Exemplo n.º 1
0
#!/usr/bin/env python

caffe_root = '../../'  # this file should be run from {caffe_root}/examples (otherwise change this line)

import sys, os
sys.path.insert(0, caffe_root + 'python')
import caffe

dirname = os.path.abspath('./style-train-log')
if not os.path.exists(dirname): os.mkdir(dirname)
caffe.set_logdir(sys.argv[0], dirname)

#default is cpu mode
#caffe.set_device(0)
#caffe.set_mode_gpu()
#caffe.set_mode_cpu()

import numpy as np
from pylab import *
#%matplotlib inline
import tempfile


# Helper function for deprocessing preprocessed images, e.g., for display.
def deprocess_net_image(image):
    image = image.copy()  # don't modify destructively
    image = image[::-1]  # BGR -> RGB
    image = image.transpose(1, 2, 0)  # CHW -> HWC
    image += [123, 117, 104]  # (approximately) undo mean subtraction

    # clamp values in [0, 255]
Exemplo n.º 2
0
import numpy as np
from PIL import Image

caffe_root = '../../'

import sys, os
sys.path.insert(0, caffe_root + 'python')
import caffe

caffe.set_logdir(sys.argv[0], os.path.abspath('./log'))

# load image, switch to BGR, subtract mean, and make dims C x H x W for Caffe
#im = Image.open('pascal/VOC2010/JPEGImages/2007_000129.jpg')
im = Image.open('data/pascal/VOC2007/JPEGImages/000129.jpg')
in_ = np.array(im, dtype=np.float32)
in_ = in_[:, :, ::-1]
in_ -= np.array((104.00698793, 116.66876762, 122.67891434))
in_ = in_.transpose((2, 0, 1))

# load net
net = caffe.Net('voc-fcn8s/deploy.prototxt',
                'voc-fcn8s/fcn8s-heavy-pascal.caffemodel', caffe.TEST)
# shape for input (data blob is N x C x H x W), set data
net.blobs['data'].reshape(1, *in_.shape)
net.blobs['data'].data[...] = in_
# run net and take argmax for prediction
net.forward()
out = net.blobs['score'].data[0].argmax(axis=0)

#print str(out)
class_num = {}