mode_cpu()
        tic()
        net = caffe.Segmenter(MODEL_FILE, PRETRAINED,False)
        toc()


    input_image = 255 * caffe.io.load_image(IMAGE_FILE)


    width = input_image.shape[0]
    height = input_image.shape[1]
    maxDim = max(width,height)

    image = PILImage.fromarray(np.uint8(input_image))
    image = np.array(image)

    pallete = getpallete(256)

    mean_vec = np.array([103.939, 116.779, 123.68], dtype=np.float32)
    reshaped_mean_vec = mean_vec.reshape(1, 1, 3);

    # Rearrange channels to form BGR
    im = image[:,:,::-1]
    # Subtract mean
    im = im - reshaped_mean_vec

    # Pad as necessary
    cur_h, cur_w, cur_c = im.shape
    pad_h = 500 - cur_h
    pad_w = 500 - cur_w
    im = np.pad(im, pad_width=((0, pad_h), (0, pad_w), (0, 0)), mode = 'constant', constant_values = 0)
    # Get predictions
    segmentation = net.predict([im])
    segmentation2 = segmentation[0:cur_h, 0:cur_w]
    output_im = PILImage.fromarray(segmentation2)
    output_im.putpalette(pallete)

    plt.imshow(output_im)
    plt.savefig(outputfile)
Exemplo n.º 22
0
def main(args_list):
    args = parse_args(args_list)

    print('Called with args:')
    print(args)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    cfg.GPU_ID = args.GPU_ID

    print('Using config:')
    pprint.pprint(cfg)

    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
        caffe.set_random_seed(cfg.RNG_SEED)

    print 'Setting GPU device %d for training' % cfg.GPU_ID
    caffe.set_mode_gpu()
    caffe.set_device(cfg.GPU_ID)

    imdb, roidb = combined_roidb(args.imdb_name)
    print '{:d} roidb entries'.format(len(roidb))

    output_dir = get_output_dir(imdb)
    print 'Output will be saved to `{:s}`'.format(output_dir)

    train_net(args.solver, roidb, output_dir,
              pretrained_model=args.pretrained_model,
              max_iters=args.max_iters)
Exemplo n.º 23
0
 def solve(self,max_iter):
     caffe.set_mode_gpu()
     if self.gpu_id is not None:
         caffe.set_device(self.gpu_id)
     solver = caffe.get_solver(self.solverfile)
     for i in  xrange( max_iter+1):
         solver.step(1)
def predictImage(filename):
    vgg_point_MODEL_FILE = 'model/deploy.prototxt'
    vgg_point_PRETRAINED = 'model/68point_dlib_with_pose.caffemodel'
    mean_filename='model/VGG_mean.binaryproto'
    vgg_point_net=caffe.Net(vgg_point_MODEL_FILE,vgg_point_PRETRAINED,caffe.TEST)
    # caffe.set_mode_cpu()
    caffe.set_mode_gpu()
    caffe.set_device(0)
    f = open(filename)
    line = f.readline()
    index = 0
    proto_data = open(mean_filename, "rb").read()
    a = caffe.io.caffe_pb2.BlobProto.FromString(proto_data)
    mean = caffe.io.blobproto_to_array(a)[0]

    while line:
        print index
        line = line.strip()
        info = line.split(' ')
        imgPath = info[0]
        print imgPath
        num = 1
        colorImage = cv2.imread(imgPath)
        bboxs = detectFace(colorImage)
        faceNum = bboxs.shape[0]
        faces = np.zeros((1,3,vgg_height,vgg_width))
        predictpoints = np.zeros((faceNum,pointNum*2))
        predictpose = np.zeros((faceNum,3))
        imgsize = np.zeros((2))
        imgsize[0] = colorImage.shape[0]-1
        imgsize[1] = colorImage.shape[1]-1
        TotalSize = np.zeros((faceNum,2))
        for i in range(0,faceNum):
            TotalSize[i] = imgsize
        for i in range(0,faceNum):
            bbox = bboxs[i]
            colorface = getRGBTestPart(bbox,M_left,M_right,M_top,M_bottom,colorImage,vgg_height,vgg_width)
            normalface = np.zeros(mean.shape)
            normalface[0] = colorface[:,:,0]
            normalface[1] = colorface[:,:,1]
            normalface[2] = colorface[:,:,2]
            normalface = normalface - mean
            faces[0] = normalface

            blobName = '68point'
            data4DL = np.zeros([faces.shape[0],1,1,1])
            vgg_point_net.set_input_arrays(faces.astype(np.float32),data4DL.astype(np.float32))
            vgg_point_net.forward()
            predictpoints[i] = vgg_point_net.blobs[blobName].data[0]

            blobName = 'poselayer'
            pose_prediction = vgg_point_net.blobs[blobName].data
            predictpose[i] = pose_prediction * 50

        predictpoints = predictpoints * vgg_height/2 + vgg_width/2
        level1Point = batchRecoverPart(predictpoints,bboxs,TotalSize,M_left,M_right,M_top,M_bottom,vgg_height,vgg_width)

        show_image(colorImage, level1Point, bboxs, predictpose)
        line = f.readline()
        index = index + 1
Exemplo n.º 25
0
def initialize_model(model, mode):
    if mode is None:
        mode = "cpu"
    if "cpu" in mode.lower():
        caffe.set_mode_cpu()
    if "gpu" in mode.lower():
        caffe.set_device(0)
        caffe.set_mode_gpu()

    if model is None:
        model = "cafferef"
    if "cafferef" in model.lower():
        cnn_proto = caffe_root + "models/bvlc_reference_caffenet/deploy.prototxt"
        cnn_model = caffe_root + "models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"
        imgnet_mean = np.load(caffe_root + "python/caffe/imagenet/ilsvrc_2012_mean.npy").mean(1).mean(1)
        cnn_imgmean = imgnet_mean
        cnn_imgsize = 227
    if "vgg" in model.lower():
        if "vgg16" in model.lower():
            cnn_proto = caffe_root + "models/VGG_ILSVRC_16_layers/VGG_ILSVRC_16_layers_deploy.prototxt"
            cnn_model = caffe_root + "models/VGG_ILSVRC_16_layers/VGG_ILSVRC_16_layers.caffemodel"
        if "vgg19" in model.lower():
            cnn_proto = caffe_root + "models/VGG_ILSVRC_19_layers/VGG_ILSVRC_19_layers_deploy.prototxt"
            cnn_model = caffe_root + "models/VGG_ILSVRC_19_layers/VGG_ILSVRC_19_layers.caffemodel"
        vgg_mean = np.array([103.939, 116.779, 123.68])
        cnn_imgmean = vgg_mean
        cnn_imgsize = 224
    if "action" in model.lower():
        cnn_proto = caffe_root + "models/action_cube/deploy_extractpred.prototxt"
        cnn_model = caffe_root + "models/action_cube/action_cube.caffemodel"
        cnn_imgmean = np.array([128, 128, 128])
        cnn_imgsize = 227

    cf = caffe_feat(cnn_proto, cnn_model, cnn_imgmean, cnn_imgsize)
    return cf
Exemplo n.º 26
0
def main(model_name, label_key, slice_type, new_db):
    lmdb_train = os.path.join(TMP_DATA_DIR, 'lmdb_train_%s_%s' % (model_name, slice_type))
    lmdb_train_lab = os.path.join(TMP_DATA_DIR, 'lmdb_train_lab_%s_%s' % (model_name, slice_type))
    lmdb_test = os.path.join(TMP_DATA_DIR, 'lmdb_test_%s_%s' % (model_name, slice_type))
    lmdb_test_lab = os.path.join(TMP_DATA_DIR, 'lmdb_test_lab_%s_%s' % (model_name, slice_type))

    if new_db:
        train_data = os.path.join(PROCESSED_DATA_DIR, 'local_train')
        test_data = os.path.join(PROCESSED_DATA_DIR, 'local_test')

        print 'Creating train LMDB'
        create_lmdb.create_db(lmdb_train, lmdb_train_lab, train_data,
                              frames_preproc=PREPROC,
                              trans_generator=TRANS,
                              label_key=label_key,
                              slice_type=slice_type)

        print 'Creating test LMDB'
        create_lmdb.create_db(lmdb_test, lmdb_test_lab, test_data,
                              frames_preproc=PREPROC,
                              trans_generator=TRANS,
                              label_key=label_key,
                              slice_type=slice_type)

    print 'Creating neural net'
    full_model_name = '%s_%s_%s' % (model_name, label_key, slice_type)
    nn_models.write_model(full_model_name, MODEL_DIR, MODEL,
                          lmdb_train, lmdb_train_lab, lmdb_test, lmdb_test_lab,
                          BATCH_SIZE)

    print 'Training neural net'
    caffe.set_device(DEVICE_ID)
    caffe.set_mode_gpu()
    solver_path = os.path.join(MODEL_DIR, '%s_solver.prototxt' % full_model_name)
    solver.train(solver_path)
Exemplo n.º 27
0
def init_net(gpu_id, solver_path, caffe_model):
	caffe.set_mode_gpu()
	caffe.set_device(int(gpu_id))
	#net = caffe.Net(model_def, caffemodel, caffe.TRAIN)
	solver = caffe.SGDSolver(solver_path)
	solver.net.copy_from(caffe_model)
	return solver
Exemplo n.º 28
0
def init_extraction_net(gpu_id=0):
    #pycaffe_dir = os.path.dirname(__file__)
    #caffe_root = '/opt/fast-rcnn/caffe-fast-rcnn/'
    caffe_root = osp.abspath(osp.join(osp.dirname(__file__),'..'))
    model = osp.join(caffe_root,'models/clothes.caffemodel')
    prototxt = osp.join(caffe_root, 'models/deploy.prototxt')
    #sys.path.insert(0, caffe_root + 'python')    
	
    if not osp.isfile(model):
		raise IOError(('{:s} not found\n').format(model))	
	
    caffe.set_mode_gpu()
    caffe.set_device(gpu_id)
    net = caffe.Net(prototxt, model, caffe.TEST)

    transformer = caffe.io.Transformer({'data':net.blobs['data'].data.shape})
	# dim(channels,x,y)
    transformer.set_transpose('data', (2,0,1))
    #mean_file = osp.join(caffe_root,'python/caffe/face_mean.npy')
    #transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))
    #mean = np.float32([104.0, 116.0, 122.0])
    mean = np.float32([128.0, 128.0, 128.0])
    transformer.set_mean('data', mean)
    #transformer.set_raw_scale('data', 255)#set image data in [0,255]
    #transformer.set_channel_swap('data', (2,1,0))
	#googlenet 224, bvlc_caffenet 227
    net.blobs['data'].reshape(1,3,224,224)
    return net,transformer
Exemplo n.º 29
0
def main():
	from argparse import ArgumentParser
	from os import path
	
	parser = ArgumentParser()
	parser.add_argument('prototxt')
	parser.add_argument('-l', '--load', help='Load a caffemodel')
	parser.add_argument('-d', '--data', default=None, help='Image list to use [default prototxt data]')
	#parser.add_argument('-q', action='store_true', help='Quiet execution')
	parser.add_argument('-sm', action='store_true', help='Summary only')
	parser.add_argument('-q', action='store_true', help='Quiet execution')
	parser.add_argument('-a', '--all', action='store_true', help='Show the statistic for all layers')
	parser.add_argument('-nc', action='store_true', help='Do not use color')
	parser.add_argument('-s', type=float, default=1.0, help='Scale the input [only custom data "-d"]')
	parser.add_argument('-bs', type=int, default=16, help='Batch size [only custom data "-d"]')
	parser.add_argument('-nit', type=int, default=10, help='Number of iterations')
	parser.add_argument('--gpu', type=int, default=0, help='What gpu to run it on?')
	args = parser.parse_args()
	
	if args.q:
		from os import environ
		environ['GLOG_minloglevel'] = '2'
	import caffe, load
	from caffe import NetSpec, layers as L
	
	caffe.set_mode_gpu()
	if args.gpu is not None:
		caffe.set_device(args.gpu)
	
	model = load.ProtoDesc(args.prototxt)
	net = NetSpec()
	if args.data is not None:
		fl = getFileList(args.data)
		if len(fl) == 0:
			print("Unknown data type for '%s'"%args.data)
			exit(1)
		from tempfile import NamedTemporaryFile
		f = NamedTemporaryFile('w')
		f.write('\n'.join([path.abspath(i)+' 0' for i in fl]))
		f.flush()
		net.data, net.label = L.ImageData(source=f.name, batch_size=args.bs, new_width=model.input_dim[-1], new_height=model.input_dim[-1], transform_param=dict(mean_value=[104,117,123], scale=args.s),ntop=2)
		net.out = model(data=net.data, label=net.label)
	else:
		net.out = model()
	
	n = netFromString('force_backward:true\n'+str(net.to_proto()), caffe.TRAIN )
	
	if args.load is not None:
		n.copy_from(args.load)
	
	cvar = printMeanStddev(n, NIT=args.nit, show_all=args.all, show_color=not args.nc, quiet=args.sm)
	cv, gr = computeGraidentRatio(n, NIT=args.nit)
	print()
	print('  Summary  ')
	print('-----------')
	print()
	print('layer name                         out cvar    rate cvar    rate mean')
	for l in n._layer_names:
		if l in cvar and l in cv and l in gr:
			print('%-30s   %10.2f   %10.2f   %10.2f'%(l, cvar[l], cv[l], gr[l]) )
Exemplo n.º 30
0
def init_net():
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()

#    prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
#                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
    prototxt = os.path.join('/home/dean/Documents/py-faster-rcnn/models/WIDER_FACE/VGG16/faster_rcnn_end2end',
                            'test.prototxt')
#    caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
#                              NETS[args.demo_net][1])
    caffemodel = os.path.join('/home/dean/Documents/py-faster-rcnn/output/faster_rcnn_end2end/voc_2007_train',
                              'vgg16_faster_rcnn_iter_50000.caffemodel')
    if not os.path.isfile(caffemodel):
        raise IOError(('{:s} not found.\nDid you run ./data/script/'
                       'fetch_faster_rcnn_models.sh?').format(caffemodel))

    if args.cpu_mode:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(args.gpu_id)
        cfg.GPU_ID = args.gpu_id
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)

    print '\n\nLoaded network {:s}'.format(caffemodel)
    im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
    for i in xrange(2):
        _, _= im_detect(net, im)
    return net
Exemplo n.º 31
0
cfg.TEST.HAS_RPN = True  # Use RPN for proposals

prototxt = os.path.join(cfg.MODELS_DIR, NETS[demo_net][0],
                        'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
                          NETS[demo_net][1])

if not os.path.isfile(caffemodel):
    raise IOError(('{:s} not found.\nDid you run ./data/script/'
                   'fetch_faster_rcnn_models.sh?').format(caffemodel))

if cpu_mode:
    caffe.set_mode_cpu()
else:
    caffe.set_mode_gpu()
    caffe.set_device(gpu_id)
    cfg.GPU_ID = gpu_id
net = caffe.Net(prototxt, caffemodel, caffe.TEST)

print '\n\nLoaded network {:s}'.format(caffemodel)

def detect_frcnn(url_or_np_array,save_data=False,filename=None):
    print "detect_frcnn started"
    # check if i get a url (= string) or np.ndarray
    if filename:
        full_image = cv2.imread(filename)
        url = 'from_file'
    elif isinstance(url_or_np_array, basestring):
        response = requests.get(url_or_np_array)  # download
        full_image = cv2.imdecode(np.asarray(bytearray(response.content)), 1)
        filename=url_or_np_array.replace('https://','').replace('http://','').replace('/','_')
def set_gpu(gpuID):
    if gpuID >= 0:
        caffe.set_mode_gpu()
        caffe.set_device(gpuID)
    else:
        caffe.set_mode_cpu()
Exemplo n.º 33
0
import cv2
import caffe
import numpy as np
from copy import deepcopy
import os
import matplotlib
import glob
caffe.set_mode_gpu()
caffe.set_device(0)


def compute_iou(box1, box2):
    x1_1 = box1[0]
    y1_1 = box1[1]
    x2_1 = box1[2]
    y2_1 = box1[3]
    x1_2 = box2[0]
    y1_2 = box2[1]
    x2_2 = box2[2]
    y2_2 = box2[3]
    area_inter = float(
        max(0,
            min(x2_1, x2_2) - max(x1_1, x1_2)) * max(
                (0, min(y2_1, y2_2) - max(y1_1, y1_2))))
    area1 = float((x2_1 - x1_1) * (y2_1 - y1_1))
    area2 = float((x2_2 - x1_2) * (y2_2 - y1_2))
    return float(area_inter) / (area1 + area2 - area_inter)


def filter_boxes(boxes, iou_thre):
    #[xmin,yin,xmax,ymax,score]
Exemplo n.º 34
0
model = 'model'
if not os.path.exists(model):
    print 'Creating model directory...\n'
    os.symlink('{}/pascalpart-fcn16s/person/{}'.format(models, part), model)

loss = 'loss'
if not os.path.exists(loss):
    print 'Creating loss directory...\n'
    os.mkdir(loss)

if not os.path.exists(log):
    print 'Creating training_log directory...\n'
    os.mkdir(log)

# init
caffe.set_device(int(device))
caffe.set_mode_gpu()

solver = caffe.SGDSolver('{}/pascalpart-fcn16s/person/{}/solver.prototxt'.format(models, part))
if is_resume:
    solver.net.copy_from('{}/train_iter_{}.caffemodel'.format(snapshot, iteration))
    solver.restore('{}/train_iter_{}.solverstate'.format(snapshot, iteration))
else:
    solver.net.copy_from('../../../pascalpart-fcn32s/person/{}/snapshot/train_iter_80000.caffemodel'.format(part))

# surgeries
interp_layers = [k for k in solver.net.params.keys() if 'up' in k]
surgery.interp(solver.net, interp_layers)

# scoring
val = np.loadtxt('{}/data/pascal/VOC/VOC2010/ImageSets/person/{}_val.txt'.format(caffe_root, part), dtype=str)
Exemplo n.º 35
0
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals
    cfg.TEST.SCALE_MULTIPLE_OF = 32
    cfg.TEST.SCALES = (352, )
    args = parse_args()

    rootdir = '/export/home/wjh/py-faster-rcnn/'
    prototxt = rootdir + 'workdir_fg/testreg.prototxt'
    caffemodel = rootdir + 'workdir_fg/output/zf_faster_rcnn_iter_200000.caffemodel'
    if not os.path.isfile(caffemodel):
        raise IOError(('{:s} not found.').format(caffemodel))

    if args.cpu_mode:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(args.gpu_id)
        cfg.GPU_ID = args.gpu_id
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)

    print '\n\nLoaded network {:s}'.format(caffemodel)
    im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
    for i in xrange(1):
        _ = im_detectreg(net, im)
    imdir = '/export/home/wjh/multi-task/fgtest/JPEGImages/'
    annofile = '/export/home/wjh/multi-task/fgtest/test.bbox'

    anno = np.loadtxt(annofile, dtype='str')
    vis = False
    ious = []
    for i in range(anno.shape[0]):
        #for i in range(100):
	top = min(top, len(fwd)+len(bck))
	T = sorted([np.mean(v) for v in fwd.values()] + [np.mean(v) for v in bck.values()])[-top]
	T0 = time()-T0
	print("%s%0.1f%s it / sec    [%s%0.1f%s ms / it]"%(bcolors.BOLD+bcolors().FAIL, NIT / T0, bcolors.ENDC, bcolors.BOLD+bcolors().FAIL, 1000*T0 / NIT, bcolors.ENDC))
	for n in L:
		cf, cb = bcolors.OKGREEN, bcolors.OKGREEN
		if np.mean(fwd[n]) >= T: cf = bcolors.BOLD+bcolors().FAIL
		if np.mean(bck[n]) >= T: cb = bcolors.BOLD+bcolors().FAIL
		print('  %30s  \t %s%0.2f \261 %0.1f%s ms  \t %s%0.2f \261 %0.1f%s ms'%(n, cf, 1000*np.mean(fwd[n]), 1000*np.std(fwd[n]), bcolors.ENDC, cb, 1000*np.mean(bck[n]), 1000*np.std(bck[n]), bcolors.ENDC))

if __name__ == "__main__":
	import argparse
	from os import path
	import caffe
	parser = argparse.ArgumentParser(description="Visualize decompositions on sintel")
	parser.add_argument('input_dir', help='input directory')
	parser.add_argument('-n', type=int, default=100, help='Number of iterations')
	parser.add_argument('-t', type=int, default=5, help='Highlight the top t times')
	parser.add_argument('-gpu', type=int, help='What GPU do we test on')
	args = parser.parse_args()

	caffe.set_mode_gpu()
	if args.gpu is not None:
		caffe.set_device(args.gpu)

	if path.isfile(args.input_dir):
		net = caffe.Net(args.input_dir, caffe.TRAIN)
	else:
		net = caffe.Net(args.input_dir+'trainval.prototxt', caffe.TRAIN)
	time_net(net)
Exemplo n.º 37
0
            return self.diff


caffe_root = "/home/dlg/ssd_caffe/"
if os.path.isfile(
        caffe_root +
        'models/VGGNet/KITTI/SSD_600x150/VGG_KITTI_SSD_600x150_iter_60000.caffemodel'
):
    print 'CaffeNet found.'
else:
    print 'CaffeNet not found'
model_def = caffe_root + 'models/VGGNet/KITTI/SSD_600x150/deploy_large.prototxt'
model_weights = caffe_root + 'models/VGGNet/KITTI/SSD_600x150/VGG_KITTI_SSD_600x150_iter_60000.caffemodel'

net = caffe.Net(model_def, model_weights, caffe.TEST)
caffe.set_device(0)  # if we have multiple GPUs, pick the first one
caffe.set_mode_gpu()
mu = np.array([104, 117, 123])
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose(
    'data', (2, 0, 1))  # move image channels to outermost dimension
transformer.set_mean('data',
                     mu)  # subtract the dataset-mean value in each channel
transformer.set_raw_scale('data', 255)  # rescale from [0, 1] to [0, 255]
transformer.set_channel_swap('data',
                             (2, 1, 0))  # swap channels from RGB to BGR
net.blobs['data'].reshape(1, 3, 540, 960)

color = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]
visualize_threshold = 0.6
Exemplo n.º 38
0
import scipy.ndimage as nd
import PIL.Image
from IPython.display import clear_output, Image, display
from google.protobuf import text_format
import caffe

model_folders = [
    'bvlc_googlenet', 'googlenet_places205', 'bvlc_reference_caffenet',
    'finetune_BarryLyndon_8Sept2015', 'VGG_ILSVRC_16_layers',
    'person_clothing_bigger_18Sept2015', 'bvlc_googlenet_person'
]

cluster_home_path = '/global/home/users/karlz'
if home_path == cluster_home_path:
    caffe.set_mode_gpu()
    caffe.set_device(0)  # select GPU device if multiple devices exist


def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))


def get_net(model_name):
    model_folder = model_name
    model_path = opj(home_path, 'caffe/models', model_folder)
    net_fn = opj(model_path, 'deploy.prototxt')
    param_fn = opj(model_path, 'model.caffemodel')
    # Patching model to be able to compute gradients.
Exemplo n.º 39
0
        if h != w:
            print 'filters need to be square'
            raise
        filt = upsample_filt(h)
        net.params[l][0].data[range(m), range(k), :, :] = filt


# base net -- follow the editing model parameters example to make
# a fully convolutional VGG16 net.
# http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb
# base_weights = '5stage-vgg.caffemodel'
base_weights = '5stage-vgg.caffemodel'

# init
caffe.set_mode_gpu()
caffe.set_device(3)

solver = caffe.SGDSolver('solver.prototxt')

# do net surgery to set the deconvolution weights for bilinear interpolation
interp_layers = [k for k in solver.net.params.keys() if 'up' in k]
interp_surgery(solver.net, interp_layers)

# copy base weights for fine-tuning
#solver.restore('dsn-full-res-3-scales_iter_29000.solverstate')
solver.net.copy_from(base_weights)

# solve straight through -- a better approach is to define a solving loop to
# 1. take SGD steps
# 2. score the model by the test net `solver.test_nets[0]`
# 3. repeat until satisfied
Exemplo n.º 40
0
import numpy as np
from PIL import Image
import pdb
import matplotlib.pyplot as plt
import sys
import time
import scipy.ndimage 
import scipy.misc
sys.path.insert(0, 'caffe/install/python') # PATH TO CAFFE PYTHON INSTALL
import caffe
caffe.set_mode_gpu()
caffe.set_device(1)
MEAN_VALUE = np.array([103.939, 116.779, 123.68])   # BGR
MEAN_VALUE = MEAN_VALUE[:,None, None]
FINE_SCALE = np.array([1,3,1200,1600], dtype=np.float32)
COARSE_SCALE = np.array([1,3,600,800], dtype=np.float32)

class Salicon:
    def __init__(self, prototxtpath='salicon.prototxt', model='salicon_osie.caffemodel'):
        self.net = caffe.Net(prototxtpath, model, caffe.TEST) 
        
    def process_the_image(self, im):
        # put channel dimension first
        im = np.transpose(im, (2,0,1))
        # switch to BGR
        im = im[::-1, :, :]
        # subtract mean
        im = im - MEAN_VALUE
        im = im[None,:]
        im = im / 255 # convert to float precision
        return im
Exemplo n.º 41
0
def GetNet(net, weights, gpu):
    caffe.set_device(gpu)
    caffe.set_mode_gpu()
    net = caffe.Net(net, weights, caffe.TEST)
    #net = caffe.Net(net, caffe.TEST)
    return net
Exemplo n.º 42
0
                        dest='gid',
                        help='GPU device id to use [-1]',
                        default=-1,
                        type=int)
    parser.add_argument('--net',
                        dest='net',
                        help='Network to use [vgg16]',
                        choices=NETS.keys(),
                        default='vgg16')

    args = parser.parse_args()
    start = datetime.now()

    if args.gid >= 0:
        caffe.set_mode_gpu()
        caffe.set_device(args.gid)
        cfg.GPU_ID = args.gid
    else:
        caffe.set_mode_cpu()

    cfg.TEST.HAS_RPN = True  # Use RPN for proposals
    prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.net][0],
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
    caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
                              NETS[args.net][1])
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)

    video_reader = cv2.VideoCapture(args.input_video)

    if video_reader.isOpened():
        fourcc = int(video_reader.get(cv2.cv.CV_CAP_PROP_FOURCC))
Exemplo n.º 43
0
import copy
import matplotlib
import pylab as plt

test_image = '../sample_image/ski.jpg'
#test_image = '../sample_image/upper.jpg'
#test_image = '../sample_image/upper2.jpg'
oriImg = cv.imread(test_image) # B,G,R order
f = plt.imshow(oriImg[:,:,[2,1,0]]) # reorder it before displaying

param, model = config_reader()
multiplier = [x * model['boxsize'] / oriImg.shape[0] for x in param['scale_search']]

if param['use_gpu']: 
    caffe.set_mode_gpu()
    caffe.set_device(param['GPUdeviceNumber']) # set to your device!
else:
    caffe.set_mode_cpu()

net = caffe.Net(model['deployFile'], model['caffemodel'], caffe.TEST)


heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
# first figure shows padded images
f, axarr = plt.subplots(1, len(multiplier))
f.set_size_inches((20, 5))
# second figure shows heatmaps
f2, axarr2 = plt.subplots(1, len(multiplier))
f2.set_size_inches((20, 5))
# third figure shows PAFs
Exemplo n.º 44
0
def extract_tubelets(dname, gpu=-1, redo=False):
    """Extract the tubelets for a given dataset

    args:
        - dname: dataset name (example: 'JHMDB')
        - gpu (default -1): use gpu given in argument, or use cpu if -1
        - redo: wheter or not to recompute already computed files

    save a pickle file for each frame
    the file contains a tuple (dets, dets_all)
        - dets is a numpy array with 2+4*K columns containing the tubelets starting at this frame after per-class nms at 0.45 and thresholding the scores at 0.01
          the columns are <label> <score> and then <x1> <y1> <x2> <y2> for each of the frame in the tubelet
        - dets_all contains the tubelets obtained after a global nms at 0.7 and thresholding the scores at 0.01
            it is a numpy arrray with 4*K + L + 1 containing the coordinates of the tubelets and the scores for all labels

    note: this version is inefficient: it is better to estimate the per-frame features once
    """
    d = GetDataset(dname)

    if gpu >= 0:
        caffe.set_mode_gpu()
        caffe.set_device(gpu)

    model_dir = os.path.join(os.path.dirname(__file__),
                             '../models/ACT-detector/', dname)
    output_dir = os.path.join(os.path.dirname(__file__),
                              '../results/ACT-detector/', dname)

    # load the RGB network
    rgb_proto = os.path.join(model_dir, "deploy_RGB.prototxt")
    rgb_model = os.path.join(model_dir,
                             "../generated_AVA_iter_118662.caffemodel")
    net_rgb = caffe.Net(rgb_proto, caffe.TEST, weights=rgb_model)

    # load the FLOW5 network
    flo_proto = os.path.join(model_dir, "deploy_FLOW5.prototxt")
    flo_model = os.path.join(model_dir,
                             "../generated_AVA_iter_59463.caffemodel")
    net_flo = caffe.Net(flo_proto, caffe.TEST, weights=flo_model)

    vlist = d.test_vlist()
    for iv, v in enumerate(vlist):
        print("Processing video {:d}/{:d}: {:s}".format(iv + 1, len(vlist), v))
        h, w = d.resolution(v)

        # network output is normalized between 0,1 ; so we will multiply it by the following array
        resolution_array = np.array([w, h, w, h] * K, dtype=np.float32)

        # now process each frame
        for i in xrange(1, 1 + d.nframes(v) - K + 1):
            outfile = os.path.join(output_dir, d.frame_format(v, i) + ".pkl")

            # skip if already computed
            if os.path.isfile(outfile) and not redo:
                continue

            # read the frames for the forward
            kwargs_rgb = {}
            kwargs_flo = {}
            for j in xrange(K):
                cap = cv2.VideoCapture(d.vidfile(v, 0))
                #print(frame)
                #print(int(cap.get(7)))
                cap.set(1, i + j - 1)
                im = cap.read()[1]
                cap.release()
                #im = cv2.imread(d.imfile(v, i + j))
                if im is None:
                    print "Image {:s} does not exist".format(d.imfile(
                        v, i + j))
                    return
                imscale = cv2.resize(im, (IMGSIZE, IMGSIZE),
                                     interpolation=cv2.INTER_LINEAR)
                kwargs_rgb['data_stream' + str(j)] = np.transpose(
                    imscale - MEAN, (2, 0, 1))[None, :, :, :]
                imf = [
                    cv2.imread(
                        d.flowfile(
                            v.split(".")[0], min(d.nframes(v), i + j + iflow)))
                    for iflow in xrange(NFLOWS)
                ]
                if np.any(imf) is None:
                    print "Flow image {:s} does not exist".format(
                        d.flowfile(v, i + j))
                    return
                imscalef = [
                    cv2.resize(im, (IMGSIZE, IMGSIZE),
                               interpolation=cv2.INTER_LINEAR) for im in imf
                ]
                timscale = [
                    np.transpose(im - MEAN, (2, 0, 1))[None, :, :, :]
                    for im in imscalef
                ]
                kwargs_flo['data_stream' + str(j) + 'flow'] = np.concatenate(
                    timscale, axis=1)

            # compute rgb and flow scores
            # two forward passes: one for the rgb and one for the flow
            net_rgb.forward(
                end="mbox_conf_flatten",
                **kwargs_rgb)  # forward of rgb with confidence and regression
            net_flo.forward(
                end="mbox_conf_flatten", **
                kwargs_flo)  # forward of flow5 with confidence and regression

            # compute late fusion of rgb and flow scores (keep regression from rgb)
            # use net_rgb for standard detections, net_flo for having all boxes
            scores = 0.5 * (net_rgb.blobs['mbox_conf_flatten'].data +
                            net_flo.blobs['mbox_conf_flatten'].data)
            net_rgb.blobs['mbox_conf_flatten'].data[...] = scores
            net_flo.blobs['mbox_conf_flatten'].data[...] = scores
            net_flo.blobs['mbox_loc'].data[
                ...] = net_rgb.blobs['mbox_loc'].data

            # two forward passes, only for the last layer
            # dets is the detections after per-class NMS and thresholding (stardard)
            # dets_all contains all the scores and regressions for all tubelets
            dets = net_rgb.forward(
                start='detection_out')['detection_out'][0, 0, :, 1:]
            dets_all = net_flo.forward(
                start='detection_out_full')['detection_out_full'][0, 0, :, 1:]

            # parse detections with per-class NMS
            if dets.shape[0] == 1 and np.all(dets == -1):
                dets = np.empty((0, dets.shape[1]), dtype=np.float32)

            dets[:,
                 2:] *= resolution_array  # network output was normalized in [0..1]
            dets[:,
                 0] -= 1  # label 0 was background, come back to label in [0..nlabels-1]
            dets[:, 2::2] = np.maximum(0, np.minimum(w, dets[:, 2::2]))
            dets[:, 3::2] = np.maximum(0, np.minimum(h, dets[:, 3::2]))

            # parse detections with global NMS at 0.7 (top 300)
            # coordinates were normalized in [0..1]
            dets_all[:, 0:4 * K] *= resolution_array
            dets_all[:, 0:4 * K:2] = np.maximum(
                0, np.minimum(w, dets_all[:, 0:4 * K:2]))
            dets_all[:, 1:4 * K:2] = np.maximum(
                0, np.minimum(h, dets_all[:, 1:4 * K:2]))
            idx = nms_tubelets(
                np.concatenate(
                    (dets_all[:, :4 * K],
                     np.max(dets_all[:, 4 * K + 1:], axis=1)[:, None]),
                    axis=1), 0.7, 300)
            dets_all = dets_all[idx, :]

            # save file
            if not os.path.isdir(os.path.dirname(outfile)):
                os.system('mkdir -p ' + os.path.dirname(outfile))

            with open(outfile, 'wb') as fid:
                pickle.dump((dets, dets_all), fid)
Exemplo n.º 45
0
if __name__ == '__main__':

    parameter = np.load(cfg.STD_MEAN)
    cfg.CENTERX_STD = parameter[0]
    cfg.CENTERX_MEAN = parameter[1]
    cfg.CENTERY_STD = parameter[2]
    cfg.CENTERY_MEAN = parameter[3]

    cfg.WIDTH_STD = parameter[4]
    cfg.WIDTH_MEAN = parameter[5]
    cfg.HEIGHT_STD = parameter[6]
    cfg.HEIGHT_MEAN = parameter[7]

    caffe.set_mode_gpu()
    caffe.set_device(cfg.GPU_ID)

    #    image_source = osp.join(cfg.ROOT_DIR, 'testimage/1.jpg')
    cfg.TEST_PROTOTXT = osp.join(cfg.ROOT_DIR, 'test.prototxt')
    cfg.TEST_MODEL = osp.join(cfg.ROOT_DIR, 'demo.caffemodel')
    #    net = caffe.Net(cfg.TEST_PROTOTXT, cfg.TEST_MODEL, caffe.TEST)
    #    test_image(net, image_source, vis=True, save=False)

    for index in range(1, 81):
        cfg.IMAGE_NUMBER = index
        image_source = osp.join(cfg.ROOT_DIR + '/testimage',
                                str(index) + cfg.IMAGE_TYPE)
        net = caffe.Net(cfg.TEST_PROTOTXT, cfg.TEST_MODEL, caffe.TEST)
        if osp.exists(image_source):
            test_image(net, image_source, vis=False, save=True)
Exemplo n.º 46
0
import caffe
import surgery, score

import numpy as np
import os

import setproctitle
setproctitle.setproctitle(os.path.basename(os.getcwd()))

weights = '../voc-fcn32s/voc-fcn32s.caffemodel'

# init
caffe.set_device(int(sys.argv[1]))
caffe.set_mode_gpu()

solver = caffe.SGDSolver('solver.prototxt')
solver.net.copy_from(weights)

# surgeries
interp_layers = [k for k in solver.net.params.keys() if 'up' in k]
surgery.interp(solver.net, interp_layers)

# scoring
val = np.loadtxt('../data/segvalid11.txt', dtype=str)

for _ in range(25):
    solver.step(4000)
    score.seg_tests(solver, False, val, layer='score')
Exemplo n.º 47
0
from multiprocessing import Pool
import os
import h5py
import numpy as np
import scipy.io as scio
from scipy import ndimage as nd

# Make sure that caffe is on the python path:
#caffe_root = '/usr/local/caffe3/'  # this is the path in GPU server
caffe_root = '/home/dongnie/caffe3D/'  # this is the path in GPU server
import sys
sys.path.insert(0, caffe_root + 'python')
print caffe_root + 'python'
import caffe

caffe.set_device(3)  #very important
caffe.set_mode_gpu()
### load the solver and create train and test nets
solver = None  # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)
#solver = caffe.SGDSolver('infant_fcn_solver.prototxt') #for training
protopath = '/home/dongnie/caffe3D/examples/prostate/'
mynet = caffe.Net(protopath + 'prostate_deploy_v12_1.prototxt',
                  protopath + 'prostate_fcn_v12_1_iter_100000.caffemodel',
                  caffe.TEST)
print("blobs {}\nparams {}".format(mynet.blobs.keys(), mynet.params.keys()))

d1 = 32
d2 = 32
d3 = 32
dFA = [d1, d2, d3]
dSeg = [24, 24, 24]
Exemplo n.º 48
0
if __name__ == '__main__':

    cfg_from_file("models/pvanet/cfgs/submit_1019.yml")
    output_name = "v13-100k"
    data_name = "Thailand"
    CLASSES_main = CLASS_SETS["coco"]
    CLASSES_sub = CLASS_SETS['vehicle-types']
    prototxt = "/root/pva-faster-rcnn/models/pvanet/lite/hierachy/v1_test.prototxt"
    caffemodel = "/root/pva-faster-rcnn/models/hierarchy/v13/v13_iter_100000.caffemodel"
    FPS_rate = 1
    GPU_ID = 2

    imdb = get_imdb(data_name, CLASSES_main)

    OUTPUT_DIR = os.path.join(imdb._data_path, "res", output_name)
    if not os.path.exists(OUTPUT_DIR):
        os.makedirs(OUTPUT_DIR)

    if not os.path.isfile(caffemodel):
        raise IOError(('Caffemodel: {:s} not found').format(caffemodel))
    caffe.set_mode_gpu()
    caffe.set_device(GPU_ID)
    cfg.GPU_ID = GPU_ID
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)
    print '\n\nLoaded network {:s}'.format(caffemodel)

    print("PVANET Loaded")
    print("Start Detecting")
    write_testing_results_file(net, imdb, FPS_rate, OUTPUT_DIR, CLASSES_main)
def main(model, weights, K, num_act, num_step, num_iter,
        gpu, data, mean, video):
  font = ImageFont.truetype('/usr/share/fonts/dejavu/DejaVuSans.ttf', 20)
  caffe.set_mode_gpu()
  caffe.set_device(gpu)

  if model == 1:
    data_net_file, net_proto = N.create_netfile(model,
        data, mean, K + num_step, K, 1, num_act, num_step=num_step, mode='data')
    test_net_file, net_proto = N.create_netfile(model, data, mean, K, K,
        1, num_act, num_step=1, mode='test')
    data_net = caffe.Net(data_net_file, caffe.TEST)
    test_net = caffe.Net(test_net_file, caffe.TEST)
    test_net.copy_from(weights)
  else:
    data_net_file, net_proto = N.create_netfile(model,
        data, mean, K + num_step, K, 1, num_act, num_step=num_step, mode='data')
    encoder_net_file, net_proto = N.create_netfile(model, data, mean, K, K,
        1, num_act, num_step=0, mode='test_encode')
    decoder_net_file, net_proto = N.create_netfile(model, data, mean, 1, 0,
        1, num_act, num_step=1, mode='test_decode')
    data_net = caffe.Net(data_net_file, caffe.TEST)
    encoder_net = caffe.Net(encoder_net_file, caffe.TEST)
    decoder_net = caffe.Net(decoder_net_file, caffe.TEST)
    decoder_net.copy_from(weights)
    encoder_net.share_with(decoder_net)

  mean_blob = caffe.proto.caffe_pb2.BlobProto()
  mean_bin = open(mean, 'rb').read()
  mean_blob.ParseFromString(mean_bin)
  mean_arr = caffe.io.blobproto_to_array(mean_blob).squeeze()

  if video:
    sp.call(['rm', '-rf', video])
    sp.call(['mkdir', '-p', video])

  for i in range(0, num_iter):
    print("iteration " + str(i) + "/" + str(num_iter))
    data_net.forward()
    data_blob = data_net.blobs['data'].data
    act_blob = data_net.blobs['act'].data
    if model == 1:
      test_net.blobs['data'].data[:] = data_blob[:, 0:K, :, :, :]
      test_net.blobs['act'].data[:] = act_blob[:, K-1, :]
      net = test_net
    elif model == 2:
      clip_blob = data_net.blobs['clip']
      encoder_net.blobs['data'].data[:] = data_blob[0:K, :, :, :, :]
      encoder_net.blobs['clip'].data[:] = 1
      encoder_net.blobs['clip'].data[0, :] = 0
      encoder_net.blobs['h-00'].data[:] = 0
      encoder_net.blobs['c-00'].data[:] = 0
      encoder_net.forward()
      decoder_net.blobs['h-00'].data[:] = encoder_net.blobs['h'+tag(K)].data[:]
      decoder_net.blobs['c-00'].data[:] = encoder_net.blobs['c'+tag(K)].data[:]
      decoder_net.blobs['clip'].data[:] = 1
      decoder_net.blobs['act'].data[:] = act_blob[K-1, :, :]
      net = decoder_net

    pred_data = np.zeros((3, 210, 160), np.float)
    true_data = np.zeros((3, 210, 160), np.float)
    imgs = []
    for step in range(0, num_step):
      net.forward()
      if model == 1:
        pred_data[:] = net.blobs['x_hat'+tag(K+1)].data[:]
        true_data[:] = data_net.blobs['data'].data[:, K+step, :, :, :]
      elif model == 2:
        pred_data[:] = net.blobs['x_hat'+tag(1)].data[:]
        true_data[:] = data_net.blobs['data'].data[K+step, :, :, :, :]
      pred_img = post_process(pred_data, mean_arr, 1./255)
      true_img = post_process(true_data, mean_arr, 1./255)

      # display
      show_img = np.hstack((pred_img, true_img))
      top_pad = np.zeros((35, show_img.shape[1], show_img.shape[2]), np.uint8)
      show_img = np.vstack((top_pad, show_img))
      imgs.append(show_img)
      img = Image.fromarray(show_img[:, :, ::-1])
      # draw = ImageDraw.Draw(img)
      # draw.text((10, 10), 'Step:' + str(step), fill=(255, 255, 255), font=font)
      img.save('iter_' + str(i) + '.png')
      # cv2.imshow('Display', np.array(img))
      # key = cv2.waitKey(40)


      if video:
        file_name = video+'/{:0>3d}-{:0>5d}.png'.format(i, step)
        b, g, r = img.split()
        Image.merge("RGB", (r, g, b)).save(file_name)

      if step < num_step - 1:
        if model == 1:
          net.blobs['data'].data[:, 0:K-1, :, :, :] = net.blobs['data'].data[:, 1:K, :, :, :]
          net.blobs['data'].data[:, K-1, :, :, :] = pred_data[:]
          net.blobs['act'].data[:] = act_blob[:, K+step, :]
        elif model == 2:
          net.blobs['h-00'].data[:] = net.blobs['h-01'].data[:]
          net.blobs['c-00'].data[:] = net.blobs['c-01'].data[:]
          net.blobs['data'].data[:] = pred_data[:]
          net.blobs['act'].data[:] = act_blob[K+step, :, :]
  imgs = np.concatenate(imgs, axis=2)
  img = Image.fromarray(show_img[:,:,::-1])
  img.save('final.png')

  if video:
    sp.call(['ffmpeg', '-pattern_type', 'glob', '-r', '15', '-i', video+'/*.png', '-qscale', '0', video+'.mp4'])
Exemplo n.º 50
0
def main():
    gpu = 0
    net_type = 'googlenet'
    data_desc = 'train_heldout'
    # TODO: Change this to the directory in which learned masks are stored
    #mask_dir = '/data/ruthfong/neural_coding/pycaffe_results/googlenet_train_heldout_given_grad_1_norm_0/min_top0_prob_blur/lr_-1.00_l1_lambda_-4.00_tv_lambda_-inf_l1_lambda_2_-2.00_beta_3.00_mask_scale_8_blur_mask_5_jitter_4_noise_-inf_num_iters_300_tv2_mask_init'
    mask_dir = '/data/ruthfong/neural_coding/results_reb/occ_masks_imagenet_googlenet_train_heldout_defaults'
    # TODO: Change this to desired output directorya (subdirs will be created)
    out_dir = '/users/ruthfong/neural_coding/deletion_game'
    mask_flip = True
    bb_method = 'min_max_diff'
    threshold = 0.01

    caffe.set_device(gpu)
    caffe.set_mode_gpu()

    if data_desc == 'train_heldout':
        (paths, labels) = read_imdb(
            '../../../data/ilsvrc12/annotated_train_heldout_imdb.txt')
    elif data_desc == 'val':
        (paths, labels) = read_imdb('../../../data/ilsvrc12/val_imdb.txt')
    elif data_desc == 'animal_parts':
        (paths, labels) = read_imdb(
            '../../../data/ilsvrc12/animal_parts_require_both_min_10_imdb.txt')

    mask_paths = [
        os.path.join(mask_dir, '%d.npy' % x) for x in range(len(labels))
    ]

    net = get_net(net_type)
    net_transformer = get_ILSVRC_net_transformer(net)
    alphas = np.arange(0, 1, 0.01)
    #heatmap_types = ['mask', 'saliency', 'guided_backprop', 'excitation_backprop', 'contrast_excitation_backprop']
    heatmap_types = ['occlusion', 'grad_cam']
    num_imgs = len(labels)
    best_bb_sizes = np.zeros((len(heatmap_types), num_imgs))
    for i in range(num_imgs):
        start = time.time()
        img = net_transformer.preprocess('data', caffe.io.load_image(paths[i]))
        null_img = net_transformer.preprocess('data',
                                              get_blurred_img(paths[i]))
        target = np.zeros(1000)
        target[labels[i]] = 1
        orig_score = forward_pass(net, img, target)
        null_score = forward_pass(net, null_img, target)
        for hh in range(len(heatmap_types)):
            h = heatmap_types[hh]
            resize = None
            if h == 'mask' or h == 'occlusion':
                heatmap = np.load(mask_paths[i])
                if mask_flip:
                    heatmap = 1 - heatmap
            else:
                top_name = 'loss3/classifier'
                if h == 'excitation_backprop':
                    bottom_name = 'pool2/3x3_s2'
                    norm_deg = -1
                    resize = (224, 224)
                elif h == 'contrast_excitation_backprop':
                    bottom_name = 'pool2/3x3_s2'
                    norm_deg = -2
                    resize = (224, 224)
                elif h == 'grad_cam':
                    bottom_name = 'inception_4e/output'
                    norm_deg = None
                    resize = (224, 224)
                else:
                    bottom_name = 'data'
                    norm_deg = np.inf
                heatmap = compute_heatmap(net,
                                          net_transformer,
                                          paths[i],
                                          labels[i],
                                          h,
                                          top_name,
                                          top_name,
                                          outputBlobName=bottom_name,
                                          outputLayerName=bottom_name,
                                          norm_deg=norm_deg,
                                          gpu=gpu)
            bb_sizes = np.zeros(len(alphas))
            scores = np.zeros(len(alphas))
            for j in range(len(alphas)):
                alpha = alphas[j]
                (x0, y0, x1, y1) = getbb_from_heatmap(heatmap,
                                                      alpha,
                                                      method=bb_method,
                                                      resize=resize)
                mask = np.ones((224, 224))
                mask[y0:y1, x0:x1] = 0
                bb_size = (y1 - y0) * (x1 - x0)
                bb_sizes[j] = bb_size
                comp_img = img * mask + null_img * (1 - mask)
                masked_score = forward_pass(net, comp_img, target)
                scores[j] = (masked_score - null_score) / float(orig_score -
                                                                null_score)
        # alphas_scores_path = os.path.join(out_dir, '%s_%s/%s/alpha_scores_num_imgs_%d_%s.txt' % (net_type, data_desc,
        #                                         mask_rel_dir, num_imgs, h))
        # bb_sizes_path = os.path.join(out_dir, '%s_%s/%s/bb_sizes_num_imgs_%d_%s.txt' % (net_type, data_desc,
        #                         mask_rel_dir, num_imgs, h))
            alphas_scores_path = os.path.join(
                out_dir, '%s_%s/alpha_scores_num_imgs_%d_%s.txt' %
                (net_type, data_desc, num_imgs, h))
            bb_sizes_path = os.path.join(
                out_dir, '%s_%s/bb_sizes_num_imgs_%d_%s.txt' %
                (net_type, data_desc, num_imgs, h))
            directory = os.path.dirname(alphas_scores_path)
            if not os.path.exists(directory):
                os.makedirs(directory)
            f = open(alphas_scores_path, 'a')
            np.savetxt(f, scores[None, :])
            f.close()
            f = open(bb_sizes_path, 'a')
            np.savetxt(f, bb_sizes[None, :])
            f.close()
            try:
                best_i = np.where(scores <= threshold)[0][-1]
            except:
                best_i = np.argmin(scores)
            best_bb_sizes[hh][i] = bb_sizes[best_i]
        print 'Image %d took %f' % (i, time.time() - start)
        if i % 50 == 0:
            print 'heatmap_type', 'best_bb_size_mean', 'best_bb_size_std'
            for hh in range(len(heatmap_types)):
                print heatmap_types[hh], best_bb_sizes[hh][:(
                    i + 1)].mean(), best_bb_sizes[hh][:(i + 1)].std()
Exemplo n.º 51
0
        if print_:
            # print "confidence mean",yp_np.mean(),yp_np.max(),yp_np.min()
            print "using ", ind.sum(
            ), " unlabeled data ", " of accuracy ", accuracy
        return yp[ind], ind, accuracy


if __name__ == '__main__':

    # os.chdir('/home/kashefy/src/caffe/')
    os.chdir('/home/jianqiao/Caffe/caffe-master/')

    test_batchsz = 1000
    train_batchsz = 128
    caffe.set_mode_gpu()
    caffe.set_device(0)  # for gpu mode
    # caffe.set_mode_cpu()
    TOTAL_NUM = 50000
    # (labelset,cifar_table )=create_labelset(TOTAL_NUM, prototxt)
    # (labelset,cifar_table )=pkl.load(open('examples/cifar100/labelset.pkl','rb'))

    filt_hist = []

    start_index = 0
    end_index = start_index + train_batchsz

    unlabeled = rand(train_batchsz) > 0
    yd = 100

    label_ratio = 0.1
    rnd.seed(100)
Exemplo n.º 52
0
	labeled_label, num_features_label = ndimage.label(label_temp, structure=s)
	for i in range(1,num_features_prediction+1):
		intersection=np.sum(labeled_prediction[label==1]==i)
		if intersection>0:
			TP+=1
		else:
			FP+=1
	for i in range(1,num_features_label+1):
		intersection=np.sum(labeled_label[prediction==1]==i)
		if intersection==0:
			FN=+1
	return TP,FN,FP


caffe.set_mode_gpu()
caffe.set_device(0);

# load net
snapshot_path = 'snapshot/train_iter_120000.caffemodel'
net = caffe.Net('deploy.prototxt', snapshot_path, caffe.TEST)

# Initialize data index
maxIdx = len(net.layers[0].indices)

# Lists to hold segmentation precision and recall, detection precisio and recall
# and intersection over union values
prec = []
rec = []
precd = []
recd = []
iu=[]
Exemplo n.º 53
0
def main(argv):
    parser = ArgumentParser(argv[0], description=__doc__)
    parser.add_argument('--model',
                        '-m',
                        type=str,
                        default='models/1_layer_ride/rim.10082016.221222.xpck')
    parser.add_argument('--data',
                        '-d',
                        type=str,
                        default='data/BSDS_Cropped/img_data.mat')
    parser.add_argument('--noise_std', '-n', type=int, default=-1)
    parser.add_argument('--momentum', '-M', type=float, default=0.9)
    parser.add_argument('--lr', '-l', type=float, default=5.0)
    parser.add_argument('--niter', '-N', type=int, default=400)
    parser.add_argument('--path', '-p', type=str, default='map_single_pixel/')
    parser.add_argument('--mode',
                        '-q',
                        type=str,
                        default='CPU',
                        choices=['CPU', 'GPU'])
    parser.add_argument('--device', '-D', type=int, default=0)
    parser.add_argument('--size', '-s', type=int, default=160)
    parser.add_argument('--samples', '-y', type=float, default=0.4)
    parser.add_argument('--image_num', '-K', type=int, default=2)
    parser.add_argument('--resume', '-r', type=int, default=-1)
    parser.add_argument('--flip', '-f', type=int, default=0)
    parser.add_argument('--ent_max', '-e', type=float, default=100.0)

    args = parser.parse_args(argv[1:])
    niter = args.niter
    lr = args.lr
    N = args.size
    K = args.image_num
    noise_std = args.noise_std
    path = args.path
    if not os.path.exists(path):
        os.makedirs(path)

    print 'Measurement Rate', args.samples
    print 'Noise Level', noise_std
    # select CPU or GPU for caffe
    if args.mode.upper() == 'GPU':
        print "setting the GPU mode"
        caffe.set_mode_gpu()
        caffe.set_device(args.device)
    else:
        caffe.set_mode_cpu()

    if noise_std > -1:
        noise_std = float(noise_std) * 10 / 255.0
        path += str(args.noise_std) + '/'
    if args.samples > -1:
        path += str(args.samples) + '/'

    if not os.path.exists(path):
        os.makedirs(path)
    sys.stdout = open(path + 'log.txt', 'w')
    # load data
    if args.data.lower()[-4:] in ['.gif', '.png', '.jpg', 'jpeg']:
        images = plt.imread(args.data)

        img = rgb2gray(images[:args.size, :args.size])
        img = img.astype('float64')
    else:
        images = loadmat(args.data)['data']
        images = images.astype('float64')
        img = images[:K, :args.size, :args.size]

    # load model
    print 'Loading model'
    experiment = Experiment(args.model)
    model = experiment['model']
    input_mask = model.input_mask
    output_mask = model.output_mask

    Phi = np.load('map_single_pixel/Phi_g_' + str(N) +
                  '.npy')[1:int(args.samples * args.size**2), :]
    del images

    for k in range(K):
        if not os.path.exists(path + str(k) + '/'):
            os.makedirs(path + str(k) + '/')
        mplimg.imsave(path + str(k) + '/original_img',
                      img[k].squeeze(),
                      cmap=cm.gray)

    y = np.dot(Phi, img.reshape(K, -1).transpose())
    np.random.seed(123)
    if noise_std > -1:
        y += noise_std * np.random.randn(*y.shape)
    M = y.shape[0]
    print 'Number of measurements', M

    #Initializing
    np.random.seed(123)
    init_img = np.random.rand(N**2, K)

    prev_grad = 0
    if args.resume > 0:
        init_img = np.load(path + 'cleaned_img/' + str(args.resume) + '.npy')

    for k in range(K):
        mplimg.imsave(path + str(k) + '/init_img',
                      init_img[:, k].reshape(N, N),
                      cmap=cm.gray)

    psnr_list = [[] for i in range(K)]
    ssim_list = [[] for i in range(K)]
    for i in range(args.niter):

        j = args.flip * i
        f, grad_img, whitened_img = model.gradient(
            init_img.transpose().reshape(K, N, N,
                                         1)[:, ::(-1)**j, ::(-1)**(j / 2), :],
            precond=None,
            niter=i,
            path=path,
            ent_max=args.ent_max)
        df_dh = grad_img[:, ::(-1)**j, ::(-1)**(j / 2), :].reshape(
            K, -1).transpose()
        print i, 'f', f.sum(), 'df_dh', np.abs(df_dh).sum(),
        prev_grad = args.momentum * prev_grad + df_dh
        x_up = init_img + lr * (prev_grad)

        init_img = x_up - np.dot(Phi.transpose(), np.dot(Phi, x_up) - y)
        init_img = np.clip(init_img, 0.0, 1.0)

        if i % 10 == 0:
            for k in range(K):
                mplimg.imsave(path + str(k) + '/img' + str(i),
                              init_img[:, k].reshape(N, N),
                              cmap=cm.gray)
        l = linalg.norm(y - np.dot(Phi, init_img))
        print 'l', l

        #For Saving Gradient Image

        # if (i%10==0):
        # 	for k in range(K):
        # 		fig2 = plt.figure(2)
        # 		plt.imshow(df_dh[:,k].reshape(N,N),vmin = -0.02,vmax=0.02)
        # 		plt.colorbar()
        # 		plt.savefig(path+str(k)+'/grad_img'+str(i))
        # 		plt.close(fig2)

        # if (i%1 ==0):
        # 	for k in range(K):
        # 		fig1 = plt.figure(1)
        # 		plt.imshow(f[:,k].reshape(N,N))
        # 		plt.colorbar()
        # 		plt.savefig(path+str(k)+'/loglik_img'+str(i))
        # 		plt.close(fig1)

        m = 2  #Margin to remove for comparision
        for k in range(K):
            ssim1 = ssim(init_img[:, k].reshape(N, N)[m:-m, m:-m],
                         img[k].squeeze()[m:-m, m:-m],
                         dynamic_range=img.min() - img.max())
            psnr1 = psnr(init_img[:, k].reshape(N, N)[m:-m, m:-m],
                         img[k].squeeze()[m:-m, m:-m],
                         dynamic_range=img.min() - img.max())
            ssim_list[k].append(ssim1)
            psnr_list[k].append(psnr1)
            if not os.path.exists(path + 'cleaned_img/'):
                os.makedirs(path + 'cleaned_img/')
            np.save(path + 'cleaned_img/ssim_list', ssim_list)
            np.save(path + 'cleaned_img/psnr_list', psnr_list)
            print k, 'ssim', ssim1, 'psnr', psnr1

        if (i % 50 == 0):  #Storing npy files
            np.save(path + 'cleaned_img/' + str(i), init_img)

    return 0
Exemplo n.º 54
0
def main(config):
  caffe.set_device(config['device_id'])
  caffe.set_mode_gpu()

  # step 1. configure cnn
  if config['arch']=='A4,G1':
    # an ensemble of alexnet and googlenet
    models=[
      caffe.Net('deploy-alexnet_full_conv.prototxt','minc-alexnet_full_conv.caffemodel',caffe.TEST),
      caffe.Net('deploy-googlenet_full_conv_no_pooling.prototxt','minc-googlenet_full_conv.caffemodel',caffe.TEST)
    ]

    # alexnet needs a padded input to get a full-frame prediction
    input_padding=[97,0]

    # nominal footprint is 46.4% for A4, 23.2% for G1
    scales=[256/550.0,256/1100.0]
    bgr_mean=numpy.array([104,117,124],dtype=numpy.float32)

    # inputs must be a multiple of the stride
    # otherwise, the full-frame prediction will be shifted
    effective_stride=[32,32]

    # TODO: A4 needs spatial oversampling (# shifts = 2)
  else:
    raise NotImplementedError

  # step 2. configure crf
  if config['crf']=='1':
    # these are the CRF parameters for MINC (see supplemental)
    # the parameters can have a big impact on the output
    # so they should be tuned for the target domain
    # (MINC note: this code is not exactly the same as the
    # original MINC code so these parameters will not
    # generate the exact same results)
    crf_params={
      "bilateral_pairwise_weight": 5.0, # w_p
      "bilateral_theta_xy": 0.1, # \theta_p
      "bilateral_theta_lab_l": 20.0, # \theta_L
      "bilateral_theta_lab_ab": 5.0, # \theta_ab
      "n_crf_iters": 10,
      "unary_prob_padding": 1e-05,
    }
  elif config['crf']=='matclass':
    # new CRF parameters
    crf_params={
      "bilateral_pairwise_weight": 8.0, # w_p
      "bilateral_theta_xy": 0.5, # \theta_p
      "bilateral_theta_lab_l": 0.5, # \theta_L
      "bilateral_theta_lab_ab": 3.0, # \theta_ab
      "n_crf_iters": 10,
      "unary_prob_padding": 1e-05,
    }
  else:
    raise NotImplementedError

  pad_value=bgr_mean[::-1]/255.0

  # step 3. extract class prediction maps
  for ipath in config['input']:
    # read image
    original=imageutils.read(ipath)
    z=config['min_dim']/float(min(original.shape[:2]))
    crf_shape=(23,int(round(original.shape[0]*z)),int(round(original.shape[1]*z)))

    # predict 6 maps: 3 scales for each model
    maps=[]
    for index,model in enumerate(models):
      p=input_padding[index]
      s=scales[index]
      for index2,multiscale in enumerate([0.7071067811865476,1.0,1.4142135623730951]):
        # resample the input so it is a multiple of the stride
        # and the receptive field matches the nominal footprint
        scale_factor=(256/s)/float(min(original.shape[:2]))
        scaled_size=[nearest_multiple(original.shape[i]*scale_factor*multiscale,effective_stride[index]) for i in range(2)]
        scaled=imageutils.resize(original,scaled_size)
        if p>0:
          # add input padding for alexnet
          pad=numpy.ones((scaled.shape[0]+2*p,scaled.shape[1]+2*p,scaled.shape[2]),dtype=scaled.dtype)*pad_value
          pad[p:-p,p:-p]=scaled
          scaled=pad

        # predict and resample the map to be the correct size
        data=preprocess_and_reshape(scaled,model,bgr_mean=bgr_mean)
        output=model.forward_all(data=data)['prob'][0]
        output=scipy.ndimage.interpolation.zoom(output,[1.0,crf_shape[1]/float(output.shape[1]),crf_shape[2]/float(output.shape[2])],order=1)
        maps.append(output)

    # step 4. average all maps
    crf_map=numpy.asarray(maps).mean(axis=0)
    if False:
      # output extra maps for debugging
      for i,x,j in [(i,x,j) for i,x in enumerate(maps) for j in range(23)]: imageutils.write('zzz_map_{}{}.jpg'.format(dataset.NETCAT_TO_NAME[j],i),x[j])
      for j in range(23): imageutils.write('zzz_mean_map_{}.jpg'.format(dataset.NETCAT_TO_NAME[j],i),crf_map[j])
      imageutils.write('zzz_naive_labels.png',labels_to_color(numpy.argsort(-crf_map.reshape(23,-1).T).T.reshape(*crf_map.shape)[0]))
    crf_color=imageutils.resize(original,(crf_shape[1],crf_shape[2]))
    assert crf_color.shape[0]==crf_map.shape[1] and crf_color.shape[1]==crf_map.shape[2]

    # step 5. dense crf
    #lcrf=densecrf_matclass.general_densecrf.LearnableDenseCRF(crf_color,crf_map,crf_params)
    lcrf=densecrf_matclass.densecrf.LearnableDenseCRF(crf_color,crf_map,crf_params)
    labels_crf=lcrf.map(crf_params)

    # step 6. visualize with color labels
    result=labels_to_color(labels_crf)
    if os.path.exists(config['output']) and os.path.isdir(config['output']):
      opath=os.path.join(config['output'],os.path.splitext(os.path.split(ipath)[1])[0])+'.png'
    else:
      opath=config['output']
    assert not os.path.exists(opath)
    imageutils.write(opath,result)
    print(opath)
Exemplo n.º 55
0
def each_video(results_folder, root_folder, video):

    caffe.set_device(1)  #gpu device number
    caffe.set_mode_gpu()

    ucf_mean_RGB = np.zeros((3, 1, 1))
    ucf_mean_RGB[0, :, :] = 75
    ucf_mean_RGB[1, :, :] = 75
    ucf_mean_RGB[2, :, :] = 101
    # 75,75,101 are the mean values for three channels

    transformer_RGB = initialize_transformer(ucf_mean_RGB, False)

    #Models and weights
    svrcnet_model = '/path/to/deploy/folder/SVRCNet-workflow-deploy.prototxt'
    svrcnet_caffemodel = '/path/to/caffemodel/folder/name.caffemodel'
    svrcnet_net = caffe.Net(svrcnet_model, svrcnet_caffemodel, caffe.TEST)

    # create files to save results
    filename = results_folder + video + "_phase.txt"
    fw = codecs.open(filename, "w", "utf-8-sig")

    filename_pre = results_folder + video + "_phase_prediction.txt"
    fw_pre = codecs.open(filename_pre, "w", "utf-8-sig")

    # load test data path
    frames = sorted(glob.glob('%s%s/*.jpg' % (root_folder, video)),
                    key=os.path.getmtime)

    clip_length = 3
    total_num = len(frames)  #frame number of each video
    frames = frames[0:total_num - 1]
    frames_num = total_num - 1
    print frames_num

    action_hash = pickle.load(open('/path/to/action_hash_rev_cholec80.p',
                                   'rb'))

    # initialize the model
    predictions_SVRCNet = SVRCNet_test_video(frames, svrcnet_net,
                                             transformer_RGB, False)
    del svrcnet_net

    #test
    headlines = ''.join(['Frame', '\t', 'Phase', '\n'])
    fw.writelines(headlines)

    for i in range(frames_num):

        frame_prediction = np.zeros((1, 8))
        frame_prediction = predictions_SVRCNet[i, :]
        max_label = frame_prediction.argmax()
        top_inds = frame_prediction.argsort()[::-1][:3]
        pre = zip(frame_prediction[top_inds], top_inds)

        index = i * 25
        fileline_v2 = ''.join([str(index), '\t', action_hash[max_label], '\n'])
        fw.writelines(fileline_v2)

        fileline_v2_pre = ''.join([
            str(i), '\t',
            str(frame_prediction[0]), '\t',
            str(frame_prediction[1]), '\t',
            str(frame_prediction[2]), '\t',
            str(frame_prediction[3]), '\t',
            str(frame_prediction[4]), '\t',
            str(frame_prediction[5]), '\t',
            str(frame_prediction[6]), '\n'
        ])
        fw_pre.writelines(fileline_v2_pre)

    fw.close()
    fw_pre.close()
def classify(net_config_location, net_weights, image_location, alpha_channel, use_gpu, win_size,crop_size):



	if use_gpu:
		caffe.set_device(0)
		caffe.set_mode_gpu()
	else:
		caffe.set_mode_cpu()
	

	f = open(net_config_location, 'r')
	s = f.read()


	if (alpha_channel):
		append = 'input: "data" input_dim: 1 input_dim: 4 input_dim: 512 input_dim: 512 \n'
	else:
		append = 'input: "data" input_dim: 1 input_dim: 3 input_dim: 512 input_dim: 512 \n'	

	s = append + s

	f = open('temp.prototxt', 'w')
	f.write(s)
	f.close()


	net = caffe.Net('temp.prototxt', net_weights, caffe.TEST)

	print 'Opening image...'

	#open image
	in_ = getimage(image_location,alpha_channel)

	print 'Image opened...'

	#height and width of original image
	orig_img_h = in_.shape[1]
	orig_img_w = in_.shape[2]

	#size of valid output patch
	out_size = win_size-2*crop_size

	#number of patches horizontally and vertically
	n_patch_horiz = int(math.ceil(orig_img_w/float(out_size)))
	n_patch_vert = int(math.ceil(orig_img_h/float(out_size)))

	#pad image...

	#how much to pad?
	pad_w_before = crop_size
	pad_h_before = crop_size
	pad_w_after = n_patch_horiz*out_size + crop_size - orig_img_w
	pad_h_after = n_patch_vert*out_size + crop_size - orig_img_h

	#do padding
	in_ = np.pad(in_, ((0,0), (pad_h_before,pad_h_after), (pad_w_before,pad_w_after)), mode='symmetric')

	
	# shape for input (data blob is N x C x H x W), set data
	
	if alpha_channel:
		channels=4
	else:
		channels=3

	net.blobs['data'].reshape(1, channels, win_size, win_size)


	
	print 'Predicting...'


	rows = []

	for i in range(0,n_patch_vert):
		patches_in_row = []
		for j in range(0,n_patch_horiz):

			input_ = in_[:,out_size*i:out_size*i+win_size,out_size*j:out_size*j+win_size]
			net.blobs['data'].data[...] = input_

			# run net prediction
			net.forward()
			patch_out = net.blobs['prob'].data[0]

			
			#compute offset in case output patch provided by the network
			#is larger than it should be
			h_offset = (net.blobs['prob'].data[0].shape[1] - out_size)/2
			w_offset = (net.blobs['prob'].data[0].shape[2] - out_size)/2
			
			#crop
			patch_out = patch_out[:,h_offset:h_offset+out_size,w_offset:w_offset+out_size]

			patches_in_row.append(np.copy(patch_out))
		
		row = np.concatenate(patches_in_row,2)

		rows.append(np.copy(row))
	
	
	entire_output = np.concatenate(rows,1)

	#remove excess border
	output = entire_output[:,0:orig_img_h,0:orig_img_w]

	#out.astype('double').tofile("prob.dat");

	if output.shape[0]==1:
		pred = np.rint(np.squeeze(output)).astype(np.uint8)
	else:
		pred = output.argmax(axis=0).astype(np.uint8)

	print 'Done predicting.'


	return pred
Exemplo n.º 57
0
gpu_device = 1
start_epoch = 1
epoch_step = 2
model_fold = '../code/model/new_experiment'
net_style = 'test'

epoch_num = 10
model_fold = os.path.join(model_fold, net_style)
model = prepare_model(model_fold)
model['fea_name'] = 'avg_norm'
model['model_file'] = os.path.join(model_fold, 'test')
model['weight_file'] = os.path.join(model_fold,
                                    "epoch_%d.caffemodel" % epoch_num)

caffe.set_mode_gpu()
caffe.set_device(start_epoch)
net = caffe.Net(model[''])

data_folder = '/home1/qcz/DataSet'
dataset_train, dataset_test = 'paris6k', 'oxford5k'
gnd_test = os.path.join(data_folder, dataset_test,
                        'gnd_' + dataset_test + '.mat')
gnd_test = scio.loadmat(gnd_test)
qidx = gnd_test['qidx']
imlist = gnd_test['imlist']
gnd = gnd_test['gnd']
rank_path = '/home1/qcz/qcz_pro/building_train/code/ranks.mat'
ranks = scio.loadmat(rank_path)
ranks = ranks['ranksOxLw']
[map, aps] = compute_map(ranks, gnd)
gnd_train = os.path.join(data_folder, dataset_train,
Exemplo n.º 58
0
def train(args):

    # generate and store training data online
    Data_Q = Queue(50)
    Label_Q = Queue(50)
    pData = Process(target=genData,
                    args=(Data_Q, Label_Q, args.batchsize, args.crop_H,
                          args.crop_W))
    pData.start()

    caffe.set_mode_gpu()
    caffe.set_device(args.GPU_ID)
    logging.basicConfig(filename=args.log, level=logging.INFO)

    solver = caffe.AdamSolver(args.solver)

    # initialization
    if args.init_model:
        logging.info('loading' + args.init_model)
        solver.net.copy_from(args.init_model)
        logging.info('loaded')
    solver.net.params['init_norm'][0].data[...] = args.init_p
    solver.net.params['init_pool'][0].data[...] = args.init_p
    norm_param_ul = ['norm_%d' % i for i in xrange(1, args.T)]
    pool_param_ul = ['pool_%d' % i for i in xrange(1, args.T)]
    for i in xrange(args.T - 1):
        solver.net.params[norm_param_ul[i]][0].data[...] = args.init_p
        solver.net.params[pool_param_ul[i]][0].data[...] = args.init_p

    solver.net.blobs['data'].reshape(args.batchsize, 1, args.crop_H,
                                     args.crop_W)
    solver.net.blobs['label'].reshape(args.batchsize, 1, args.crop_H,
                                      args.crop_W)

    # training process
    epoch = args.num_epochs
    epoch_iters = 750
    step_sum = epoch_iters * epoch + 1
    step = 0
    valid_acc = 0
    aver_psnr = 0.0
    best_psnr = 0.0
    best_iter = 0
    best_each_psnr = [0 for i in xrange(19)]
    while step < step_sum:
        if Data_Q.empty() != True:
            # training
            solver.net.blobs['data'].data[...] = Data_Q.get()
            solver.net.blobs['label'].data[...] = Label_Q.get()
            solver.step(1)
            p = solver.net.params['init_norm'][0].data[...]
            log_out = 'iter: %d p: %.4f loss: %f' % (
                step, p, solver.net.blobs['loss'].data)
            logging.info(log_out)
            step += 1

            # evaluated on validation or test set.
            if step % epoch_iters == 0:
                psnr, aver_psnr, psnr_set5, psnr_set14 = test_valid(solver.net)
                if (aver_psnr > best_psnr):
                    best_psnr = aver_psnr
                    best_each_psnr = psnr
                    best_iter = step
                log_out = 'test: iter: %d aver_psnr/best_psnr %f/%f psnr_set5: %f psnr_set14: %f\n' % (
                    step, aver_psnr, best_psnr, psnr_set5, psnr_set14)
                logging.info(log_out)
                log_psnr = 'test: iter: %d ' % step
                log_best_psnr = 'best: iter: %d ' % best_iter
                for j in xrange(19):
                    log_psnr = log_psnr + '%d: %f ' % (j, psnr[j - 1])
                    log_best_psnr = log_best_psnr + '%d: %f ' % (
                        j, best_each_psnr[j - 1])
                logging.info(log_psnr)
                logging.info(log_best_psnr)
                solver.net.blobs['data'].reshape(args.batchsize, 1,
                                                 args.crop_H, args.crop_W)
                solver.net.blobs['label'].reshape(args.batchsize, 1,
                                                  args.crop_H, args.crop_W)
Exemplo n.º 59
0
def initCaffe(opt):
    caffe.set_mode_gpu()
    gpu_id = 0
    caffe.set_device(gpu_id)
    net = caffe.Net(opt.modelDefFile, opt.modelFile, caffe.TEST)
    return net
Exemplo n.º 60
0
    in_ = np.array(im, dtype=np.float32)
    in_ = in_[:,:,::-1]
    in_ -= np.array((104.00698793,116.66876762,122.67891434))
    in_ = in_.transpose((2,0,1))
    return in_

video_name = sys.argv[1]

caffe_model  = '../model/SegFlow.caffemodel'
deploy_proto = '../model/deploy.prototxt'
file_out     = '../results/' + video_name[8:-4]

device_id    = 1  

# init network
caffe.set_device(device_id)
caffe.set_mode_gpu()
net = caffe.Net(deploy_proto , caffe_model, caffe.TEST)


if os.path.exists(file_out) == False:
   os.mkdir(file_out)


vid = cv2.VideoCapture(video_name)
flag, frame = vid.read()
print(flag)
num = 0
while flag:
    num  = num + 1
    img1 = img_transform(frame)