Exemplo n.º 1
0
def create_blobs_if_not_existed(blob_names):
    existd_names = set(workspace.Blobs())
    for xx in blob_names:
        if xx not in existd_names:
            workspace.CreateBlob(str(xx))
Exemplo n.º 2
0
                                        init_params=False)
AddModel(deploy_model, "data")

# The parameter initialization network only needs to be run once.
# Now all the parameter blobs are going to be initialized in the workspace.
workspace.RunNetOnce(train_model.param_init_net)

# overwrite=True allows you to run this cell several times and avoid errors
workspace.CreateNet(train_model.net, overwrite=True)

# Set the iterations number and track the accuracy & loss
total_iters = 200
accuracy = np.zeros(total_iters)
loss = np.zeros(total_iters)

print("The blobs in the workspace pre-train: {}".format(workspace.Blobs()))

# Now, we will manually run the network for 200 iterations.
for i in range(total_iters):
    workspace.RunNet(train_model.net)
    accuracy[i] = workspace.blobs["accuracy"]
    loss[i] = workspace.blobs["loss"]

print("The blobs in the workspace post-train: {}".format(workspace.Blobs()))

# param_init_net here will only create a data reader
# Other parameters won't be re-created because we selected
# init_params=False before
workspace.RunNetOnce(test_model.param_init_net)
workspace.CreateNet(test_model.net, overwrite=True)
test_accuracy = np.zeros(100)
Exemplo n.º 3
0
def initialize_gpu_from_weights_file(model, weights_file, gpu_id=0):
    """Initialize a network with ops on a specific GPU.

    If you use CUDA_VISIBLE_DEVICES to target specific GPUs, Caffe2 will
    automatically map logical GPU ids (starting from 0) to the physical GPUs
    specified in CUDA_VISIBLE_DEVICES.
    """
    logger.info('Loading weights from: {}'.format(weights_file))
    ws_blobs = workspace.Blobs()
    src_blobs = load_object(weights_file)

    if 'cfg' in src_blobs:
        saved_cfg = load_cfg(src_blobs['cfg'])
        configure_bbox_reg_weights(model, saved_cfg)
    if 'blobs' in src_blobs:
        # Backwards compat--dictionary used to be only blobs, now they are
        # stored under the 'blobs' key
        src_blobs = src_blobs['blobs']
    # Initialize weights on GPU gpu_id only
    unscoped_param_names = OrderedDict()  # Print these out in model order
    for blob in model.params:
        unscoped_param_names[c2_utils.UnscopeName(str(blob))] = True
    with c2_utils.NamedCudaScope(gpu_id):
        for unscoped_param_name in unscoped_param_names.keys():
            if (unscoped_param_name.find(']_') >= 0
                    and unscoped_param_name not in src_blobs):
                # Special case for sharing initialization from a pretrained
                # model:
                # If a blob named '_[xyz]_foo' is in model.params and not in
                # the initialization blob dictionary, then load source blob
                # 'foo' into destination blob '_[xyz]_foo'
                src_name = unscoped_param_name[unscoped_param_name.find(']_') +
                                               2:]
            else:
                src_name = unscoped_param_name
            if src_name not in src_blobs:
                logger.info('{:s} not found'.format(src_name))
                continue

            dst_name = core.ScopedName(unscoped_param_name)
            has_momentum = src_name + '_momentum' in src_blobs
            has_momentum_str = ' [+ momentum]' if has_momentum else ''
            logger.info(
                '{:s}{:} loaded from weights file into {:s}: {}'.format(
                    src_name, has_momentum_str, dst_name,
                    src_blobs[src_name].shape))
            if dst_name in ws_blobs:
                # If the blob is already in the workspace, make sure that it
                # matches the shape of the loaded blob
                ws_blob = workspace.FetchBlob(dst_name)

                assert ws_blob.shape == src_blobs[src_name].shape, \
                    ('Workspace blob {} with shape {} does not match '
                     'weights file shape {}').format(
                        src_name,
                        ws_blob.shape,
                        src_blobs[src_name].shape)
            workspace.FeedBlob(
                dst_name, src_blobs[src_name].astype(np.float32, copy=False))
            if has_momentum:
                workspace.FeedBlob(
                    dst_name + '_momentum',
                    src_blobs[src_name + '_momentum'].astype(np.float32,
                                                             copy=False))

    # We preserve blobs that are in the weights file but not used by the current
    # model. We load these into CPU memory under the '__preserve__/' namescope.
    # These blobs will be stored when saving a model to a weights file. This
    # feature allows for alternating optimization of Faster R-CNN in which blobs
    # unused by one step can still be preserved forward and used to initialize
    # another step.
    for src_name in src_blobs.keys():
        if (src_name not in unscoped_param_names
                and not src_name.endswith('_momentum')
                and src_blobs[src_name] is not None):
            with c2_utils.CpuScope():
                workspace.FeedBlob('__preserve__/{:s}'.format(src_name),
                                   src_blobs[src_name])
                logger.info(
                    '{:s} preserved in workspace (unused)'.format(src_name))
Exemplo n.º 4
0
def initialize_gpu_0_from_weights_file(model, weights_file):
    logger.info('Loading from: {}'.format(weights_file))
    is_first_init = 'trainedCOCO' in weights_file
    ws_blobs = workspace.Blobs()
    with open(weights_file, 'r') as f:
        src_blobs = pickle.load(f)
    if 'cfg' in src_blobs:
        saved_cfg = yaml.load(src_blobs['cfg'])
        configure_bbox_reg_weights(model, saved_cfg)
    if 'blobs' in src_blobs:
        # Backwards compat--dictionary used to be only blobs, now they are
        # stored under the 'blobs' key
        src_blobs = src_blobs['blobs']
    # Initialize weights on GPU 0 only
    unscoped_param_names = OrderedDict()  # Print these out in model order
    for blob in model.params:
        unscoped_param_names[utils.blob.unscope_name(str(blob))] = True
    with core.NameScope('gpu_0'):
        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
            for unscoped_param_name in unscoped_param_names.keys():
                if (unscoped_param_name.find(']_') >= 0 and
                        unscoped_param_name not in src_blobs):
                    # Special case for sharing initialization from a pretrained
                    # model:
                    # If a blob named '_[xyz]_foo' is in model.params and not in
                    # the initialization blob dictionary, then load source blob
                    # 'foo' into destination blob '_[xyz]_foo'
                    src_name = unscoped_param_name[
                        unscoped_param_name.find(']_') + 2:]
                else:
                    src_name = unscoped_param_name
                if src_name not in src_blobs:
                    logger.info('{:s} not found'.format(src_name))
                    continue
                dst_name = core.ScopedName(unscoped_param_name)
                has_momentum = src_name + '_momentum' in src_blobs
                has_momentum_str = ' [+ momentum]' if has_momentum else ''
                logger.info('{:s}{:} loaded from weights file into {:s}: {}'.
                            format(
                                src_name, has_momentum_str,
                                dst_name, src_blobs[src_name].shape))
                pretrained_w = src_blobs[src_name]
                if dst_name in ws_blobs:
                    # If the blob is already in the workspace, make sure that it
                    # matches the shape of the loaded blob
                    ws_blob = workspace.FetchBlob(dst_name)
                    if ws_blob.shape != src_blobs[src_name].shape:
                        pretrained_w = inflate_weights(
                            pretrained_w, ws_blob, src_name, src_blobs)
                workspace.FeedBlob(
                    dst_name,
                    pretrained_w.astype(np.float32, copy=False))
                if has_momentum and not is_first_init:
                    # when feeding momentum, we're probably resuming from
                    # previous checkpoint. So all the inflated stuff won't be
                    # needed in that case
                    workspace.FeedBlob(
                        dst_name + '_momentum',
                        src_blobs[src_name + '_momentum'].astype(
                            np.float32, copy=False))

    # Add _rm/_riv BN mean/var params, in case the pre-trained model contains it.
    # Needed to test the scratch trained models.
    for src_name in src_blobs.keys():
        if src_name.endswith('_rm') or src_name.endswith('_riv'):
            with core.NameScope('gpu_0'):
                with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
                    dst_name = core.ScopedName(src_name)
                    workspace.FeedBlob(dst_name, src_blobs[src_name])
                    logger.info('Loaded BN param {}'.format(src_name))

    # We preserve blobs that are in the weights file but not used by the current
    # model. We load these into CPU memory under the '__preserve__/' namescope.
    # These blobs will be stored when saving a model to a weights file. This
    # feature allows for alternating optimization of Faster R-CNN in which blobs
    # unused by one step can still be preserved forward and used to initialize
    # another step.
    for src_name in src_blobs.keys():
        if (src_name not in unscoped_param_names and
                not src_name.endswith('_momentum') and
                src_blobs[src_name] is not None):
            with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
                workspace.FeedBlob(
                    '__preserve__/{:s}'.format(src_name), src_blobs[src_name])
                logger.info(
                    '{:s} preserved in workspace (unused)'.format(src_name))
Exemplo n.º 5
0
    def run(self, index, inputFeatures, accumulate=True, image_path=None):
        """
        index - index of the dataset entry
        inputFeatures - features input to the head
        accumulate - whether to save to predictions in self.all_... members
        image_path - path to the annotated image, to which the predictions correspond
        """
        timers = self.timers
        # Format the inputs to the mask rcnn head
        features = {}
        for k, v in inputFeatures.iteritems():
            assert v.dim() == 3, 'Batch mode not allowed'
            features[k] = np.expand_dims(v.data.cpu().numpy(), axis=0)

        gpu_dev = caffe2_core.DeviceOption(caffe2_pb2.CUDA, self.gpu_id)
        name_scope = 'gpu_{}'.format(self.gpu_id)

        # Clean the workspace to make damn sure that nothing comes from the
        # possible forwarding of target features, depending on the use of this
        # module
        parameters = [str(s) for s in self.model.params] + [
            str(s) + '_momentum' for s in self.model.TrainableParams()
        ]
        for b in workspace.Blobs():
            if not b in parameters:
                workspace.FeedBlob(b, np.array([]))

        # Produce the top level of the pyramid of features
        with caffe2_core.NameScope(name_scope):
            with caffe2_core.DeviceScope(gpu_dev):
                workspace.FeedBlob(
                    caffe2_core.ScopedName("predicted_fpn_res5_2_sum"),
                    features['fpn_res5_2_sum'])
                workspace.RunOperatorOnce(self.subsampler)
                features[
                    u'fpn_res5_2_sum_subsampled_2x'] = workspace.FetchBlob(
                        caffe2_core.ScopedName(
                            "predicted_fpn_res5_2_sum_subsampled_2x"))

        # Forward the rest of the features in the head of the model
        im_info = np.array([[1024., 2048., 1.]], dtype=np.float32)
        im_scales = np.array([1.])
        im_shape = (1024, 2048, 3)
        with caffe2_core.NameScope(name_scope):
            with caffe2_core.DeviceScope(gpu_dev):
                cls_boxes_i, cls_segms_i = im_detect_all_given_features(
                    self.model, self.subsampler, features, im_info, im_scales,
                    im_shape, timers)

        # If required, store the results in the class's members
        if accumulate:
            extend_results(index, self.all_boxes_ann_frame, cls_boxes_i)
        if cls_segms_i is not None and accumulate:
            extend_results(index, self.all_segms_ann_frame, cls_segms_i)

        if image_path is not None and accumulate:
            self.id_sequences.append(image_path)

        if index % 10 == 0:
            ave_total_time = np.sum([t.average_time for t in timers.values()])
            det_time = (timers['im_detect_bbox'].average_time +
                        timers['im_detect_mask'].average_time)
            misc_time = (timers['misc_bbox'].average_time +
                         timers['misc_mask'].average_time)
            print(('im_detect: '
                   '{:d}/{:d} {:.3f}s + {:.3f}s => avg total time: {:.3f}s'
                   ).format(index, self.num_images, det_time, misc_time,
                            ave_total_time))

        return cls_boxes_i, cls_segms_i
Exemplo n.º 6
0
    def testBlobNameOverrides(self):
        original_names = ['blob_a', 'blob_b', 'blob_c']
        new_names = ['x', 'y', 'z']
        blobs = [np.random.permutation(6) for i in range(3)]
        for i, blob in enumerate(blobs):
            self.assertTrue(workspace.FeedBlob(original_names[i], blob))
            self.assertTrue(workspace.HasBlob(original_names[i]))
        self.assertEqual(len(workspace.Blobs()), 3)

        try:
            # Saves the blobs to a local db.
            tmp_folder = tempfile.mkdtemp()
            with self.assertRaises(RuntimeError):
                workspace.RunOperatorOnce(
                    core.CreateOperator("Save",
                                        original_names, [],
                                        absolute_path=1,
                                        strip_prefix='.temp',
                                        blob_name_overrides=new_names,
                                        db=os.path.join(tmp_folder, "db"),
                                        db_type=self._db_type))
            self.assertTrue(
                workspace.RunOperatorOnce(
                    core.CreateOperator("Save",
                                        original_names, [],
                                        absolute_path=1,
                                        blob_name_overrides=new_names,
                                        db=os.path.join(tmp_folder, "db"),
                                        db_type=self._db_type)))
            self.assertTrue(workspace.ResetWorkspace())
            self.assertEqual(len(workspace.Blobs()), 0)
            self.assertTrue(
                workspace.RunOperatorOnce(
                    core.CreateOperator("Load", [], [],
                                        absolute_path=1,
                                        db=os.path.join(tmp_folder, "db"),
                                        db_type=self._db_type,
                                        load_all=1)))
            self.assertEqual(len(workspace.Blobs()), 3)
            for i, name in enumerate(new_names):
                self.assertTrue(workspace.HasBlob(name))
                self.assertTrue((workspace.FetchBlob(name) == blobs[i]).all())
            # moved here per @cxj's suggestion
            load_new_names = ['blob_x', 'blob_y', 'blob_z']
            # load 'x' into 'blob_x'
            self.assertTrue(
                workspace.RunOperatorOnce(
                    core.CreateOperator("Load", [],
                                        load_new_names[0:1],
                                        absolute_path=1,
                                        db=os.path.join(tmp_folder, "db"),
                                        db_type=self._db_type,
                                        source_blob_names=new_names[0:1])))
            # we should have 'blob_a/b/c/' and 'blob_x' now
            self.assertEqual(len(workspace.Blobs()), 4)
            for i, name in enumerate(load_new_names[0:1]):
                self.assertTrue(workspace.HasBlob(name))
                self.assertTrue((workspace.FetchBlob(name) == blobs[i]).all())
            self.assertTrue(
                workspace.RunOperatorOnce(
                    core.CreateOperator("Load", [],
                                        load_new_names[0:3],
                                        absolute_path=1,
                                        db=os.path.join(tmp_folder, "db"),
                                        db_type=self._db_type,
                                        source_blob_names=new_names[0:3])))
            # we should have 'blob_a/b/c/' and 'blob_x/y/z' now
            self.assertEqual(len(workspace.Blobs()), 6)
            for i, name in enumerate(load_new_names[0:3]):
                self.assertTrue(workspace.HasBlob(name))
                self.assertTrue((workspace.FetchBlob(name) == blobs[i]).all())
        finally:
            # clean up temp folder.
            try:
                shutil.rmtree(tmp_folder)
            except OSError as e:
                if e.errno != errno.ENOENT:
                    raise
Exemplo n.º 7
0
print("The deploy model is saved to: " + root_folder + "/mnist_model.minidb")

# Now we can load the model back and run the prediction to verify it works.

# In[18]:

# we retrieve the last input data out and use it in our prediction test before we scratch the workspace
blob = workspace.FetchBlob("data")
pyplot.figure()
_ = visualize.NCHW.ShowMultiple(blob)

# reset the workspace, to make sure the model is actually loaded
workspace.ResetWorkspace(root_folder)

# verify that all blobs are destroyed.
print("The blobs in the workspace after reset: {}".format(workspace.Blobs()))

# load the predict net
predict_net = pe.prepare_prediction_net(
    os.path.join(root_folder, "mnist_model.minidb"), "minidb")

# verify that blobs are loaded back
print("The blobs in the workspace after loading the model: {}".format(
    workspace.Blobs()))

# feed the previously saved data to the loaded model
workspace.FeedBlob("data", blob)

# predict
workspace.RunNetOnce(predict_net)
softmax = workspace.FetchBlob("softmax")
Exemplo n.º 8
0
final_image = transposed_image

print("Shape of final_image: " + str(np.array(final_image).shape))

with open(MODEL_ROOT + "/init_net.pb", "rb") as f:
    init_net = f.read()
with open(MODEL_ROOT + "/predict_net.pb", "rb") as f:
    predict_net = f.read()

workspace.ResetWorkspace()

blob_name = model_props[MODEL].blob_name
workspace.FeedBlob(blob_name, final_image)

print("The blobs in the workspace after FeedBlob: {}".format(workspace.Blobs()))

# Create a predictor using the loaded model.
p = workspace.Predictor(init_net, predict_net)

start = time.time()
for i in range(0, args.iterations):
    results = p.run([final_image])
end = time.time()
if args.time:
    print('Wall time per iteration (s): {:0.4f}'.format(
            (end - start) / args.iterations))

max_idx = np.argmax(results[0][0])
sum_probability = sum(results[0][0])
Exemplo n.º 9
0
def initialize_gpu_from_weights_file(model, weights_file, gpu_id=0):
    """Initialize a network with ops on a specific GPU.

    If you use CUDA_VISIBLE_DEVICES to target specific GPUs, Caffe2 will
    automatically map logical GPU ids (starting from 0) to the physical GPUs
    specified in CUDA_VISIBLE_DEVICES.
    """
    logger.info('Loading weights from: {}'.format(weights_file))
    ws_blobs = workspace.Blobs()
    with open(weights_file, 'r') as f:
        src_blobs = pickle.load(f)
    if 'cfg' in src_blobs:
        saved_cfg = load_cfg(src_blobs['cfg'])
        configure_bbox_reg_weights(model, saved_cfg)
    if 'blobs' in src_blobs:
        # Backwards compat--dictionary used to be only blobs, now they are
        # stored under the 'blobs' key
        src_blobs = src_blobs['blobs']
    # Initialize weights on GPU gpu_id only
    unscoped_param_names = OrderedDict()  # Print these out in model order
    for blob in model.params:
        unscoped_param_names[c2_utils.UnscopeName(str(blob))] = True
    with c2_utils.NamedCudaScope(gpu_id):
        for unscoped_param_name in unscoped_param_names.keys():
            if (unscoped_param_name.find(']_') >= 0
                    and unscoped_param_name not in src_blobs):
                # Special case for sharing initialization from a pretrained
                # model:
                # If a blob named '_[xyz]_foo' is in model.params and not in
                # the initialization blob dictionary, then load source blob
                # 'foo' into destination blob '_[xyz]_foo'
                src_name = unscoped_param_name[unscoped_param_name.find(']_') +
                                               2:]
            else:
                src_name = unscoped_param_name
            if src_name not in src_blobs:
                logger.info('{:s} not found'.format(src_name))
                continue
            dst_name = core.ScopedName(unscoped_param_name)
            has_momentum = src_name + '_momentum' in src_blobs
            has_momentum_str = ' [+ momentum]' if has_momentum else ''
            logger.debug(
                '{:s}{:} loaded from weights file into {:s}: {}'.format(
                    src_name, has_momentum_str, dst_name,
                    src_blobs[src_name].shape))
            if dst_name in ws_blobs:
                print("dst_name:" + dst_name)
                # If the blob is already in the workspace, make sure that it
                # matches the shape of the loaded blob
                ws_blob = workspace.FetchBlob(dst_name)
                print("xhpan:ws_blob.shape:" + str(ws_blob.shape))
                print("xhpan:src_blobs[src_name].shape:" +
                      str(src_blobs[src_name].shape))
                classes_layers_list_w = [
                    'gpu_0/cls_score_w', 'gpu_0/bbox_pred_w',
                    'gpu_0/mask_fcn_logits_w'
                ]
                classes_layers_list_b = [
                    'gpu_0/cls_score_b', 'gpu_0/bbox_pred_b',
                    'gpu_0/mask_fcn_logits_b'
                ]

                # -----------------(11, 1024) - --------------(10, 1024)
                # -----------------(11,) - --------------(10,)
                # -----------------(44, 1024) - --------------(40, 1024)
                # -----------------(44,) - --------------(40,)
                # -----------------(11, 256, 1, 1) - --------------(10, 256, 1, 1)
                # -----------------(11,) - --------------(10,)
                # if ws_blob.shape != src_blobs[src_name].shape:
                #     if dst_name is 'gpu_0/cls_score_w':
                #         if ws_blob.shape[0] > src_blobs[src_name].shape[0]:#(10, 1024)
                #             src_blobs[src_name].extend(0.0001 * np.random.randn(*(ws_blob.shape[0] - src_blobs[src_name].shape[0], ws_blob.shape[1])))
                #         else:
                #             num = src_blobs[src_name].shape[0] - ws_blob.shape[0]
                #             src_blobs[src_name] = src_blobs[src_name][-num]
                #     elif dst_name is

                cfg.MODEL.NUM_CLASSES
                if ws_blob.shape != src_blobs[src_name].shape:
                    print("ws_blob.shape != src_blobs[src_name].shape")
                    print("-----------------" + str(ws_blob.shape) +
                          "---------------" + str(src_blobs[src_name].shape))
                    if dst_name in classes_layers_list_w or dst_name in classes_layers_list_b:
                        if dst_name in classes_layers_list_w:
                            target_shape = [
                                ws_blob.shape[0] - src_blobs[src_name].shape[0]
                            ]
                            target_shape.extend(list(ws_blob.shape[1:]))
                            init_weight = 0.0001 * np.random.randn(
                                *(tuple(target_shape)))
                            src_blobs[src_name] = np.append(
                                src_blobs[src_name], init_weight, axis=0)
                        else:
                            target_shape = [
                                ws_blob.shape[0] - src_blobs[src_name].shape[0]
                            ]
                            target_shape.extend(list(ws_blob.shape[1:]))
                            init_weight = -np.log(
                                (1 - 0.00001) / 0.00001) * np.ones(
                                    *(tuple(target_shape)))
                            src_blobs[src_name] = np.append(
                                src_blobs[src_name], init_weight, axis=0)

                        target_shape = [
                            ws_blob.shape[0] -
                            src_blobs[src_name + '_momentum'].shape[0]
                        ]
                        target_shape.extend(list(ws_blob.shape[1:]))
                        init_weight = np.zeros(target_shape)
                        src_blobs[src_name + '_momentum'] = np.append(
                            src_blobs[src_name + '_momentum'],
                            init_weight,
                            axis=0)

                # if ws_blob.shape != src_blobs[src_name].shape:
                #     print ("ws_blob.shape != src_blobs[src_name].shape")
                #     print ("-----------------" + str(ws_blob.shape) + "---------------" + str(src_blobs[src_name].shape))
                #     if dst_name in classes_layers_list_w or dst_name in classes_layers_list_b:
                #         if dst_name in classes_layers_list_w :
                #             src_blobs[src_name] = 0.0001 * np.random.randn(*(ws_blob.shape))
                #         else:
                #             src_blobs[src_name] = -np.log((1 - 0.00001) / 0.00001) * np.ones(*(ws_blob.shape))
                #
                #         src_blobs[src_name + '_momentum'] = np.zeros(ws_blob.shape)




                assert ws_blob.shape == src_blobs[src_name].shape, \
                    ('Workspace blob {} with shape {} does not match '
                     'weights file shape {}').format(
                        src_name,
                        ws_blob.shape,
                        src_blobs[src_name].shape)
            workspace.FeedBlob(
                dst_name, src_blobs[src_name].astype(np.float32, copy=False))
            if has_momentum:
                workspace.FeedBlob(
                    dst_name + '_momentum',
                    src_blobs[src_name + '_momentum'].astype(np.float32,
                                                             copy=False))

    # We preserve blobs that are in the weights file but not used by the current
    # model. We load these into CPU memory under the '__preserve__/' namescope.
    # These blobs will be stored when saving a model to a weights file. This
    # feature allows for alternating optimization of Faster R-CNN in which blobs
    # unused by one step can still be preserved forward and used to initialize
    # another step.
    for src_name in src_blobs.keys():
        if (src_name not in unscoped_param_names
                and not src_name.endswith('_momentum')
                and src_blobs[src_name] is not None):
            with c2_utils.CpuScope():
                workspace.FeedBlob('__preserve__/{:s}'.format(src_name),
                                   src_blobs[src_name])
                logger.debug(
                    '{:s} preserved in workspace (unused)'.format(src_name))
Exemplo n.º 10
0
 def print_all(self):
     # approach 1: all
     print(workspace.Blobs(), end='\n')
     for _, l in enumerate(workspace.Blobs()):
         print(l)
         print(self.FetchBlobWrapper(l))
Exemplo n.º 11
0
def initialize_master_gpu_model_params(
        model, weights_file, load_momentum=True):
    ws_blobs = workspace.Blobs()
    logger.info("Initializing model params from file: {}".format(weights_file))
    with open(weights_file, 'r') as fopen:
        blobs = pickle.load(fopen)
    if 'blobs' in blobs:
        blobs = blobs['blobs']
    unscoped_blob_names = OrderedDict()

    # Return the model iter from which training should start
    model_iter = 0
    if 'model_iter' in blobs:
        model_iter = blobs['model_iter']

    if 'lr' in blobs:
        prev_lr = float(blobs['lr'])
    elif cfg.TRAIN.RESET_START_ITER:
        prev_lr = 1.
    else:
        raise Exception('No lr blob found.')

    # initialize params, params momentum, computed params
    if 'test' not in model.net.Name() and load_momentum:
        for param in model.params:
            if param in model.TrainableParams():
                unscoped_blob_names[misc.unscope_name(
                    str(param) + '_momentum')] = True
    for blob in model.GetAllParams():
        unscoped_blob_names[misc.unscope_name(str(blob))] = True

    root_gpu_id = cfg.ROOT_GPU_ID
    with core.NameScope('gpu_{}'.format(root_gpu_id)):
        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, root_gpu_id)):
            for unscoped_blob_name in unscoped_blob_names.keys():
                scoped_blob_name = misc.scoped_name(unscoped_blob_name)
                if unscoped_blob_name not in blobs:
                    logger.info('{:s} not found'.format(unscoped_blob_name))
                    continue
                if scoped_blob_name in ws_blobs:
                    ws_blob = workspace.FetchBlob(scoped_blob_name)

                    if 'pred' in unscoped_blob_name:
                        if np.prod(ws_blob.shape) \
                                != np.prod(blobs[unscoped_blob_name].shape):
                            logger.info(('{:s} (classifier) found but ' +
                                            'unmatching (not loaded):' +
                                            '{} ---> {}')
                                        .format(
                                            unscoped_blob_name,
                                            blobs[unscoped_blob_name].shape,
                                            ws_blob.shape))
                            continue
                        else:
                            blobs[unscoped_blob_name] = np.reshape(
                                blobs[unscoped_blob_name], ws_blob.shape)

                    if len(ws_blob.shape) != \
                            len(blobs[unscoped_blob_name].shape):
                        # inflate if so
                        assert ws_blob.shape[:2] == \
                            blobs[unscoped_blob_name].shape[:2], \
                            ('Workspace blob {} with shape {} does not match '
                             'weights file shape {}').format(
                                unscoped_blob_name, ws_blob.shape,
                                blobs[unscoped_blob_name].shape)
                        assert ws_blob.shape[-2:] == \
                            blobs[unscoped_blob_name].shape[-2:], \
                            ('Workspace blob {} with shape {} does not match '
                             'weights file shape {}').format(
                                unscoped_blob_name, ws_blob.shape,
                                blobs[unscoped_blob_name].shape)

                        logger.info(
                            ('{:s} loaded from weights file into: {:s}' +
                                    ' inflated {} ---> {}').format(
                                unscoped_blob_name, scoped_blob_name,
                                blobs[unscoped_blob_name].shape,
                                ws_blob.shape))
                        # inflate
                        num_inflate = ws_blob.shape[2]
                        blobs[unscoped_blob_name] = np.stack(
                            [blobs[unscoped_blob_name]] * num_inflate,
                            axis=2) / float(num_inflate)
                    else:
                        logger.info(
                            ('{:s} loaded from weights file into: {:s}' +
                                    ' {}').format(
                                unscoped_blob_name, scoped_blob_name,
                                ws_blob.shape))

                    assert ws_blob.shape == blobs[unscoped_blob_name].shape, \
                        ('Workspace blob {} with shape {} does not match '
                         'weights file shape {}').format(
                            unscoped_blob_name, ws_blob.shape,
                            blobs[unscoped_blob_name].shape)
                data = blobs[unscoped_blob_name].astype(np.float32, copy=False)
                workspace.FeedBlob(scoped_blob_name, data)

    # hack fix: load and broadcast lr to all gpus
    for i in range(cfg.NUM_GPUS):
        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, i)):
            workspace.FeedBlob(
                'gpu_{}/lr'.format(i), np.array(prev_lr, dtype=np.float32))

    return model_iter, prev_lr
def initialize_master_xpu_model_params(model, weights_file, opts, reset_epoch):
    log.info("Initializing model params from file: {}".format(weights_file))
    with open(weights_file, 'r') as fopen:
        blobs = pickle.load(fopen)
    if 'blobs' in blobs:
        blobs = blobs['blobs']

    start_epoch = 0
    best_metric = float('-inf')
    if 'epoch' in blobs:
        log.info('epoch {} is found in model file'.format(blobs['epoch']))
        if not reset_epoch:
            start_epoch = blobs['epoch']
        else:
            log.info('Reset epoch')
    else:
        log.info('no epoch is found in model file')
    lr = opts['model_param']['base_learning_rate']
    if 'lr' in blobs:
        lr = blobs['lr']
    if 'best_metric' in blobs and not reset_epoch:
        best_metric = blobs['best_metric']

    if model is not None:
        log.info('initialize model parameters using weights file: {}'.format(
            weights_file
        ))
        ws_blobs = workspace.Blobs()
        unscoped_blob_names = OrderedDict()
        for blob in model.GetAllParams():
            unscoped_blob_names[unscope_name(str(blob))] = True
        root_xpu_id = opts['distributed']['first_xpu_id']
        device = opts['distributed']['device']
        caffe2_pb2_DEVICE =\
            caffe2_pb2.CUDA if opts['distributed']['device'] == 'gpu'\
            else caffe2_pb2.CPU
        with core.NameScope('{}_{}'.format(device, root_xpu_id)):
            with core.DeviceScope(core.DeviceOption(caffe2_pb2_DEVICE, 0)):
                for unscoped_blob_name in unscoped_blob_names.keys():
                    scoped_blob_name = scoped_name(unscoped_blob_name)
                    if unscoped_blob_name not in blobs:
                        log.info('{:s} not found'.format(unscoped_blob_name))
                        continue
                    log.info(
                        '{:s} loaded from weights file into: {:s}'.format(
                            unscoped_blob_name, scoped_blob_name
                        )
                    )
                    if scoped_blob_name in ws_blobs:
                        ws_blob = workspace.FetchBlob(scoped_blob_name)
                        if not ws_blob.shape == blobs[unscoped_blob_name].shape:
                            log.info(
                                ('Workspace blob {} with shape {} does '
                                    'not match weights file shape {}').format(
                                            unscoped_blob_name, ws_blob.shape,
                                            blobs[unscoped_blob_name].shape)
                            )
                        else:
                            workspace.FeedBlob(
                                scoped_blob_name,
                                blobs[unscoped_blob_name].astype(
                                    np.float32, copy=False))
    else:
        log.info('Skip initializing model parameters from file: {}'.format(
            weights_file
        ))
    log.info('Complete initialize_master_xpu_model_params')
    return start_epoch, lr, best_metric
Exemplo n.º 13
0
    print("Model saved as " + full_init_net_out + " and " +
          full_predict_net_out)
    # [end-20181001-ben-add] #

    #
    # load model
    #
    blob = workspace.FetchBlob("data")

    plt.figure("Load data")
    plt.title("Batch of Testing Data")
    _ = visualize.NCHW.ShowMultiple(blob)

    # reset the workspace, to make sure the model is actually loaded
    print("The blobs in the workspace before reset: {}".format(
        workspace.Blobs()))
    workspace.ResetWorkspace(root_folder)
    print("The blobs in the workspace after reset: {}".format(
        workspace.Blobs()))  # all blobs are destroyed

    # load the predict net and verify the blobs
    predict_net = pe.prepare_prediction_net(
        os.path.join(root_folder, "mnist_model.minidb"), "minidb")
    print("The blobs in the workspace after loading the model: {}".format(
        workspace.Blobs()))

    # feed the previously saved data to the loaded model
    workspace.FeedBlob("data", blob)
    workspace.RunNetOnce(predict_net)
    softmax = workspace.FetchBlob("softmax")
Exemplo n.º 14
0
def main():
    # Initialize C2
    workspace.GlobalInit(
        ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1']
    )
    # Set up logging and load config options
    logger = setup_logging(__name__)
    logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO)
    args = parse_args()
    logger.info('Called with args:')
    logger.info(args)
    if args.cfg_file is not None:
        merge_cfg_from_file(args.cfg_file)
    if args.opts is not None:
        merge_cfg_from_list(args.opts)
    assert_and_infer_cfg()
    smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info()
    logger.info("cuda version : {}".format(cuda_ver))
    logger.info("cudnn version: {}".format(cudnn_ver))
    logger.info("nvidia-smi output:\n{}".format(smi_output))
    logger.info('Training with config:')
    logger.info(pprint.pformat(cfg))
    # Note that while we set the numpy random seed network training will not be
    # deterministic in general. There are sources of non-determinism that cannot
    # be removed with a reasonble execution-speed tradeoff (such as certain
    # non-deterministic cudnn functions).
    np.random.seed(cfg.RNG_SEED)
    # test model
    logger.info("creat test model ...")
    test_model = test_engine.initialize_model_from_cfg(cfg.TEST.WEIGHTS, gpu_id=0)
    logger.info("created test model ...")
    #cfg.TRAIN.IMS_PER_BATCH = 1
    train_data = DataLoader(root, "val_id.txt", cfg, test_model, is_train=False)
    # creat mode
    model, weights_file, start_iter, checkpoints = create_model(False, cfg, output_dir)
    # test blob
    print(workspace.Blobs())
    # create input blob
    blob_names = ['data_stage2']
    for gpu_id in range(cfg.NUM_GPUS):
        with c2_utils.NamedCudaScope(gpu_id):
            for blob_name in blob_names:
                workspace.CreateBlob(core.ScopedName(blob_name))
    # Override random weight initialization with weights from a saved model
    if weights_file:
        nu.initialize_gpu_from_weights_file(model, weights_file, gpu_id=0)
    # Even if we're randomly initializing we still need to synchronize
    # parameters across GPUs
    nu.broadcast_parameters(model)
    workspace.CreateNet(model.net)

    logger.info('Outputs saved to: {:s}'.format(os.path.abspath(output_dir)))

    logger.info("start test ...")
    save_root = os.path.join(output_dir, 'fusion')
    if not os.path.exists(save_root):
        os.makedirs(save_root)
    for cur_iter in range(10000):
        # feed data
        # print("{} iter starting feed data...".format(cur_iter))
        data_stage2, gt_label, meta = train_data.next_batch()
        '''# 
        print('input0-20 sungalsses max score:', np.max(data_stage2[0, 4, :, :]))
        print('input20-40 sungalsses max score:', np.max(data_stage2[0, 24, :, :]))
        print('input0-20 glovess max score:', np.max(data_stage2[0, 3, :, :]))
        print('input20-40 glovess max score:', np.max(data_stage2[0, 23, :, :]))
        #'''
        with c2_utils.NamedCudaScope(gpu_id):
            workspace.FeedBlob(core.ScopedName('data_stage2'), data_stage2)

        # print("workspace.RunNet(model.net.Proto().name)")
        with c2_utils.NamedCudaScope(gpu_id):
            workspace.RunNet(model.net.Proto().name)
            batch_probs = workspace.FetchBlob(core.ScopedName('probs_human_NCHW_stage2'))
            batch_probs = batch_probs.transpose((0, 2, 3, 1))
        assert len(meta) == batch_probs.shape[0]
        #print('batch_probs shape:', batch_probs.shape)
        for i in range(len(meta)):
            probs = cv2.resize(batch_probs[i], (meta[i]['width'], meta[i]['height']), interpolation=cv2.INTER_LINEAR)
            probs = probs.transpose((2,0,1))
            print('sungalsses max score:', np.max(probs[4, :, :]))
            print('glovess max score:', np.max(probs[3, :, :]))
            #print('probs shape:', probs.shape)
            cv2.imwrite(os.path.join(save_root, meta[i]['id']+'.png'), probs.argmax(0))
        print("prossed ", cur_iter)
Exemplo n.º 15
0
def LoadModelFromPickleFile(
    model,
    pkl_file,
    use_gpu=True,
    root_gpu_id=0,
    bgr2rgb=False,
    inflating=True,
    collapsing=True,
    center_init=False,
):

    ws_blobs = workspace.Blobs()
    with open(pkl_file, 'r') as fopen:
        blobs = pickle.load(fopen)

    if 'blobs' in blobs:
        blobs = blobs['blobs']

    unscoped_blob_names = OrderedDict()
    for blob in model.GetAllParams():
        unscoped_blob_names[unscope_name(str(blob))] = True

    if use_gpu:
        device_opt = caffe2_pb2.CUDA
    else:
        device_opt = caffe2_pb2.CPU

    with core.NameScope('gpu_{}'.format(root_gpu_id)):
        with core.DeviceScope(core.DeviceOption(device_opt, root_gpu_id)):
            for unscoped_blob_name in unscoped_blob_names.keys():
                scoped_blob_name = scoped_name(unscoped_blob_name)
                if unscoped_blob_name not in blobs:
                    log.info('{} not found'.format(unscoped_blob_name))
                    continue
                if scoped_blob_name in ws_blobs:
                    ws_blob = workspace.FetchBlob(scoped_blob_name)
                    target_shape = ws_blob.shape
                    if target_shape == blobs[unscoped_blob_name].shape:
                        log.info('copying {}'.format(unscoped_blob_name))
                        if bgr2rgb and unscoped_blob_name == 'conv1_w':
                            feeding_blob = FlipBGR2RGB(
                                blobs[unscoped_blob_name]
                            )
                        else:
                            feeding_blob = blobs[unscoped_blob_name]

                    elif ws_blob.ndim == 5:
                        # inflate from FC to 1x1x1 conv
                        if blobs[unscoped_blob_name].ndim == 2:
                            log.info('convolutionalize {}'.format(
                                unscoped_blob_name)
                            )
                            feeding_blob = blobs[unscoped_blob_name]
                            feeding_blob = np.reshape(
                                feeding_blob,
                                feeding_blob.shape + (1, 1, 1)
                            )
                        else:
                            # may need to inflate
                            if not inflating:
                                log.info(
                                    '{} found, but inflating is ignored'.format(
                                        unscoped_blob_name
                                    )
                                )
                                continue
                            feeding_blob = InflateBlob(
                                blobs[unscoped_blob_name],
                                target_shape,
                                unscoped_blob_name,
                                (0 if center_init else 1)
                            )

                    elif ws_blob.ndim == 4:
                        # may need to collapse
                        if not collapsing:
                            log.info(
                                '{} found, but collapsing is ignored'.format(
                                    unscoped_blob_name
                                )
                            )
                            continue
                        feeding_blob = CollapseBlob(
                            blobs[unscoped_blob_name],
                            target_shape,
                            unscoped_blob_name
                        )
                    # either copy, inflate, or collapse blob
                    workspace.FeedBlob(
                        scoped_blob_name,
                        feeding_blob.astype(np.float32, copy=False)
                    )
Exemplo n.º 16
0
        nesterov=1,
        policy='poly',
        power=1.,
        max_iter=MAX_ITER,
    )

    # initialization
    workspace.RunNetOnce(model.param_init_net)
    workspace.CreateNet(model.net)
    print("hello foo")

    # ================= DEBUG PRINT =======================
    # print(model.net.Proto())

    # print(model.param_init_net.Proto())

    # i = 0
    # for param in model.param_to_grad:
    #     print("{} : {}".format(i , param))
    #     i += 1

    # i = 1
    # for param in model.params:
    #     print("{} : {}".format(i , param))
    #     i += 1

    i = 1
    for blob in workspace.Blobs():
        print("{} : {}".format(i, blob))
        i += 1
Exemplo n.º 17
0
# Let's show all plots inline.

# You might see a warning saying that caffe2 does not have GPU support. That means you are running a CPU-only build. Don't be alarmed - anything CPU is still runnable without problem.

# ## Workspaces
#
# Let's cover workspaces first, where all the data reside.
#
# If you are familiar with Matlab, workspace consists of blobs you create and store in memory. For now, consider a blob to be a N-dimensional Tensor similar to numpy's ndarray, but is contiguous. Down the road, we will show you that a blob is actually a typed pointer that can store any type of C++ objects, but Tensor is the most common type stored in a blob. Let's show what the interface looks like.
#
# `Blobs()` prints out all existing blobs in the workspace.
# `HasBlob()` queries if a blob exists in the workspace. For now, we don't have anything yet.

# In[ ]:

print("Current blobs in the workspace: {}".format(workspace.Blobs()))
print("Workspace has blob 'X'? {}".format(workspace.HasBlob("X")))

# We can feed blobs into the workspace using `FeedBlob()`.

# In[3]:

X = np.random.randn(2, 3).astype(np.float32)
print("Generated X from numpy:\n{}".format(X))
workspace.FeedBlob("X", X)

# Now, let's take a look what blobs there are in the workspace.

# In[4]:

print("Current blobs in the workspace: {}".format(workspace.Blobs()))
Exemplo n.º 18
0
    merge_cfg_from_file(cfg_file)
    cfg.TRAIN.WEIGHTS = ''  # NOTE: do not download pretrained model weights
    cfg.TEST.WEIGHTS = weights_file
    cfg.NUM_GPUS = 1
    assert_and_infer_cfg()
    #according the cfg to bulid model
    model = initialize_model_from_cfg(weights_file)
    return model


if __name__ == '__main__':
    workspace.GlobalInit(['caffe2', '--caffe2_log_level=0'])
    args = parse_args()
    model = get_model(args.cfg, args.wts)
    img = cv2.imread(args.img)
    #im_scale = im_conv_body_only(model,img,cfg.TEST.SCALE, cfg.TEST.MAX_SIZE)
    im_blob, im_scale, _im_info = blob_utils.get_image_blob(
        img, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE)
    with c2_utils.NamedCudaScope(0):
        #  workspace.FeedBlob(core.ScopedName('data'), im_blob)
        #  workspace.RunNet(model.net.Proto().name)
        #  blob = workplace.FetchBlob('rois')
        # print 1
        cls_b, _, _ = infer_engine.im_detect_all(model, img, None)
        blobs = workspace.Blobs()
        print blobs
        mask_logits = workspace.FetchBlob(core.ScopedName('mask_logits'))
        #print mask_logits
        print mask_logits.shape
    np.save('/data1/shuai/adas/code/mask_logits.npy', mask_logits)
Exemplo n.º 19
0
    def _compare(self, model, forward_only):
        # Store list of blobs that exist in the beginning
        workspace.RunNetOnce(model.param_init_net)
        init_ws = {k: workspace.FetchBlob(k) for k in workspace.Blobs()}

        # Run with executor
        for enable_executor in [0, 1]:
            self.enable_rnn_executor(model.net, enable_executor, forward_only)
            workspace.ResetWorkspace()

            # Reset original state
            for k, v in init_ws.items():
                workspace.FeedBlob(k, v)

            np.random.seed(10022015)
            ws = {}
            for j in range(len(self.Tseq)):
                input_shape = [self.Tseq[j], self.batch_size, self.input_dim]
                workspace.FeedBlob(
                    "input",
                    np.random.rand(*input_shape).astype(np.float32))
                workspace.FeedBlob(
                    "target",
                    np.random.rand(self.Tseq[j], self.batch_size,
                                   self.hidden_dim).astype(np.float32))
                if j == 0:
                    workspace.CreateNet(model.net, overwrite=True)

                workspace.RunNet(model.net.Proto().name)

                # Store results for each iteration
                for k in workspace.Blobs():
                    ws[k + "." + str(j)] = workspace.FetchBlob(k)

            if enable_executor:
                rnn_exec_ws = ws
            else:
                non_exec_ws = ws

        # Test that all blobs are equal after running with executor
        # or without.
        self.assertEqual(list(non_exec_ws.keys()), list(rnn_exec_ws.keys()))

        mismatch = False
        for k in rnn_exec_ws.keys():
            non_exec_v = non_exec_ws[k]
            rnn_exec_v = rnn_exec_ws[k]
            if type(non_exec_v) is np.ndarray:
                if not np.allclose(non_exec_v, rnn_exec_v):
                    print("Mismatch: {}".format(k))
                    nv = non_exec_v.flatten()
                    rv = rnn_exec_v.flatten()
                    c = 0
                    for j in range(len(nv)):
                        if rv[j] != nv[j]:
                            print(j, rv[j], nv[j])
                            c += 1
                            if c == 10:
                                break

                    mismatch = True

        self.assertFalse(mismatch)
Exemplo n.º 20
0
workspace.RunNetOnce(c2_net.param_init_net)
workspace.CreateNet(c2_net.net)

# load pretrained weights
wts = pickle.load(open('pretrained/i3d_baseline_32x2_IN_pretrain_400k.pkl',
                       'rb'),
                  encoding='latin')['blobs']
for key in wts:
    if type(wts[key]) == np.ndarray:
        workspace.FeedBlob(key, wts[key])

workspace.FeedBlob('data', data)
workspace.RunNet(c2_net.net.Proto().name)

c2_blobs = {key: workspace.FetchBlob(key) for key in workspace.Blobs()}

#-----------------------------------------------------------------------------------------------#
torch.backends.cudnn.enabled = False
from models import resnet

data = torch.from_numpy(data).cuda()
pth_net = resnet.i3_res50(num_classes=400).cuda().eval()


def hook(module, input, output):
    setattr(module, "_value_hook", output)


for name, module in pth_net.named_modules():
    module.register_forward_hook(hook)
Exemplo n.º 21
0
    def test_lstm_extract_predictor_net(self):
        model = ModelHelper(name="lstm_extract_test")

        with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU, 0)):
            output, _, _, _ = rnn_cell.LSTM(
                model=model,
                input_blob="input",
                seq_lengths="seqlengths",
                initial_states=("hidden_init", "cell_init"),
                dim_in=20,
                dim_out=40,
                scope="test",
                drop_states=True,
                return_last_layer_only=True,
            )
        # Run param init net to get the shapes for all inputs
        shapes = {}
        workspace.RunNetOnce(model.param_init_net)
        for b in workspace.Blobs():
            shapes[b] = workspace.FetchBlob(b).shape

        # But export in CPU
        (predict_net, export_blobs) = ExtractPredictorNet(
            net_proto=model.net.Proto(),
            input_blobs=["input"],
            output_blobs=[output],
            device=core.DeviceOption(caffe2_pb2.CPU, 1),
        )

        # Create the net and run once to see it is valid
        # Populate external inputs with correctly shaped random input
        # and also ensure that the export_blobs was constructed correctly.
        workspace.ResetWorkspace()
        shapes['input'] = [10, 4, 20]
        shapes['cell_init'] = [1, 4, 40]
        shapes['hidden_init'] = [1, 4, 40]

        print(predict_net.Proto().external_input)
        self.assertTrue('seqlengths' in predict_net.Proto().external_input)
        for einp in predict_net.Proto().external_input:
            if einp == 'seqlengths':
                workspace.FeedBlob("seqlengths",
                                   np.array([10] * 4, dtype=np.int32))
            else:
                workspace.FeedBlob(
                    einp,
                    np.zeros(shapes[einp]).astype(np.float32),
                )
                if einp != 'input':
                    self.assertTrue(einp in export_blobs)

        print(str(predict_net.Proto()))
        self.assertTrue(workspace.CreateNet(predict_net.Proto()))
        self.assertTrue(workspace.RunNet(predict_net.Proto().name))

        # Validate device options set correctly for the RNNs
        import google.protobuf.text_format as protobuftx
        for op in predict_net.Proto().op:
            if op.type == 'RecurrentNetwork':
                for arg in op.arg:
                    if arg.name == "step_net":
                        step_proto = caffe2_pb2.NetDef()
                        protobuftx.Merge(arg.s, step_proto)
                        for step_op in step_proto.op:
                            self.assertEqual(0,
                                             step_op.device_option.device_type)
                            self.assertEqual(1,
                                             step_op.device_option.cuda_gpu_id)
                    elif arg.name == 'backward_step_net':
                        self.assertEqual("", arg.s)
Exemplo n.º 22
0
def initialize_gpu_from_weights_file(model, weights_file, gup_id=0):
    logger.info('Loading weights from: {}'.format(weights_file))
    ws_blobs = workspace.Blobs()
    src_blobs = load_object(weights_file)

    if 'cfg' in src_blobs:
        saved_cfg = load_cfg(src_blobs['cfg'])
        configure_bbox_reg_weights(model, saved_cfg)
    if 'blobs' in src_blobs:
        src_blobs = src_blobs['blobs']

    unscoped_para_names = OrderedDict()
    for blob in model.params:
        unscoped_para_names[c2_utils.UnscopeName(str(blob))] = True
    with c2_utils.NamedCudaScope(gup_id):
        for unscoped_para_name in unscoped_para_names.keys():
            if (unscoped_para_name.find(']_') >= 0
                    and unscoped_para_name not in src_blobs):
                # Special case for sharing initialization from a pretrained
                # model:
                # If a blob named '_[xyz]_foo' is in model.params and not in
                # the initialization blob dictionary, then load source blob
                # 'foo' into destination blob '_[xyz]_foo'
                src_name = unscoped_para_name[unscoped_para_name.find((']_') +
                                                                      2)]
            else:
                src_name = unscoped_para_name
            if src_name not in src_blobs:
                logger.info('{:s} not found.'.format(src_name))
                continue
            dst_name = core.ScopedName(unscoped_para_name)
            has_momentum = src_name + '_momentum' in src_blobs
            has_momentum_str = ' [+ momentum] ' if has_momentum else ''
            logger.info(
                '{:s}{:} loaded form weights file into {:s}: {}'.format(
                    src_name, has_momentum_str, dst_name,
                    src_blobs[src_name].shape))
            if dst_name in ws_blobs:
                # if the blob is already in the workspace, make sure that it matches
                # the shape of the loaded blob
                ws_blob = workspace.FetchBlob(dst_name)
                assert ws_blob.shape == src_blobs[src_name].shape, \
                    ('Workspace blob {} with shape {} does not match '
                     'weights file shape {}').format(
                    src_name,
                    ws_blob.shape,
                    src_blobs[src_name].shape)
            workspace.FeedBlob(
                dst_name, src_blobs[src_name].astype(np.float32, copy=False))
            if has_momentum:
                workspace.FeedBlob(
                    dst_name + '_momentum',
                    src_blobs[src_name + '_momentum'].astype(np.float32,
                                                             copy=False))

    for src_name in src_blobs.keys():
        if (src_name not in unscoped_para_names
                and not src_name.endswith('_momentum')
                and src_blobs[src_name] is not None):
            with c2_utils.CpuScope():
                workspace.FeedBlob('__presever__/{:s}'.format(src_name),
                                   src_blobs[src_name])
                logger.info(
                    '{:s} preserved in workspace (unused)'.format(src_name))
Exemplo n.º 23
0
    def test_meta_net_def_net_runs(self):
        for param, value in self.params.items():
            workspace.FeedBlob(param, value)

        extra_init_net = core.Net('extra_init')
        extra_init_net.ConstantFill('data', 'data', value=1.0)
        pem = pe.PredictorExportMeta(
            predict_net=self.predictor_export_meta.predict_net,
            parameters=self.predictor_export_meta.parameters,
            inputs=self.predictor_export_meta.inputs,
            outputs=self.predictor_export_meta.outputs,
            shapes=self.predictor_export_meta.shapes,
            extra_init_net=extra_init_net,
            net_type='dag',
        )

        db_type = 'minidb'
        db_file = tempfile.NamedTemporaryFile(
            delete=False, suffix=".{}".format(db_type))
        pe.save_to_db(
            db_type=db_type,
            db_destination=db_file.name,
            predictor_export_meta=pem)

        workspace.ResetWorkspace()

        meta_net_def = pe.load_from_db(
            db_type=db_type,
            filename=db_file.name,
        )

        self.assertTrue("data" not in workspace.Blobs())
        self.assertTrue("y" not in workspace.Blobs())

        init_net = pred_utils.GetNet(meta_net_def, pc.PREDICT_INIT_NET_TYPE)

        # 0-fills externalblobs blobs and runs extra_init_net
        workspace.RunNetOnce(init_net)

        self.assertTrue("data" in workspace.Blobs())
        self.assertTrue("y" in workspace.Blobs())

        print(workspace.FetchBlob("data"))
        np.testing.assert_array_equal(
            workspace.FetchBlob("data"), np.ones(shape=(1, 5)))
        np.testing.assert_array_equal(
            workspace.FetchBlob("y"), np.zeros(shape=(1, 10)))

        # Load parameters from DB
        global_init_net = pred_utils.GetNet(meta_net_def,
                                            pc.GLOBAL_INIT_NET_TYPE)
        workspace.RunNetOnce(global_init_net)

        # Run the net with a reshaped input and verify we are
        # producing good numbers (with our custom implementation)
        workspace.FeedBlob("data", np.random.randn(2, 5).astype(np.float32))
        predict_net = pred_utils.GetNet(meta_net_def, pc.PREDICT_NET_TYPE)
        self.assertEqual(predict_net.type, 'dag')
        workspace.RunNetOnce(predict_net)
        np.testing.assert_array_almost_equal(
            workspace.FetchBlob("y"),
            workspace.FetchBlob("data").dot(self.params["y_w"].T) +
            self.params["y_b"])
Exemplo n.º 24
0
loss = np.zeros(total_iters)
# Now, we will manually run the network for 200 iterations.

data_array = []
drop1_array = []
fc2_array = []

for i in range(total_iters):
    #for i in range(1):
    workspace.RunNet(train_model.net)
    accuracy[i] = workspace.FetchBlob('accuracy')
    loss[i] = workspace.FetchBlob('loss')
    print('iter {0} loss = {1} '.format(i, loss[i]))
    print('         accuracy = {0} '.format(accuracy[i]))

    print("Current blobs in the workspace: {}".format(workspace.Blobs()))

    print("Workspace has blob 'data'? {}".format(workspace.HasBlob("data")))
    #print("Fetched data:\n{}".format(workspace.FetchBlob("data")))
    data_array.append(workspace.FetchBlob("data"))
    print('data_array', np.shape(data_array))

    print("Workspace has blob 'drop1'? {}".format(workspace.HasBlob("drop1")))
    #print("Fetched drop1:\n{}".format(workspace.FetchBlob("drop1")))
    drop1_array.append(workspace.FetchBlob("drop1"))
    print('drop1_array', np.shape(drop1_array))

    print("Workspace has blob 'fc2'? {}".format(workspace.HasBlob("fc2")))
    #print("Fetched fc2:\n{}".format(workspace.FetchBlob("fc2")))
    fc2_array.append(workspace.FetchBlob("fc2"))
    print('fc2_array', np.shape(fc2_array))
Exemplo n.º 25
0
    def from_caffe2(self, init_net, predict_net):
        """Construct Relay expression from caffe2 graph.

        Parameters
        ----------
        init_net : protobuf object
        predict_net : protobuf object

        Returns
        -------
        mod : tvm.relay.Module
            The module that optimizations will be performed on.

        params : dict
            A dict of name: tvm.nd.array pairs, used as pretrained weights
        """
        from caffe2.python import workspace
        workspace.RunNetOnce(init_net)

        # Input
        input_name = predict_net.op[0].input[0]

        # Params
        self._params = {}
        used_blobs = set()
        for c2_op in predict_net.op:
            for i in c2_op.input:
                used_blobs.add(i)
        for blob in workspace.Blobs():
            if blob in used_blobs and blob != input_name:
                self._params[blob] = _nd.array(workspace.FetchBlob(blob))

        # Variables
        self._nodes = {}
        for blob in predict_net.external_input:
            if blob in self._params:
                self._nodes[blob] = new_var(blob,
                                            shape=self._params[blob].shape,
                                            dtype=self._params[blob].dtype)
            else:
                shape = self._shape[blob] if blob in self._shape else ()
                if isinstance(self._dtype, dict) and blob in self._dtype:
                    dtype = str(self._dtype[blob])
                elif isinstance(self._dtype, str):
                    dtype = self._dtype
                else:
                    dtype = "float32"
                self._nodes[blob] = new_var(blob, shape=shape, dtype=dtype)

        # Ops
        for c2_op in predict_net.op:
            for blob in c2_op.output:
                self._ops[blob] = c2_op

        for c2_op in predict_net.op:
            self._process_op(c2_op)

        # Outputs
        out = []
        for blob in predict_net.external_output:
            out.append(self._nodes[blob])

        if len(out) > 1:
            outputs = _expr.Tuple(out)
        else:
            outputs = out[0]

        func = _expr.Function(ir_pass.free_vars(outputs), outputs)
        self._mod[self._mod.entry_func] = func

        return self._mod, self._params
Exemplo n.º 26
0
final_image = transposed_image

print("Shape of final_image: " + str(np.array(final_image).shape))

with open(MODEL_ROOT + "/init_net.pb", "rb") as f:
    init_net = f.read()
with open(MODEL_ROOT + "/predict_net.pb", "rb") as f:
    predict_net = f.read()

workspace.ResetWorkspace()

blob_name = model_props[MODEL].blob_name
workspace.FeedBlob(blob_name, final_image)

print("The blobs in the workspace after FeedBlob: {}".format(
    workspace.Blobs()))

# Create a predictor using the loaded model.
p = workspace.Predictor(init_net, predict_net)

start = time.time()
for i in range(0, args.iterations):
    results = p.run([final_image])
end = time.time()
if args.time:
    print("Wall time per iteration (s): {:0.4f}".format(
        (end - start) / args.iterations))

max_idx = np.argmax(results[0][0])
sum_probability = sum(results[0][0])
Exemplo n.º 27
0
    def InferTensorRunAndCompare(self, model):
        '''
        Runs shape inference, and then the model to check
        that the inferred shapes agree with the actual ones
        '''
        (shapes, types) = workspace.InferShapesAndTypes(
            [model.param_init_net, model.net], )

        # .. Create net
        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(model.net, True)
        workspace.RunNet(model.Proto().name)

        # ... and then check the shapes mismatch
        correct_shapes = {}
        correct_types = {}
        for b in workspace.Blobs():
            arr = workspace.FetchBlob(b)
            correct_shapes[b] = arr.shape
            if type(arr) is np.ndarray:
                if arr.dtype == np.dtype('float32'):
                    correct_types[b] = caffe2_pb2.TensorProto.FLOAT
                elif arr.dtype == np.dtype('int32'):
                    correct_types[b] = caffe2_pb2.TensorProto.INT32
                # BYTE
                # STRING
                elif arr.dtype == np.dtype('bool'):
                    correct_types[b] = caffe2_pb2.TensorProto.BOOL
                elif arr.dtype == np.dtype('uint8'):
                    correct_types[b] = caffe2_pb2.TensorProto.UINT8
                elif arr.dtype == np.dtype('int8'):
                    correct_types[b] = caffe2_pb2.TensorProto.INT8
                elif arr.dtype == np.dtype('uint16'):
                    correct_types[b] = caffe2_pb2.TensorProto.UINT16
                elif arr.dtype == np.dtype('int16'):
                    correct_types[b] = caffe2_pb2.TensorProto.INT16
                elif arr.dtype == np.dtype('int64'):
                    correct_types[b] = caffe2_pb2.TensorProto.INT64
                elif arr.dtype == np.dtype('float16'):
                    correct_types[b] = caffe2_pb2.TensorProto.FLOAT16
                elif arr.dtype == np.dtype('float64'):
                    correct_types[b] = caffe2_pb2.TensorProto.DOUBLE
                else:
                    correct_types[b] = "unknown {}".format(arr.dtype)
            else:
                correct_types[b] = str(type(arr))

        for b in correct_shapes:
            self.assertTrue(
                np.array_equal(
                    np.array(shapes[b]).astype(np.int32),
                    np.array(correct_shapes[b]).astype(np.int32)),
                "Shape {} mismatch: {} vs. {}".format(b, shapes[b],
                                                      correct_shapes[b]))
            self.assertFalse(
                b not in types and b in correct_types,
                "Type for {} not defined".format(b),
            )
            self.assertEqual(
                types[b], correct_types[b],
                "Type {} mismatch: {} vs. {}".format(
                    b,
                    types[b],
                    correct_types[b],
                ))
Exemplo n.º 28
0
from caffe2.python.cnn import CNNModelHelper

import unittest
import numpy as np

m, k, n = (1, 28 * 28, 10)  # [m][k] * [k][n] = [m][n]
x = np.random.rand(m, k).astype(np.float32) - 0.5  # x = m*k 2D tensor

workspace.ResetWorkspace()  # clear workspace
workspace.FeedBlob("x", x)  # feed x as a blob
model = ModelHelper(name="test_model")  # create model

model.Proto()  # print model's protocol buffer before add operator
brew.fc(
    model, "x", "y", k, n
)  # fully connected NN, weight = k*n 2D tensor /// bias, y = m*n 2D tensor
brew.softmax(model, "y", "z")
model.Validate()
model.Proto()  # print model's protocol buffer after add operator

workspace.RunNetOnce(
    model.param_init_net)  # init [y_w(weight), y_b(bias) (randomize)]
# weight is 2D array, bias is 1D array
workspace.Blobs()  # print workspace's blobs
# workspace.FetchBlob("y_w")
# workspace.FetchBlob("y_b")

workspace.RunNetOnce(model.net)
# y = workspace.FetchBlob("y")
# z = workspace.FetchBlob("z")
Exemplo n.º 29
0
    def load_save(self, src_device_type, src_gpu_id,
                  dst_device_type, dst_gpu_id):
        workspace.ResetWorkspace()
        dtypes = [np.float16, np.float32, np.float64, np.bool, np.int8,
                  np.int16, np.int32, np.int64, np.uint8, np.uint16]
        arrays = [np.random.permutation(6).reshape(2, 3).astype(T)
                  for T in dtypes]
        src_device_option = core.DeviceOption(
            src_device_type, src_gpu_id)
        dst_device_option = core.DeviceOption(
            dst_device_type, dst_gpu_id)

        for i, arr in enumerate(arrays):
            self.assertTrue(workspace.FeedBlob(str(i), arr, src_device_option))
            self.assertTrue(workspace.HasBlob(str(i)))

        try:
            # Saves the blobs to a local db.
            tmp_folder = tempfile.mkdtemp()
            op = core.CreateOperator(
                "Save",
                [str(i) for i in range(len(arrays))], [],
                absolute_path=1,
                db=os.path.join(tmp_folder, "db"), db_type=self._db_type)
            self.assertTrue(workspace.RunOperatorOnce(op))

            # Reset the workspace so that anything we load is surely loaded
            # from the serialized proto.
            workspace.ResetWorkspace()
            self.assertEqual(len(workspace.Blobs()), 0)

            def _LoadTest(keep_device, device_type, gpu_id, blobs, loadAll):
                """A helper subfunction to test keep and not keep."""
                op = core.CreateOperator(
                    "Load",
                    [], blobs,
                    absolute_path=1,
                    db=os.path.join(tmp_folder, "db"), db_type=self._db_type,
                    device_option=dst_device_option,
                    keep_device=keep_device,
                    load_all=loadAll)
                self.assertTrue(workspace.RunOperatorOnce(op))
                for i, arr in enumerate(arrays):
                    self.assertTrue(workspace.HasBlob(str(i)))
                    fetched = workspace.FetchBlob(str(i))
                    self.assertEqual(fetched.dtype, arr.dtype)
                    np.testing.assert_array_equal(
                        workspace.FetchBlob(str(i)), arr)
                    proto = caffe2_pb2.BlobProto()
                    proto.ParseFromString(workspace.SerializeBlob(str(i)))
                    self.assertTrue(proto.HasField('tensor'))
                    self.assertEqual(proto.tensor.device_detail.device_type,
                                     device_type)
                    if device_type == caffe2_pb2.CUDA:
                        self.assertEqual(proto.tensor.device_detail.cuda_gpu_id,
                                         gpu_id)

            blobs = [str(i) for i in range(len(arrays))]
            # Load using device option stored in the proto, i.e.
            # src_device_option
            _LoadTest(1, src_device_type, src_gpu_id, blobs, 0)
            # Load again, but this time load into dst_device_option.
            _LoadTest(0, dst_device_type, dst_gpu_id, blobs, 0)
            # Load back to the src_device_option to see if both paths are able
            # to reallocate memory.
            _LoadTest(1, src_device_type, src_gpu_id, blobs, 0)
            # Reset the workspace, and load directly into the dst_device_option.
            workspace.ResetWorkspace()
            _LoadTest(0, dst_device_type, dst_gpu_id, blobs, 0)

            # Test load all which loads all blobs in the db into the workspace.
            workspace.ResetWorkspace()
            _LoadTest(1, src_device_type, src_gpu_id, [], 1)
            # Load again making sure that overwrite functionality works.
            _LoadTest(1, src_device_type, src_gpu_id, [], 1)
            # Load again with different device.
            _LoadTest(0, dst_device_type, dst_gpu_id, [], 1)
            workspace.ResetWorkspace()
            _LoadTest(0, dst_device_type, dst_gpu_id, [], 1)
        finally:
            # clean up temp folder.
            try:
                shutil.rmtree(tmp_folder)
            except OSError as e:
                if e.errno != errno.ENOENT:
                    raise
Exemplo n.º 30
0
def main():
    workspace.GlobalInit(['caffe2', '--caffe2_log_level=0'])
    args = parse_args()
    logger.info('Called with args:')
    logger.info(args)

    # with open(args.init_net_path) as f:
    # init_net = f.read()
    # with open(args.predict_net_path) as f:
    # predict_net = f.read()
    # p = workspace.Predictor(init_net, predict_net)
    # img = np.zeros((1,3,256,256), dtype=np.float32)
    # workspace.FeedBlob('data', img)
    # results = p.run({'data': img})

    init_def = caffe2_pb2.NetDef()
    with open(args.init_net_path, 'r') as f:
        init_def.ParseFromString(f.read())
        # init_def.device_option.CopyFrom(device_options)
    net_def = caffe2_pb2.NetDef()
    with open(args.predict_net_path, 'r') as f:
        net_def.ParseFromString(f.read())
        # net_def.device_option.CopyFrom(device_options)

    # model = model_helper.ModelHelper(arg_scope=arg_scope)
    # model = cnn.CNNModelHelper()
    model = detector.DetectionModelHelper(name=net_def.name,
                                          train=True,
                                          num_classes=1000,
                                          init_params=True)
    predict_net = core.Net(net_def)
    init_net = core.Net(init_def)
    model.param_init_net.AppendNet(init_net)
    model.net.AppendNet(predict_net)
    model.params.extend([
        core.BlobReference(x) for x in predict_net.Proto().external_input
        if x != 'data'
    ])

    # add_training_operators(model, 'pred', 'label')

    blob_names = ['data', 'label']
    for gpu_id in range(1):
        with c2_utils.NamedCudaScope(gpu_id):
            for blob_name in blob_names:
                workspace.CreateBlob(core.ScopedName(blob_name))

    workspace.RunNetOnce(model.param_init_net)
    workspace.CreateNet(model.net, overwrite=True)

    out_file_name = os.path.join(args.out_dir, net_def.name + '.pkl')
    net_utils.save_model_to_weights_file(out_file_name, model)

    # workspace.CreateNet(init_def)
    # workspace.CreateNet(net_def)
    # workspace.RunNet(net_def)
    # workspace.RunNet(init_def)

    print(type(init_def))
    print(net_def.name)

    print(workspace.blobs)
    print(len(workspace.blobs))
    print(workspace.Blobs())