Exemplo n.º 1
0
def test_computational_performance(fnames, path_ROIs, n_processes):
    import os
    import cv2
    import glob
    import logging
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    import h5py
    from time import time

    try:
        cv2.setNumThreads(0)
    except:
        pass

    try:
        if __IPYTHON__:
            # this is used for debugging purposes only. allows to reload classes
            # when changed
            get_ipython().magic('load_ext autoreload')
            get_ipython().magic('autoreload 2')
    except NameError:
        pass

    import caiman as cm
    from caiman.motion_correction import MotionCorrect
    from caiman.utils.utils import download_demo, download_model
    from caiman.source_extraction.volpy.volparams import volparams
    from caiman.source_extraction.volpy.volpy import VOLPY
    from caiman.source_extraction.volpy.mrcnn import visualize, neurons
    import caiman.source_extraction.volpy.mrcnn.model as modellib
    from caiman.paths import caiman_datadir
    from caiman.summary_images import local_correlations_movie_offline
    from caiman.summary_images import mean_image
    from caiman.source_extraction.volpy.utils import quick_annotation
    from multiprocessing import Pool

    time_start = time()
    print('Start MOTION CORRECTION')

    # %%  Load demo movie and ROIs
    fnames = fnames
    path_ROIs = path_ROIs

    #%% dataset dependent parameters
    # dataset dependent parameters
    fr = 400  # sample rate of the movie

    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% start a cluster for parallel processing
    dview = Pool(n_processes)
    #dview = None
    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run correction
    mc.motion_correct(save_movie=True)

    time_mc = time() - time_start
    print(time_mc)
    print('START MEMORY MAPPING')

    # %% restart cluster to clean up memory
    dview.terminate()
    dview = Pool(n_processes)

    # %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap_join(mc.mmap_file,
                                    base_name='memmap_',
                                    add_to_mov=border_to_0,
                                    dview=dview,
                                    n_chunks=1000)  # exclude border

    time_mmap = time() - time_start - time_mc
    print('Start Segmentation')
    # %% SEGMENTATION
    # create summary images
    img = mean_image(mc.mmap_file[0], window=1000, dview=dview)
    img = (img - np.mean(img)) / np.std(img)
    Cn = local_correlations_movie_offline(mc.mmap_file[0],
                                          fr=fr,
                                          window=1500,
                                          stride=1500,
                                          winSize_baseline=400,
                                          remove_baseline=True,
                                          dview=dview).max(axis=0)
    img_corr = (Cn - np.mean(Cn)) / np.std(Cn)
    summary_image = np.stack([img, img, img_corr], axis=2).astype(np.float32)

    #%% three methods for segmentation
    methods_list = [
        'manual_annotation',  # manual annotation needs user to prepare annotated datasets same format as demo ROIs 
        'quick_annotation',  # quick annotation annotates data with simple interface in python
        'maskrcnn'
    ]  # maskrcnn is a convolutional network trained for finding neurons using summary images
    method = methods_list[0]
    if method == 'manual_annotation':
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]  # load ROIs

    elif method == 'quick_annotation':
        ROIs = quick_annotation(img_corr, min_radius=4, max_radius=10)

    elif method == 'maskrcnn':
        config = neurons.NeuronsConfig()

        class InferenceConfig(config.__class__):
            # Run detection on one image at a time
            GPU_COUNT = 1
            IMAGES_PER_GPU = 1
            DETECTION_MIN_CONFIDENCE = 0.7
            IMAGE_RESIZE_MODE = "pad64"
            IMAGE_MAX_DIM = 512
            RPN_NMS_THRESHOLD = 0.7
            POST_NMS_ROIS_INFERENCE = 1000

        config = InferenceConfig()
        config.display()
        model_dir = os.path.join(caiman_datadir(), 'model')
        DEVICE = "/cpu:0"  # /cpu:0 or /gpu:0
        with tf.device(DEVICE):
            model = modellib.MaskRCNN(mode="inference",
                                      model_dir=model_dir,
                                      config=config)
        weights_path = download_model('mask_rcnn')
        model.load_weights(weights_path, by_name=True)
        results = model.detect([summary_image], verbose=1)
        r = results[0]
        ROIs = r['masks'].transpose([2, 0, 1])

        display_result = False
        if display_result:
            _, ax = plt.subplots(1, 1, figsize=(16, 16))
            visualize.display_instances(summary_image,
                                        r['rois'],
                                        r['masks'],
                                        r['class_ids'], ['BG', 'neurons'],
                                        r['scores'],
                                        ax=ax,
                                        title="Predictions")

    time_seg = time() - time_mmap - time_mc - time_start
    print('Start SPIKE EXTRACTION')

    # %% restart cluster to clean up memory
    dview.terminate()
    dview = Pool(n_processes, maxtasksperchild=1)

    # %% parameters for trace denoising and spike extraction
    fnames = fname_new  # change file
    ROIs = ROIs  # region of interests
    index = list(range(len(ROIs)))  # index of neurons
    weights = None  # reuse spatial weights

    tau_lp = 5  # parameter for high-pass filter to remove photobleaching
    threshold = 4  # threshold for finding spikes, increase threshold to find less spikes
    contextSize = 35  # number of pixels surrounding the ROI to censor from the background PCA
    flip_signal = True  # Important! Flip signal or not, True for Voltron indicator, False for others

    opts_dict = {
        'fnames': fnames,
        'ROIs': ROIs,
        'index': index,
        'weights': weights,
        'tau_lp': tau_lp,
        'threshold': threshold,
        'contextSize': contextSize,
        'flip_signal': flip_signal
    }

    opts.change_params(params_dict=opts_dict)

    #%% Trace Denoising and Spike Extraction
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    # %% STOP CLUSTER and clean up log files
    #dview.terminate()
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

    time_ext = time() - time_mmap - time_mc - time_start - time_seg

    #%%
    print('file:' + fnames)
    print('number of processes' + str(n_processes))
    print(time_mc)
    print(time_mmap)
    print(time_seg)
    print(time_ext)
    time_list = [time_mc, time_mmap, time_seg, time_ext]

    return time_list
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %%  Load demo movie and ROIs
    fnames = download_demo(
        'demo_voltage_imaging.hdf5',
        'volpy')  # file path to movie file (will download if not present)
    path_ROIs = download_demo(
        'demo_voltage_imaging_ROIs.hdf5',
        'volpy')  # file path to ROIs file (will download if not present)
    file_dir = os.path.split(fnames)[0]

    #%% dataset dependent parameters
    # dataset dependent parameters
    fr = 400  # sample rate of the movie

    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the movie press q
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=40, magnification=4)

# %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run correction
    do_motion_correction = True
    if do_motion_correction:
        mc.motion_correct(save_movie=True)
    else:
        mc_list = [
            file for file in os.listdir(file_dir)
            if (os.path.splitext(os.path.split(fnames)[-1])[0] in file
                and '.mmap' in file)
        ]
        mc.mmap_file = [os.path.join(file_dir, mc_list[0])]
        print(f'reuse previously saved motion corrected file:{mc.mmap_file}')

# %% compare with original movie
    if display_images:
        m_orig = cm.load(fnames)
        m_rig = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate(
            [m_orig.resize(1, 1, ds_ratio),
             m_rig.resize(1, 1, ds_ratio)],
            axis=2)
        moviehandle.play(fr=40, q_max=99.5, magnification=4)  # press q to exit

# %% MEMORY MAPPING
    do_memory_mapping = True
    if do_memory_mapping:
        border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
        # you can include the boundaries of the FOV if you used the 'copy' option
        # during motion correction, although be careful about the components near
        # the boundaries

        # memory map the file in order 'C'
        fname_new = cm.save_memmap_join(
            mc.mmap_file,
            base_name='memmap_' +
            os.path.splitext(os.path.split(fnames)[-1])[0],
            add_to_mov=border_to_0,
            dview=dview)  # exclude border
    else:
        mmap_list = [
            file for file in os.listdir(file_dir)
            if ('memmap_' +
                os.path.splitext(os.path.split(fnames)[-1])[0]) in file
        ]
        fname_new = os.path.join(file_dir, mmap_list[0])
        print(f'reuse previously saved memory mapping file:{fname_new}')

# %% SEGMENTATION
# create summary images
    img = mean_image(mc.mmap_file[0], window=1000, dview=dview)
    img = (img - np.mean(img)) / np.std(img)

    gaussian_blur = False  # Use gaussian blur when there is too much noise in the video
    Cn = local_correlations_movie_offline(mc.mmap_file[0],
                                          fr=fr,
                                          window=fr * 4,
                                          stride=fr * 4,
                                          winSize_baseline=fr,
                                          remove_baseline=True,
                                          gaussian_blur=gaussian_blur,
                                          dview=dview).max(axis=0)
    img_corr = (Cn - np.mean(Cn)) / np.std(Cn)
    summary_images = np.stack([img, img, img_corr], axis=0).astype(np.float32)
    # save summary images which are used in the VolPy GUI
    cm.movie(summary_images).save(fnames[:-5] + '_summary_images.tif')
    fig, axs = plt.subplots(1, 2)
    axs[0].imshow(summary_images[0])
    axs[1].imshow(summary_images[2])
    axs[0].set_title('mean image')
    axs[1].set_title('corr image')

    #%% methods for segmentation
    methods_list = [
        'manual_annotation',  # manual annotations need prepared annotated datasets in the same format as demo_voltage_imaging_ROIs.hdf5 
        'maskrcnn',  # Mask R-CNN is a convolutional neural network trained for detecting neurons in summary images
        'gui_annotation'
    ]  # use VolPy GUI to correct outputs of Mask R-CNN or annotate new datasets

    method = methods_list[0]
    if method == 'manual_annotation':
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]

    elif method == 'maskrcnn':  # Important!! Make sure install keras before using mask rcnn.
        weights_path = download_model(
            'mask_rcnn'
        )  # also make sure you have downloaded the new weight. The weight was updated on Dec 1st 2020.
        ROIs = utils.mrcnn_inference(
            img=summary_images.transpose([1, 2, 0]),
            size_range=[5, 22],
            weights_path=weights_path,
            display_result=True
        )  # size parameter decides size range of masks to be selected
        cm.movie(ROIs).save(fnames[:-5] + 'mrcnn_ROIs.hdf5')

    elif method == 'gui_annotation':
        # run volpy_gui.py file in the caiman/source_extraction/volpy folder
        gui_ROIs = caiman_datadir() + '/example_movies/volpy/gui_roi.hdf5'
        with h5py.File(gui_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]

    fig, axs = plt.subplots(1, 2)
    axs[0].imshow(summary_images[0])
    axs[1].imshow(ROIs.sum(0))
    axs[0].set_title('mean image')
    axs[1].set_title('masks')

    # %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False,
                                                     maxtasksperchild=1)

    # %% parameters for trace denoising and spike extraction
    ROIs = ROIs  # region of interests
    index = list(range(len(ROIs)))  # index of neurons
    weights = None  # reuse spatial weights

    context_size = 35  # number of pixels surrounding the ROI to censor from the background PCA
    visualize_ROI = False  # whether to visualize the region of interest inside the context region
    flip_signal = True  # Important!! Flip signal or not, True for Voltron indicator, False for others
    hp_freq_pb = 1 / 3  # parameter for high-pass filter to remove photobleaching
    clip = 100  # maximum number of spikes to form spike template
    threshold_method = 'adaptive_threshold'  # adaptive_threshold or simple
    min_spikes = 10  # minimal spikes to be found
    pnorm = 0.5  # a variable deciding the amount of spikes chosen for adaptive threshold method
    threshold = 3  # threshold for finding spikes only used in simple threshold method, Increase the threshold to find less spikes
    do_plot = False  # plot detail of spikes, template for the last iteration
    ridge_bg = 0.01  # ridge regression regularizer strength for background removement, larger value specifies stronger regularization
    sub_freq = 20  # frequency for subthreshold extraction
    weight_update = 'ridge'  # ridge or NMF for weight update
    n_iter = 2  # number of iterations alternating between estimating spike times and spatial filters

    opts_dict = {
        'fnames': fname_new,
        'ROIs': ROIs,
        'index': index,
        'weights': weights,
        'context_size': context_size,
        'visualize_ROI': visualize_ROI,
        'flip_signal': flip_signal,
        'hp_freq_pb': hp_freq_pb,
        'clip': clip,
        'threshold_method': threshold_method,
        'min_spikes': min_spikes,
        'pnorm': pnorm,
        'threshold': threshold,
        'do_plot': do_plot,
        'ridge_bg': ridge_bg,
        'sub_freq': sub_freq,
        'weight_update': weight_update,
        'n_iter': n_iter
    }

    opts.change_params(params_dict=opts_dict)

    #%% TRACE DENOISING AND SPIKE DETECTION
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    #%% visualization
    display_images = True
    if display_images:
        print(np.where(
            vpy.estimates['locality'])[0])  # neurons that pass locality test
        idx = np.where(vpy.estimates['locality'] > 0)[0]
        utils.view_components(vpy.estimates, img_corr, idx)

#%% reconstructed movie
# note the negative spatial weights is cutoff
    if display_images:
        mv_all = utils.reconstructed_movie(vpy.estimates.copy(),
                                           fnames=mc.mmap_file,
                                           idx=idx,
                                           scope=(0, 1000),
                                           flip_signal=flip_signal)
        mv_all.play(fr=40)

#%% save the result in .npy format
    save_result = True
    if save_result:
        vpy.estimates['ROIs'] = ROIs
        vpy.estimates['params'] = opts
        save_name = f'volpy_{os.path.split(fnames)[1][:-5]}_{threshold_method}'
        np.save(os.path.join(file_dir, save_name), vpy.estimates)

# %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
Exemplo n.º 3
0
def run_volpy(fnames,
              options=None,
              do_motion_correction=True,
              do_memory_mapping=True,
              fr=400):
    #pass  # For compatibility between running under Spyder and the CLI

    # %%  Load demo movie and ROIs
    file_dir = os.path.split(fnames)[0]
    path_ROIs = [file for file in os.listdir(file_dir) if 'ROIs_gt' in file]
    if len(path_ROIs) > 0:
        path_ROIs = path_ROIs[0]
    #path_ROIs = '/home/nel/NEL-LAB Dropbox/NEL/Datasets/voltage_lin/peyman_golshani/ROIs.hdf5'

#%% dataset dependent parameters
# dataset dependent parameters
    fr = fr  # sample rate of the movie

    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run correction
    do_motion_correction = do_motion_correction
    if do_motion_correction:
        mc.motion_correct(save_movie=True)
    else:
        mc_list = [
            file for file in os.listdir(file_dir)
            if (os.path.splitext(os.path.split(fnames)[-1])[0] in file
                and '.mmap' in file)
        ]
        mc.mmap_file = [os.path.join(file_dir, mc_list[0])]
        print(f'reuse previously saved motion corrected file:{mc.mmap_file}')

# %% MEMORY MAPPING
    do_memory_mapping = do_memory_mapping
    if do_memory_mapping:
        border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
        # you can include the boundaries of the FOV if you used the 'copy' option
        # during motion correction, although be careful about the components near
        # the boundaries

        # memory map the file in order 'C'
        fname_new = cm.save_memmap_join(
            mc.mmap_file,
            base_name='memmap_' +
            os.path.splitext(os.path.split(fnames)[-1])[0],
            add_to_mov=border_to_0,
            dview=dview)  # exclude border
    else:
        mmap_list = [
            file for file in os.listdir(file_dir)
            if ('memmap_' +
                os.path.splitext(os.path.split(fnames)[-1])[0]) in file
        ]
        fname_new = os.path.join(file_dir, mmap_list[0])
        print(f'reuse previously saved memory mapping file:{fname_new}')

# %% SEGMENTATION
# create summary images
    img = mean_image(mc.mmap_file[0], window=1000, dview=dview)
    img = (img - np.mean(img)) / np.std(img)

    gaussian_blur = False  # Use gaussian blur when there is too much noise in the video
    Cn = local_correlations_movie_offline(mc.mmap_file[0],
                                          fr=fr,
                                          window=fr * 4,
                                          stride=fr * 4,
                                          winSize_baseline=fr,
                                          remove_baseline=True,
                                          gaussian_blur=gaussian_blur,
                                          dview=dview).max(axis=0)
    img_corr = (Cn - np.mean(Cn)) / np.std(Cn)
    summary_images = np.stack([img, img, img_corr], axis=0).astype(np.float32)
    # ! save summary image, it is used in GUI
    cm.movie(summary_images).save(fnames[:-5] + '_summary_images.tif')
    #plt.imshow(summary_images[0])
    #%% three methods for segmentation
    methods_list = [
        'manual_annotation',  # manual annotation needs user to prepare annotated datasets same format as demo ROIs 
        'gui_annotation',  # use gui to manually annotate neurons, but this is still under developing
        'maskrcnn'
    ]  # maskrcnn is a convolutional network trained for finding neurons using summary images
    method = methods_list[0]
    if method == 'manual_annotation':
        #with h5py.File(path_ROIs, 'r') as fl:
        #    ROIs = fl['mov'][()]
        ROIs = np.load(os.path.join(file_dir, path_ROIs))

    elif method == 'gui_annotation':
        # run volpy_gui file in the caiman/source_extraction/volpy folder
        # load the summary images you have just saved
        # save the ROIs to the video folder
        path_ROIs = caiman_datadir() + '/example_movies/volpy/gui_roi.hdf5'
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]

    elif method == 'maskrcnn':  # Important!! make sure install keras before using mask rcnn
        weights_path = download_model('mask_rcnn')
        weights_path = '/home/nel/Code/NEL_LAB/Mask_RCNN/logs/neurons20200824T1032/mask_rcnn_neurons_0040.h5'
        ROIs = utils.mrcnn_inference(
            img=summary_images.transpose([1, 2, 0]),
            size_range=[5, 100],
            weights_path=weights_path,
            display_result=True
        )  # size parameter decides size range of masks to be selected
        #np.save(os.path.join(file_dir, 'ROIs'), ROIs)
# %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False,
                                                     maxtasksperchild=1)

    # %% parameters for trace denoising and spike extraction
    ROIs = ROIs  # region of interests
    index = list(range(len(ROIs)))  # index of neurons
    weights = None  # reuse spatial weights

    context_size = 35  # number of pixels surrounding the ROI to censor from the background PCA
    flip_signal = True  # Important!! Flip signal or not, True for Voltron indicator, False for others
    hp_freq_pb = 1 / 3  # parameter for high-pass filter to remove photobleaching
    threshold_method = 'adaptive_threshold'  # 'simple' or 'adaptive_threshold'
    min_spikes = 30  # minimal spikes to be found
    threshold = 4  # threshold for finding spikes, increase threshold to find less spikes
    do_plot = False  # plot detail of spikes, template for the last iteration
    ridge_bg = 0.01  # ridge regression regularizer strength for background removement, larger value specifies stronger regularization
    sub_freq = 20  # frequency for subthreshold extraction
    weight_update = 'ridge'  # 'ridge' or 'NMF' for weight update
    n_iter = 2

    opts_dict = {
        'fnames': fname_new,
        'ROIs': ROIs,
        'index': index,
        'weights': weights,
        'context_size': context_size,
        'flip_signal': flip_signal,
        'hp_freq_pb': hp_freq_pb,
        'threshold_method': threshold_method,
        'min_spikes': min_spikes,
        'threshold': threshold,
        'do_plot': do_plot,
        'ridge_bg': ridge_bg,
        'sub_freq': sub_freq,
        'weight_update': weight_update,
        'n_iter': n_iter
    }

    opts.change_params(params_dict=opts_dict)

    if options is not None:
        print('using external options')
        opts.change_params(params_dict=options)
    else:
        print('not using external options')

#%% TRACE DENOISING AND SPIKE DETECTION
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    #%% visualization
    display_images = False
    if display_images:
        print(np.where(
            vpy.estimates['locality'])[0])  # neurons that pass locality test
        idx = np.where(vpy.estimates['locality'] > 0)[0]
        utils.view_components(vpy.estimates, img_corr, idx)

#%% reconstructed movie
# note the negative spatial weights is cutoff
    if display_images:
        mv_all = utils.reconstructed_movie(vpy.estimates,
                                           fnames=mc.mmap_file,
                                           idx=idx,
                                           scope=(0, 1000),
                                           flip_signal=flip_signal)
        mv_all.play(fr=40)

#%% save the result in .npy format
    save_result = True
    if save_result:
        vpy.estimates['ROIs'] = ROIs
        save_name = f'volpy_{os.path.split(fnames)[1][:-5]}_{opts.volspike["threshold_method"]}_{opts.volspike["threshold"]}_{opts.volspike["weight_update"]}_bg_{opts.volspike["ridge_bg"]}'
        np.save(os.path.join(file_dir, save_name), vpy.estimates)

# %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
Exemplo n.º 4
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %%  Load demo movie and ROIs
    fnames = download_demo(
        'demo_voltage_imaging.hdf5',
        'volpy')  # file path to movie file (will download if not present)
    path_ROIs = download_demo(
        'demo_voltage_imaging_ROIs.hdf5',
        'volpy')  # file path to ROIs file (will download if not present)

    #%% dataset dependent parameters
    # dataset dependent parameters
    fr = 400  # sample rate of the movie

    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the movie press q
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=40, magnification=6)

# %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run correction
    mc.motion_correct(save_movie=True)

    # %% compare with original movie
    if display_images:
        m_orig = cm.load(fnames)
        m_rig = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_rig.resize(1, 1, ds_ratio)
        ],
                                     axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=4)  # press q to exit

# %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap_join(mc.mmap_file,
                                    base_name='memmap_',
                                    add_to_mov=border_to_0,
                                    dview=dview)  # exclude border

    # %% SEGMENTATION
    # create summary images
    img = mean_image(mc.mmap_file[0], window=1000, dview=dview)
    img = (img - np.mean(img)) / np.std(img)

    gaussian_blur = False  # Use gaussian blur when the quality of corr image(Cn) is bad
    Cn = local_correlations_movie_offline(mc.mmap_file[0],
                                          fr=fr,
                                          window=fr * 4,
                                          stride=fr * 4,
                                          winSize_baseline=fr,
                                          remove_baseline=True,
                                          gaussian_blur=gaussian_blur,
                                          dview=dview).max(axis=0)
    img_corr = (Cn - np.mean(Cn)) / np.std(Cn)
    summary_image = np.stack([img, img, img_corr], axis=2).astype(np.float32)

    #%% three methods for segmentation
    methods_list = [
        'manual_annotation',  # manual annotation needs user to prepare annotated datasets same format as demo ROIs 
        'quick_annotation',  # quick annotation annotates data with simple interface in python
        'maskrcnn'
    ]  # maskrcnn is a convolutional network trained for finding neurons using summary images
    method = methods_list[0]
    if method == 'manual_annotation':
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]

    elif method == 'quick_annotation':
        ROIs = utils.quick_annotation(img, min_radius=4, max_radius=8)

    elif method == 'maskrcnn':  # Important!! make sure install keras before using mask rcnn
        weights_path = download_model('mask_rcnn')
        ROIs = utils.mrcnn_inference(img=summary_image,
                                     weights_path=weights_path,
                                     display_result=True)

# %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False,
                                                     maxtasksperchild=1)

    # %% parameters for trace denoising and spike extraction
    ROIs = ROIs  # region of interests
    index = list(range(len(ROIs)))  # index of neurons
    weights = None  # reuse spatial weights

    context_size = 35  # number of pixels surrounding the ROI to censor from the background PCA
    flip_signal = True  # Important!! Flip signal or not, True for Voltron indicator, False for others
    hp_freq_pb = 1 / 3  # parameter for high-pass filter to remove photobleaching
    threshold_method = 'simple'  # 'simple' or 'adaptive_threshold'
    min_spikes = 10  # minimal spikes to be found
    threshold = 3.5  # threshold for finding spikes, increase threshold to find less spikes
    do_plot = False  # plot detail of spikes, template for the last iteration
    ridge_bg = 0.001  # ridge regression regularizer strength for background removement
    sub_freq = 20  # frequency for subthreshold extraction
    weight_update = 'ridge'  # 'ridge' or 'NMF' for weight update

    opts_dict = {
        'fnames': fname_new,
        'ROIs': ROIs,
        'index': index,
        'weights': weights,
        'context_size': context_size,
        'flip_signal': flip_signal,
        'hp_freq_pb': hp_freq_pb,
        'threshold_method': threshold_method,
        'min_spikes': min_spikes,
        'threshold': threshold,
        'do_plot': do_plot,
        'ridge_bg': ridge_bg,
        'sub_freq': sub_freq,
        'weight_update': weight_update
    }

    opts.change_params(params_dict=opts_dict)

    #%% TRACE DENOISING AND SPIKE DETECTION
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    #%% visualization
    if display_images:
        print(np.where(
            vpy.estimates['locality'])[0])  # neurons that pass locality test
        idx = np.where(vpy.estimates['locality'] > 0)[0]
        utils.view_components(vpy.estimates, img_corr, idx)

#%% reconstructed movie
# note the negative spatial weights is cutoff
    if display_images:
        mv_all = utils.reconstructed_movie(vpy.estimates,
                                           fnames=mc.mmap_file,
                                           idx=idx,
                                           scope=(0, 1000),
                                           flip_signal=flip_signal)
        mv_all.play(fr=40)

# %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)