def _fuse_nnpack_convrelu(self, net, expected_result_num_ops,
 expected_activation_arg=True):
     self._add_nnpack(net)
     transformer.FuseNNPACKConvRelu(net)
     self.assertEquals(tu.numOps(net), expected_result_num_ops)
     has_activation_arg = False
     for arg in net.Proto().op[0].arg:
         if tu.str_compare(arg.name, "activation"):
             assert tu.str_compare(arg.s, "Relu")
             has_activation_arg = True
     if expected_activation_arg:
         assert has_activation_arg
     else:
         assert not has_activation_arg
    def test_transformer_FuseConvBNNoConvBiasDuplicatedName(self, size, input_channels, seed, order, epsilon):
        workspace.ResetWorkspace()
        net = core.Net("net")
        c = input_channels
        h = size
        w = size
        k = 3
        net.Conv(["X", "w"], ["Y"], stride=1, pad=0, kernel=k, order=order)
        net.SpatialBN(
            ["Y", "scale", "_bias0", "mean", "var"],
            ["Y2"],
            is_test=True,
            order=order,
            epsilon=epsilon,
        )

        np.random.seed(seed)
        if order == "NCHW":
            tu.randBlobFloat32("X", 1, c, h, w)
            tu.randBlobFloat32("w", c, c, k, k)
        else:
            tu.randBlobFloat32("X", 1, h, w, c)
            tu.randBlobFloat32("w", c, k, k, c)
        tu.randBlobsFloat32(["scale", "_bias0", "mean"], c)
        # This is necessary because 1/sqrt(var) is used and if var is too small
        # we get floating point artifacts that cause test failures
        tu.randBlobFloat32("var", c, offset=0.5)
        workspace.RunNetOnce(net)
        preTransformOutput = workspace.FetchBlob("Y2").flatten()
        workspace.FeedBlob("Y2", np.zeros((1, 1)))
        transformer.FuseConvBN(net)

        # Ensure fusion
        assert tu.numOps(net) == 1
        workspace.RunNetOnce(net)
        postTransformOutput = workspace.FetchBlob("Y2").flatten()
        print("pre")
        print(preTransformOutput)
        print("after")
        print(postTransformOutput)
        # Check that there is no numerical difference
        assert np.allclose(
            preTransformOutput,
            postTransformOutput,
            rtol=5e-02,
            atol=1e-03
        )
    def test_transformer_FuseConv3DBN(
        self, size, input_channels, kt, kh, kw, seed, epsilon
    ):
        workspace.ResetWorkspace()
        net = core.Net("net")
        c = input_channels
        t = size
        h = size
        w = size
        net.Conv(
            ["X", "w", "b"],
            ["Y"],
            kernels=[kt, kh, kw],
        )
        net.SpatialBN(
            ["Y", "scale", "bias", "mean", "var"],
            ["Y2"],
            is_test=True,
            epsilon=epsilon,
        )

        np.random.seed(seed)
        tu.randBlobFloat32("X", 1, c, t, h, w)
        tu.randBlobFloat32("w", c, c, kt, kh, kw)
        tu.randBlobsFloat32(["b", "scale", "bias", "mean"], c)
        # This is necessary because 1/sqrt(var) is used and if var is too small
        # we get floating point artifacts that cause test failures
        tu.randBlobFloat32("var", c, offset=0.5)
        workspace.RunNetOnce(net)
        preTransformOutput = workspace.FetchBlob("Y2").flatten()
        workspace.FeedBlob("Y2", np.zeros((1, 1)))
        transformer.FuseConvBN(net)

        # Ensure fusion
        assert tu.numOps(net) == 1
        workspace.RunNetOnce(net)
        postTransformOutput = workspace.FetchBlob("Y2").flatten()
        # Check that there is no numerical difference
        assert np.allclose(
            preTransformOutput,
            postTransformOutput,
            rtol=1e-02,
            atol=1e-04
        )