Exemplo n.º 1
0
def motion_correct(input_file, gsig, max_shifts, rigid_splits, save_movie,
                   nprocs):
    import matplotlib.pyplot as plt
    if input_file.endswith('mat'):
        tif = mc.handle_mat_file(input_file)
    elif input_file.endswith('tif') or input_file.endswith('tiff'):
        tif = input_file
    mc_params = dict(gSig_filt=[gsig] * 2,
                     max_shifts=[max_shifts] * 2,
                     splits_rig=rigid_splits,
                     save_movie=save_movie)
    dview = util.create_dview(n_procs=nprocs)
    corrected = mc.motion_correct(tif, mc_params, dview)
    mmapped = util.memmap_file(corrected.fname_tot_rig,
                               dview=dview,
                               basename=re.sub(r'\.tif$', '', tif))
    # remove unnecessary intermediate
    if isinstance(corrected.fname_tot_rig, (list, tuple)):
        os.remove(corrected.fname_tot_rig[0])
    else:
        os.remove(corrected.fname_tot_rig)

    Yr, dims, T = cm.load_memmap(mmapped)
    Y = Yr.T.reshape((T, ) + dims, order='F')
    cn_filt, pnr = cm.summary_images.correlation_pnr(Y[:3000,
                                                       max_shifts:-max_shifts,
                                                       max_shifts:-max_shifts],
                                                     gSig=gsig,
                                                     swap_dim=False)
    cm.utils.visualization.inspect_correlation_pnr(cn_filt, pnr)
    plt.savefig(re.sub(r'\.tif$', '', tif) + '-caiman-corr.png')
    cm.stop_server(dview=dview)
 def _start_cluster(self):
     if 'self.dview' in locals():
         cm.stop_server(dview=self.dview)
     print('Starting local cluster...', end=' ')
     self.c, self.dview, self.n_processes = cm.cluster.setup_cluster(
         backend='local', n_processes=None, single_thread=False)
     print('done.')
Exemplo n.º 3
0
def extract_pipeline(input_file, params, out_file, n_procs):
    assert input_file.endswith('mmap'), 'Input file needs to be a memmap file!'
    dir = os.path.dirname(input_file)
    if out_file is None:
        search = re.search('_d1_[0-9]{3}_d2_[0-9]{3}_d3', input_file)
        if search is not None:
            out_file = input_file[:search.start()] + '-extract.h5'
        else:
            out_file = os.path.splitext(input_file)[0] + '-extract.h5'
    if params is None:
        params = glob(join(os.path.dirname(input_file), '*caiman*yaml'))[0]
        # TODO: if no params are found use default params
    with open(params, 'r') as f:
        cnmf_options = yaml.load(f, yaml.Loader)
    dview = util.create_dview(n_procs=n_procs)
    ca_traces, masks, cnmf, dims = extract.extract(input_file,
                                                   cnmf_options,
                                                   dview=dview)
    with h5py.File(out_file, 'w') as f:
        f.create_dataset('ca', data=ca_traces, compression='lzf')
        f.create_dataset('masks', data=masks, compression='lzf')
    util.plot_neurons(ca_traces, masks, join(dir, 'caiman-neurons'), dims)
    del cnmf.dview
    with open(os.path.splitext(out_file)[0] + '-estimates.dill', 'wb') as f:
        dill.dump(cnmf.estimates, f)
    with open(os.path.splitext(out_file)[0] + '-cnmf.dill', 'wb') as f:
        dill.dump(cnmf, f)
    # cnmf.save(os.path.splitext(out_file)[0] + '-cnmf.h5')

    print('There are {} neurons, baby!'.format(ca_traces.shape[0]))
    cm.stop_server(dview=dview)
Exemplo n.º 4
0
def seeded_Caiman_wAgonia(data_path, opts, agonia_th):
    '''Run Caiman using as seeds the boxes detected with Agonia and save results
    Parameters
    ----------
    data_path : string
        path to folder containing the data
    opts : caiman object with the options for motion correction
    agonia_th : float
        threshold for detection confidence for each box'''
    data_name, median_projection, fnames, fname_new, results_caiman_path, boxes_path = get_files_names(
        data_path)

    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    #load frames in python format (T x X x Y)

    #%% restart cluster to clean up memory
    if 'dview' in locals():
        cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=12,
                                                     single_thread=False)

    # Load the boxes in the pickle file into the ROIs arrays.
    with open(boxes_path, 'rb') as f:
        cajas = pickle.load(f)
        f.close()
    cajas = cajas[cajas[:, 4] > agonia_th]

    #use the average size of the Agonia boxes as the cell size parameter for Caiman
    half_width = np.mean(cajas[:, 2] - cajas[:, 0]) / 2
    half_height = np.mean(cajas[:, 3] - cajas[:, 1]) / 2
    gSig = (half_width.astype(int), half_height.astype(int))
    opts_dict = {'gSig': gSig}
    opts.change_params(opts_dict)

    #Build masks with the Agonia boxes
    Ain = np.zeros((np.prod(images.shape[1:]), cajas.shape[0]), dtype=bool)
    for i, box in enumerate(cajas):
        frame = np.zeros(images.shape[1:])
        #note that the coordinates of the boxes are transpose with respect to Caiman objects
        frame[box[1].astype('int'):box[3].astype('int'),
              box[0].astype('int'):box[2].astype('int')] = 1
        Ain[:, i] = frame.flatten('F')

    #Run analysis
    cnm_seeded = cnmf.CNMF(n_processes, params=opts, dview=dview, Ain=Ain)
    try:
        print('initiating fit')
        cnm_seeded.fit(images)
        print('saving results')
        #cnm_seeded.estimates.detrend_df_f(quantileMin=50,frames_window=750,detrend_only=False)
        cnm_seeded.save(
            os.path.join(
                data_path,
                os.path.splitext(data_name[0])[0] + '_analysis_results.hdf5'))
    except:
        print('Tenemos un problema...')

    cm.stop_server(dview=dview)
Exemplo n.º 5
0
def caiman_motion_correct(fnames, opts):
    '''do the motion correction of the Caiman pipeline and save results.
    Parameters
    ----------
    fnames : string
        name of tiff movie
    opts : caiman object with the options for motion correction'''

    #%% start a cluster for parallel processing (if a cluster already exists it will be closed and a new session will be opened)
    if 'dview' in locals():
        cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # first we create a motion correction object with the parameters specified
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    mc.motion_correct(save_movie=True)
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file,
                               base_name='memmap_',
                               order='C',
                               border_to_0=border_to_0,
                               dview=dview)  # exclude borders
    cm.stop_server(dview=dview)
 def run_fake_expt(self):
     """
     Runs the loop over tiffs, chunked by tiff size.
     """
     tiff_list = self.make_tiff_groups()
     for tiff_group in tiff_list:
         self.do_next_group(tiff_group)
     #self.do_final_fit()
     cm.stop_server(dview=self.dview)
Exemplo n.º 7
0
 def motion_correct_red(self):
     c, dview, n_processes = cm.cluster.setup_cluster(
         backend='local', n_processes=None, single_thread=False)
     
     self.motion_corrected_images = []
     for plane in list(range(self.planes)):
         print(f'Starting motion correction plane {plane}')
         self.mc = MotionCorrect(self.file_list[plane], dview=dview, **self.opts.get_group('motion'))
         self.mc.motion_correct()
         self.motion_corrected_images.append(self.mc.total_template_els)
     cm.stop_server(dview=dview)
Exemplo n.º 8
0
    def setup_cluster(self):
        """
        Set up the cluster for doing stuff fast.

        """
        if 'dview' in locals():
            cm.stop_server(dview=dview)
        c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                         n_processes=None,
                                                         single_thread=False)

        return c, dview, n_processes
Exemplo n.º 9
0
def memmap_movie(fnames,load=True):
    '''memmap already motion corrected movie using caiman functions.
       if load return the memmap shaped ready to fit caiman (using cnm.fit(images))'''
    if 'dview' in locals():
        cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(
    backend='local', n_processes=12, single_thread=False)

    fname_new = cm.save_memmap(fnames, base_name='memmap_', order='C',
                           border_to_0=0, dview=dview) # exclude borders
    cm.stop_server(dview=dview)
    if load:
        Yr, dims, T = cm.load_memmap(fname_new)
        images = np.reshape(Yr.T, [T] + list(dims), order='F')
        return images
#     pl.figure()
    cnm, Cn2, fname_new = initialize_movie(mc_init, K, gSig, rf, stride, base_name,  merge_thresh=1.1,
                                           rval_thr_online=0.9, thresh_fitness_delta_online=-30, thresh_fitness_raw_online=-50,
                                           rval_thr_init=.5, thresh_fitness_delta_init=-20, thresh_fitness_raw_init=-20,
                                           rval_thr_refine=0.995, thresh_fitness_delta_refine=-200, thresh_fitness_raw_refine=-200,
                                           final_frate=2, Npeaks=10, single_thread=False, dview=dview)
    cnms.append(cnm)
    Cns.append(Cn2)
    base_names.append(fname_new)
    A, C, b, f, YrA, sn = cnm.A, cnm.C, cnm.b, cnm.f, cnm.YrA, cnm.sn
    crd = plot_contours(scipy.sparse.coo_matrix(A), Cns[-1], thr=0.9)
    pl.pause(1)


cm.stop_server()
log_files = glob.glob('Yr*_LOG_*')
for log_file in log_files:
    os.remove(log_file)
#%% vompute all the Cns
Cns_all = []
templates_all = []
shifts_all = []
corrs_all = []
for (x0, x1, y0, y1, _) in sliding_window_new(m[0], overlaps, strides):
    print([x0, y0])
    mc, shifts, template, corrs = m[:, x0:x1, y0:y1].copy(
    ).motion_correct(max_shifts[0], max_shifts[1])
    Cns_all.append(mc.local_correlations(
        eight_neighbours=True, swap_dim=False))
    templates_all.append(shifts)
def main():
    pass # For compatibility between running under Spyder and the CLI

    c, dview, n_processes =\
        cm.cluster.setup_cluster(backend='local', n_processes=None,
                                 single_thread=False)

# %% set up some parameters
    fnames = [os.path.join(caiman_datadir(), 'split', 'first3000-ch1.tif'),
              os.path.join(caiman_datadir(), 'split', 'second3000-ch1.tif')]

    is_patches = True       # flag for processing in patches or not
    fr = 1.5                  # approximate frame rate of data
    decay_time = 5.0        # length of transient

    if is_patches:          # PROCESS IN PATCHES AND THEN COMBINE
        rf = 20             # half size of each patch
        stride = 4         # overlap between patches
        K = 2               # number of components in each patch
    else:                   # PROCESS THE WHOLE FOV AT ONCE
        rf = None           # setting these parameters to None
        stride = None       # will run CNMF on the whole FOV
        K = 10              # number of neurons expected (in the whole FOV)

    gSig = [6, 6]           # expected half size of neurons
    merge_thresh = 0.80     # merging threshold, max correlation allowed
    p = 2                   # order of the autoregressive system
    gnb = 2                 # global background order

    params_dict = {'fnames': fnames,
                   'fr': fr,
                   'decay_time': decay_time,
                   'rf': rf,
                   'stride': stride,
                   'K': K,
                   'gSig': gSig,
                   'merge_thr': merge_thresh,
                   'p': p,
                   'nb': gnb}

    opts = params.CNMFParams(params_dict=params_dict)
    # %% Now RUN CaImAn Batch (CNMF)
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #cnm.estimates.normalize_components()
    cnm = cnm.fit_file()

    # %% plot contour plots of components
    Cn = cm.load(fnames[0], subindices=slice(1000)).local_correlations(swap_dim=False)
    cnm.estimates.plot_contours(img=Cn)

    # %% load memory mapped file
    Yr, dims, T = cm.load_memmap(cnm.mmap_file)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')

    # %% refit
    cnm2 = cnm.refit(images, dview=dview)

# %% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier (this will pick up only neurons
    #           and filter out active processes)

    min_SNR = 2      # peak SNR for accepted components (if above this, acept)
    rval_thr = 0.85     # space correlation threshold (if above this, accept)
    use_cnn = False      # use the CNN classifier
    min_cnn_thr = 0.99  # if cnn classifier predicts below this value, reject
    cnn_lowest = 0.1 # neurons with cnn probability lower than this value are rejected

    cnm2.params.set('quality', {'min_SNR': min_SNR,
                                'rval_thr': rval_thr,
                                'use_cnn': use_cnn,
                                'min_cnn_thr': min_cnn_thr,
                                'cnn_lowest': cnn_lowest})

    cnm2.estimates.detrend_df_f()
    cnm2.estimates.evaluate_components(images, cnm2.params, dview=dview)

    # %% visualize selected and rejected components
    cnm2.estimates.plot_contours(img=Cn, idx=cnm2.estimates.idx_components)
    # %% visualize selected components
    cnm2.estimates.nb_view_components(images, idx=cnm2.estimates.idx_components, img=Cn)
    cnm2.estimates.view_components(images, idx=cnm2.estimates.idx_components_bad, img=Cn)
    #%% only select high quality components
    cnm2.estimates.select_components(use_object=True)
    #%%
    cnm2.estimates.plot_contours(img=Cn)

    cnm2.estimates.detrend_df_f()
    import pickle
    f = open("/home/david/zebraHorse/df_f_day55.pkl", "wb")
    pickle.dump(cnm2.estimates.F_dff, f)
    f.close()
    
    # %% play movie with results (original, reconstructed, amplified residual)
    for j in range(10):
        cnm2.estimates.play_movie(images, magnification=4.0, frame_range = range(100 * j, 100 * (j + 1)))

    #import time
    #time.sleep(1000)
    
# %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)

    log_files = glob.glob('Yr*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
Exemplo n.º 12
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

#%% Select file(s) to be processed (download if not present)
    fnames = ['Sue_2x_3000_40_-46.tif']  # filename to be processed
    if fnames[0] in ['Sue_2x_3000_40_-46.tif', 'demoMovie.tif']:
        fnames = [download_demo(fnames[0])]

#%% First setup some parameters for data and motion correction

    # dataset dependent parameters
    fr = 30             # imaging rate in frames per second
    decay_time = 0.4    # length of a typical transient in seconds
    dxy = (2., 2.)      # spatial resolution in x and y in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (12., 12.)       # maximum shift in um
    patch_motion_um = (100., 100.)  # patch size for non-rigid correction in um

    # motion correction parameters
    pw_rigid = True       # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    max_shifts = [int(a/b) for a, b in zip(max_shift_um, dxy)]
    # start a new patch for pw-rigid motion correction every x pixels
    strides = tuple([int(a/b) for a, b in zip(patch_motion_um, dxy)])
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy'
    }

    opts = params.CNMFParams(params_dict=mc_dict)

# %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = True

    if display_images:
        m_orig = cm.load_movie_chain(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

# %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

# %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # note that the file is not loaded in memory

# %% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

# %% compare with original movie
    if display_images:
        m_orig = cm.load_movie_chain(fnames)
        m_els = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([m_orig.resize(1, 1, ds_ratio) - mc.min_mov*mc.nonneg_movie,
                                      m_els.resize(1, 1, ds_ratio)], axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit

# %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file, base_name='memmap_', order='C',
                               border_to_0=border_to_0)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)

# %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

# %%  parameters for source extraction and deconvolution
    p = 1                    # order of the autoregressive system
    gnb = 2                  # number of global background components
    merge_thr = 0.85         # merging threshold, max correlation allowed
    rf = 15
    # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    stride_cnmf = 6          # amount of overlap between the patches in pixels
    K = 4                    # number of components per patch
    gSig = [4, 4]            # expected half size of neurons in pixels
    # initialization method (if analyzing dendritic data using 'sparse_nmf')
    method_init = 'greedy_roi'
    ssub = 2                     # spatial subsampling during initialization
    tsub = 2                     # temporal subsampling during intialization

    # parameters for component evaluation
    opts_dict = {'fnames': fnames,
                 'p': p,
                 'fr': fr,
                 'nb': gnb,
                 'rf': rf,
                 'K': K,
                 'gSig': gSig,
                 'stride': stride_cnmf,
                 'method_init': method_init,
                 'rolling_sum': True,
                 'merge_thr': merge_thr,
                 'n_processes': n_processes,
                 'only_init': True,
                 'ssub': ssub,
                 'tsub': tsub}

    opts.change_params(params_dict=opts_dict);
# %% RUN CNMF ON PATCHES
    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0). If you want to have
    # deconvolution within each patch change params.patch['p_patch'] to a
    # nonzero value

    #opts.change_params({'p': 0})
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    cnm = cnm.fit(images)

# %% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #  cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #  cnm1.fit_file(motion_correct=True)

# %% plot contours of found components
    Cns = local_correlations_movie_offline(mc.mmap_file[0],
                                           remove_baseline=True, window=1000, stride=1000,
                                           winSize_baseline=100, quantil_min_baseline=10,
                                           dview=dview)
    Cn = Cns.max(axis=0)
    Cn[np.isnan(Cn)] = 0
    cnm.estimates.plot_contours(img=Cn)
    plt.title('Contour plots of found components')
#%% save results
    cnm.estimates.Cn = Cn
    cnm.save(fname_new[:-5]+'_init.hdf5')

# %% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    cnm2 = cnm.refit(images, dview=dview)
    # %% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier
    min_SNR = 2  # signal to noise ratio for accepting a component
    rval_thr = 0.85  # space correlation threshold for accepting a component
    cnn_thr = 0.99  # threshold for CNN based classifier
    cnn_lowest = 0.1 # neurons with cnn probability lower than this value are rejected

    cnm2.params.set('quality', {'decay_time': decay_time,
                               'min_SNR': min_SNR,
                               'rval_thr': rval_thr,
                               'use_cnn': True,
                               'min_cnn_thr': cnn_thr,
                               'cnn_lowest': cnn_lowest})
    cnm2.estimates.evaluate_components(images, cnm2.params, dview=dview)
    # %% PLOT COMPONENTS
    cnm2.estimates.plot_contours(img=Cn, idx=cnm2.estimates.idx_components)

    # %% VIEW TRACES (accepted and rejected)

    if display_images:
        cnm2.estimates.view_components(images, img=Cn,
                                      idx=cnm2.estimates.idx_components)
        cnm2.estimates.view_components(images, img=Cn,
                                      idx=cnm2.estimates.idx_components_bad)
    #%% update object with selected components
    cnm2.estimates.select_components(use_object=True)
    #%% Extract DF/F values
    cnm2.estimates.detrend_df_f(quantileMin=8, frames_window=250)

    #%% Show final traces
    cnm2.estimates.view_components(img=Cn)
    #%%
    cnm2.estimates.Cn = Cn
    cnm2.save(cnm2.mmap_file[:-4] + 'hdf5')
    #%% reconstruct denoised movie (press q to exit)
    if display_images:
        cnm2.estimates.play_movie(images, q_max=99.9, gain_res=2,
                                  magnification=2,
                                  bpx=border_to_0,
                                  include_bck=False)  # background not shown

    #%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
def main():
    pass  # For compatibility between running under Spyder and the CLI

    #%%
    """
    General parameters
    """
    play_movie = 1
    plot_extras = 1
    plot_extras_cell = 1
    compute_mc_metrics = 1

    #%% Select file(s) to be processed (download if not present)
    """
    Load file
    """

    #fnames = ['Sue_2x_3000_40_-46.tif']  # filename to be processed
    #if fnames[0] in ['Sue_2x_3000_40_-46.tif', 'demoMovie.tif']:
    #    fnames = [download_demo(fnames[0])]

    #fnames = ['/home/yuriy/Desktop/Data/rest1_5_9_19_cut.tif']

    #f_dir = 'C:\\Users\\rylab_dataPC\\Desktop\\Yuriy\\caiman_data\\short\\'
    f_dir = 'G:\\analysis\\190828-calcium_voltage\\soma_dendrites\\pCAG_jREGECO1a_ASAP3_anesth_001\\'
    f_name = 'Ch1'
    f_ext = 'tif'
    fnames = [f_dir + f_name + '.' + f_ext]

    #fnames = ['C:/Users/rylab_dataPC/Desktop/Yuriy/caiman_data/rest1_5_9_19_2_cut_ca.hdf5']

    #%% First setup some parameters for data and motion correction
    """
    Parameters
    """

    # dataset dependent parameters
    fr = 30  # imaging rate in frames per second
    decay_time = 1
    #0.4    # length of a typical transient in seconds
    dxy = (2., 2.)  # spatial resolution in x and y in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (12., 12.)  # maximum shift in um
    patch_motion_um = (100., 100.)  # patch size for non-rigid correction in um

    # motion correction parameters
    pw_rigid = True  # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    #max_shifts = [int(a/b) for a, b in zip(max_shift_um, dxy)]
    max_shifts = [6, 6]
    # start a new patch for pw-rigid motion correction every x pixels
    #strides = tuple([int(a/b) for a, b in zip(patch_motion_um, dxy)])
    strides = [48, 48]
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy'
    }

    opts = params.CNMFParams(params_dict=mc_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q

    if play_movie:
        m_orig = cm.load_movie_chain(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

    # %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # note that the file is not loaded in memory

    # %% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

    # type "mc."and press TAB to see all interesting associated variables and self. outputs
    # interesting outputs
    # saved file is mc.fname_tot_els / mc.fname_tot_rig
    # mc.x_shifts_els / mc.y_shifts_els: shifts in x/y per frame per patch
    # mc.coord_shifts_els: coordinates associated to patches with shifts
    # mc.total_template_els: updated template for pw
    # mc.total_template_rig: updated template for rigid
    # mc.templates_rig: templates for each iteration in rig

    #%% # compute metrics for the results (TAKES TIME!!)
    if compute_mc_metrics:
        # not finished
        bord_px_els = np.ceil(
            np.maximum(np.max(np.abs(mc.x_shifts_els)),
                       np.max(np.abs(mc.y_shifts_els)))).astype(np.int)

        final_size = np.subtract(
            mc.total_template_els.shape,
            2 * bord_px_els)  # remove pixels in the boundaries
        winsize = 100
        swap_dim = False
        resize_fact_flow = .2  # downsample for computing ROF

        tmpl_rig, correlations_orig, flows_orig, norms_orig, crispness_orig = cm.motion_correction.compute_metrics_motion_correction(
            fnames[0],
            final_size[0],
            final_size[1],
            swap_dim,
            winsize=winsize,
            play_flow=False,
            resize_fact_flow=resize_fact_flow)

        plt.figure()
        plt.plot(correlations_orig)

    # %% compare with original movie
    if play_movie:
        m_orig = cm.load_movie_chain(fnames)
        m_els = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_els.resize(1, 1, ds_ratio)
        ],
                                     axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit
        del m_orig
        del m_els

    if plot_extras:
        # plot total template
        plt.figure()
        plt.imshow(mc.total_template_els)
        plt.title('Template after iteration')
        # plot x and y corrections
        plt.figure()
        plt.plot(mc.shifts_rig)
        plt.title('Rigid motion correction xy movement')
        plt.legend(['x shift', 'y shift'])
        plt.xlabel('frames')

    # %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file,
                               base_name='memmap_',
                               order='C',
                               border_to_0=border_to_0)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)

    # %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%  parameters for source extraction and deconvolution

    p = 2  # order of the autoregressive system
    gnb = 2  # number of global background components
    merge_thr = 0.85  # merging threshold, max correlation allowed
    rf = 15  # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    stride_cnmf = 6  # amount of overlap between the patches in pixels
    K = 2  # number of components per patch
    gSig = [15, 15]  # expected half size of neurons in pixels
    # initialization method (if analyzing dendritic data using 'sparse_nmf')
    method_init = 'greedy_roi'
    ssub = 1  # spatial subsampling during initialization
    tsub = 1  # temporal subsampling during intialization

    # parameters for component evaluation
    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'nb': gnb,
        'rf': rf,
        'K': K,
        'gSig': gSig,
        'stride': stride_cnmf,
        'method_init': method_init,
        'rolling_sum': True,
        'merge_thr': merge_thr,
        'n_processes': n_processes,
        'only_init': True,
        'ssub': ssub,
        'tsub': tsub
    }

    opts.change_params(params_dict=opts_dict)
    # %% RUN CNMF ON PATCHES
    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0)

    opts.change_params({'p': 0})
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    cnm = cnm.fit(images)

    if plot_extras_cell:
        num_cell_plot = 51
        plt.figure()
        plt.plot(cnm.estimates.C[num_cell_plot, :])
        plt.title('Temporal component')
        plt.legend(['Cell ' + str(num_cell_plot)])
        # plot component sptial profile A
        # first convert back to dense components
        plot_spat_A = cnm.estimates.A[:, num_cell_plot].toarray().reshape(
            list(dims))
        plt.figure()
        plt.imshow(plot_spat_A)
        plt.title('Spatial component cell ' + str(num_cell_plot))

    # %% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #  cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #  cnm1.fit_file(motion_correct=True)

    # %% plot contours of found components
    Cn = cm.local_correlations(images, swap_dim=False)
    Cn[np.isnan(Cn)] = 0
    cnm.estimates.plot_contours(img=Cn)
    plt.title('Contour plots of found components')

    if plot_extras:
        plt.figure()
        plt.imshow(Cn)
        plt.title('Local correlations')

    # %% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    cnm.params.change_params({'p': p})
    cnm2 = cnm.refit(images, dview=dview)
    # %% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier
    min_SNR = 2  # signal to noise ratio for accepting a component
    rval_thr = 0.90  # space correlation threshold for accepting a component
    cnn_thr = 0.99  # threshold for CNN based classifier
    cnn_lowest = 0.1  # neurons with cnn probability lower than this value are rejected

    cnm2.params.set(
        'quality', {
            'decay_time': decay_time,
            'min_SNR': min_SNR,
            'rval_thr': rval_thr,
            'use_cnn': True,
            'min_cnn_thr': cnn_thr,
            'cnn_lowest': cnn_lowest
        })
    cnm2.estimates.evaluate_components(images, cnm2.params, dview=dview)

    # %% PLOT COMPONENTS
    cnm2.estimates.plot_contours(img=Cn, idx=cnm2.estimates.idx_components)
    plt.suptitle('Component selection: min_SNR=' + str(min_SNR) +
                 '; rval_thr=' + str(rval_thr) + '; cnn prob range=[' +
                 str(cnn_lowest) + ' ' + str(cnn_thr) + ']')

    # %% VIEW TRACES (accepted and rejected)

    if plot_extras:
        cnm2.estimates.view_components(images,
                                       img=Cn,
                                       idx=cnm2.estimates.idx_components)
        plt.suptitle('Accepted')
        cnm2.estimates.view_components(images,
                                       img=Cn,
                                       idx=cnm2.estimates.idx_components_bad)
        plt.suptitle('Rejected')

    #plt.figure();
    #plt.plot(cnm2.estimates.YrA[0,:]+cnm2.estimates.C[0,:])
    #
    #
    #
    #
    #plt.figure();
    #plt.plot(cnm2.estimates.R[0,:]-cnm2.estimates.YrA[0,:]);
    #plt.plot();
    #plt.show();
    #
    #
    #plt.figure();
    #plt.plot(cnm2.estimates.detrend_df_f[1,:])

    # these store the good and bad components, and next step sorts them
    # cnm2.estimates.idx_components
    # cnm2.estimates.idx_components_bad

    #%% update object with selected components
    #cnm2.estimates.select_components(use_object=True)
    #%% Extract DF/F values
    cnm2.estimates.detrend_df_f(quantileMin=8, frames_window=250)

    #%% Show final traces

    cnm2.estimates.view_components(img=Cn)
    plt.suptitle("Final results")

    #%% Save the mc data as in cmn struct as well

    ##
    #mc_out = dict(
    #            pw_rigid            = mc.pw_rigid,
    #            fname               = mc.fname,
    #            mmap_file           = mc.mmap_file,
    #            total_template_els  = mc.total_template_els,
    #            total_template_rig  = mc.total_template_rig,
    #            border_nan          = mc.border_nan,
    #            border_to_0         = mc.border_to_0,
    #            x_shifts_els        = mc.x_shifts_els,
    #            y_shifts_els        = mc.y_shifts_els,
    #            Cn                  = Cn
    #            )
    #
    #
    #deepdish.io.save(fnames[0] + '_mc_data.hdf5', mc_out)

    #%% reconstruct denoised movie (press q to exit)
    if play_movie:
        cnm2.estimates.play_movie(images,
                                  q_max=99.9,
                                  gain_res=2,
                                  magnification=2,
                                  bpx=border_to_0,
                                  include_bck=False)  # background not shown

    #%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

    save_results = True
    if save_results:
        cnm2.save(fnames[0][:-4] + '_results.hdf5')
Exemplo n.º 14
0
print(('using ' + str(n_processes) + ' processes'))
#%% start cluster for efficient computation
single_thread = False

if single_thread:
    dview = None
else:
    try:
        c.close()
    except:
        print('C was not existing, creating one')
    print("Stopping  cluster to avoid unnencessary use of memory....")
    sys.stdout.flush()
    if backend == 'SLURM':
        try:
            cm.stop_server(is_slurm=True)
        except:
            print('Nothing to stop')
        slurm_script = '/mnt/xfs1/home/agiovann/SOFTWARE/Constrained_NMF/SLURM/slurmStart.sh'
        cm.start_server(slurm_script=slurm_script)
        pdir, profile = os.environ['IPPPDIR'], os.environ['IPPPROFILE']
        c = Client(ipython_dir=pdir, profile=profile)
    else:
        cm.stop_server()
        cm.start_server()
        c = Client()

    print(('Using ' + str(len(c)) + ' processes'))
    dview = c[:len(c)]
#%% set parameters and create template by rigid motion correction
t1 = time.time()
Exemplo n.º 15
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    #%% First setup some parameters

    # dataset dependent parameters
    display_images = False  # Set to true to show movies and images
    fnames = ['data_endoscope.tif']  # filename to be processed
    frate = 10  # movie frame rate
    decay_time = 0.4  # length of a typical transient in seconds

    # motion correction parameters
    do_motion_correction_nonrigid = True
    do_motion_correction_rigid = False  # in this case it will also save a rigid motion corrected movie
    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    #                      change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    splits_rig = 10  # for parallelization split the movies in  num_splits chuncks across time
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    # for parallelization split the movies in  num_splits chuncks across time
    # (remember that it should hold that length_movie/num_splits_to_process_rig>100)
    splits_els = 10
    upsample_factor_grid = 4  # upsample factor to avoid smearing when merging patches
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    # parameters for source extraction and deconvolution
    p = 1  # order of the autoregressive system
    K = None  # upper bound on number of components per patch, in general None
    gSig = 3  # gaussian width of a 2D gaussian kernel, which approximates a neuron
    gSiz = 13  # average diameter of a neuron, in general 4*gSig+1
    merge_thresh = .7  # merging threshold, max correlation allowed
    rf = 40  # half-size of the patches in pixels. e.g., if rf=40, patches are 80x80
    stride_cnmf = 20  # amount of overlap between the patches in pixels
    #                     (keep it at least large as gSiz, i.e 4 times the neuron size gSig)
    tsub = 2  # downsampling factor in time for initialization,
    #                     increase if you have memory problems
    ssub = 1  # downsampling factor in space for initialization,
    #                     increase if you have memory problems
    Ain = None  # if you want to initialize with some preselected components
    #                     you can pass them here as boolean vectors
    low_rank_background = None  # None leaves background of each patch intact,
    #                             True performs global low-rank approximation
    gnb = -1  # number of background components (rank) if positive,
    #                     else exact ring model with following settings
    #                         gnb=-2: Return background as b and W
    #                         gnb=-1: Return full rank background B
    #                         gnb= 0: Don't return background
    nb_patch = -1  # number of background components (rank) per patch,
    #                     use 0 or -1 for exact background of ring model (cf. gnb)
    min_corr = .8  # min peak value from correlation image
    min_pnr = 10  # min peak to noise ration from PNR image
    ssub_B = 2  # additional downsampling factor in space for background
    ring_size_factor = 1.4  # radius of ring is gSiz*ring_size_factor

    # parameters for component evaluation
    min_SNR = 3  # adaptive way to set threshold on the transient size
    r_values_min = 0.85  # threshold on space consistency (if you lower more components
    #                        will be accepted, potentially with worst quality)

    #%% start the cluster
    try:
        cm.stop_server(dview=dview)  # stop it if it was running
    except:
        pass

    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local',  # use this one
        n_processes=
        24,  # number of process to use, if you go out of memory try to reduce this one
        single_thread=False)

    #%% download demo file
    fnames = [download_demo(fnames[0])]
    filename_reorder = fnames

    #%% MOTION CORRECTION
    if do_motion_correction_nonrigid or do_motion_correction_rigid:
        # do motion correction rigid
        mc = motion_correct_oneP_rigid(
            fnames,
            gSig_filt=gSig_filt,
            max_shifts=max_shifts,
            dview=dview,
            splits_rig=splits_rig,
            save_movie=not (do_motion_correction_nonrigid),
            border_nan='copy')

        new_templ = mc.total_template_rig

        plt.subplot(1, 2, 1)
        plt.imshow(new_templ)  # % plot template
        plt.subplot(1, 2, 2)
        plt.plot(mc.shifts_rig)  # % plot rigid shifts
        plt.legend(['x shifts', 'y shifts'])
        plt.xlabel('frames')
        plt.ylabel('pixels')

        # borders to eliminate from movie because of motion correction
        bord_px = np.ceil(np.max(np.abs(mc.shifts_rig))).astype(np.int)
        filename_reorder = mc.fname_tot_rig

        # do motion correction nonrigid
        if do_motion_correction_nonrigid:
            mc = motion_correct_oneP_nonrigid(
                fnames,
                gSig_filt=gSig_filt,
                max_shifts=max_shifts,
                strides=strides,
                overlaps=overlaps,
                splits_els=splits_els,
                upsample_factor_grid=upsample_factor_grid,
                max_deviation_rigid=max_deviation_rigid,
                dview=dview,
                splits_rig=None,
                save_movie=True,  # whether to save movie in memory mapped format
                new_templ=new_templ,  # template to initialize motion correction
                border_nan='copy')

            filename_reorder = mc.fname_tot_els
            bord_px = np.ceil(
                np.maximum(np.max(np.abs(mc.x_shifts_els)),
                           np.max(np.abs(mc.y_shifts_els)))).astype(np.int)

    # create memory mappable file in the right order on the hard drive (C order)
    fname_new = cm.save_memmap(filename_reorder,
                               base_name='memmap_',
                               order='C',
                               border_to_0=bord_px,
                               dview=dview)

    # load memory mappable file
    Yr, dims, T = cm.load_memmap(fname_new)
    Y = Yr.T.reshape((T, ) + dims, order='F')
    #%% compute some summary images (correlation and peak to noise)
    # change swap dim if output looks weird, it is a problem with tiffile
    cn_filter, pnr = cm.summary_images.correlation_pnr(Y,
                                                       gSig=gSig,
                                                       swap_dim=False)
    # inspect the summary images and set the parameters
    inspect_correlation_pnr(cn_filter, pnr)
    # print parameters set above, modify them if necessary based on summary images
    print(min_corr)  # min correlation of peak (from correlation image)
    print(min_pnr)  # min peak to noise ratio

    #%% RUN CNMF ON PATCHES
    cnm = cnmf.CNMF(
        n_processes=n_processes,
        method_init='corr_pnr',  # use this for 1 photon
        k=K,
        gSig=(gSig, gSig),
        gSiz=(gSiz, gSiz),
        merge_thresh=merge_thresh,
        p=p,
        dview=dview,
        tsub=tsub,
        ssub=ssub,
        Ain=Ain,
        rf=rf,
        stride=stride_cnmf,
        only_init_patch=True,  # just leave it as is
        gnb=gnb,
        nb_patch=nb_patch,
        method_deconvolution='oasis',  # could use 'cvxpy' alternatively
        low_rank_background=low_rank_background,
        update_background_components=
        True,  # sometimes setting to False improve the results
        min_corr=min_corr,
        min_pnr=min_pnr,
        normalize_init=False,  # just leave as is
        center_psf=True,  # leave as is for 1 photon
        ssub_B=ssub_B,
        ring_size_factor=ring_size_factor,
        del_duplicates=True,  # whether to remove duplicates from initialization
        border_pix=bord_px)  # number of pixels to not consider in the borders
    cnm.fit(Y)

    #%% DISCARD LOW QUALITY COMPONENTS
    cnm.evaluate_components(Y,
                            min_SNR=min_SNR,
                            rval_thr=r_values_min,
                            use_cnn=False,
                            decay_time=decay_time,
                            fr=frate)

    print(' ***** ')
    print('Number of total components: ', len(cnm.C))
    print('Number of accepted components: ', len(cnm.idx_components))

    #%% PLOT COMPONENTS
    cnm.dims = dims
    if display_images:
        cnm.plot_contours(img=cn_filter, idx=cnm.idx_components)
        cnm.view_components(Y, dims, idx=cnm.idx_components)

#%% MOVIES
    if display_images:
        # fully reconstructed movie
        cnm.play_movie(Y, magnification=3, include_bck=True, gain_res=10)
        # movie without background
        cnm.play_movie(Y, magnification=3, include_bck=False, gain_res=4)

#%% STOP SERVER
    cm.stop_server(dview=dview)
def perform_cnmf(video, params, roi_spatial_footprints, roi_temporal_footprints, roi_temporal_residuals, bg_spatial_footprints, bg_temporal_footprints, use_multiprocessing=True):
    if use_multiprocessing:
        backend = 'multiprocessing'

        cm.stop_server()
        c, dview, n_processes = cm.cluster.setup_cluster(backend=backend, n_processes=None, single_thread=False)
    else:
        dview = None

    # print("~")
    # print(roi_spatial_footprints.shape)

    video_path = "video_temp.tif"
    tifffile.imsave(video_path, video)

    # dataset dependent parameters
    fnames         = [video_path]          # filename to be processed
    fr             = params['imaging_fps'] # imaging rate in frames per second
    decay_time     = params['decay_time']  # length of a typical transient in seconds
    
    # parameters for source extraction and deconvolution
    p              = params['autoregressive_order']             # order of the autoregressive system
    gnb            = params['num_bg_components']                # number of global background components
    merge_thresh   = params['merge_threshold']                  # merging threshold, max correlation allowed
    rf             = None                                       # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    stride_cnmf    = 6                                          # amount of overlap between the patches in pixels
    K              = roi_spatial_footprints.shape[1]                   # number of components per patch
    gSig           = [params['half_size'], params['half_size']] # expected half size of neurons
    init_method    = 'greedy_roi'                               # initialization method (if analyzing dendritic data using 'sparse_nmf')
    rolling_sum    = True
    rolling_length = 50
    is_dendrites   = False                                      # flag for analyzing dendritic data
    alpha_snmf     = None                                       # sparsity penalty for dendritic data analysis through sparse NMF

    # parameters for component evaluation
    min_SNR        = params['min_snr']          # signal to noise ratio for accepting a component
    rval_thr       = params['min_spatial_corr'] # space correlation threshold for accepting a component
    cnn_thr        = params['cnn_threshold']    # threshold for CNN based classifier

    border_pix = 0

    fname_new = cm.save_memmap(fnames, base_name='memmap_', order='C') # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    d1, d2 = dims
    images = np.reshape(Yr.T, [T] + list(dims), order='F')


    cnm = cnmf.CNMF(n_processes=8, k=K, gSig=gSig, merge_thresh= merge_thresh, 
                    p = p,  dview=dview, rf=rf, stride=stride_cnmf, memory_fact=1,
                    method_init=init_method, alpha_snmf=alpha_snmf, rolling_sum=rolling_sum,
                    only_init_patch = True, skip_refinement=True, gnb = gnb, border_pix = border_pix, ssub=1, ssub_B=1, tsub=1, Ain=roi_spatial_footprints, Cin=roi_temporal_footprints, b_in=bg_spatial_footprints, f_in=bg_temporal_footprints, do_merge=False)

    cnm = cnm.fit(images)

    roi_spatial_footprints  = cnm.A
    roi_temporal_footprints = cnm.C
    roi_temporal_residuals  = cnm.YrA
    bg_spatial_footprints   = cnm.b
    bg_temporal_footprints  = cnm.f

    if use_multiprocessing:
        if backend == 'multiprocessing':
            dview.close()
        else:
            try:
                dview.terminate()
            except:
                dview.shutdown()
        cm.stop_server()

    return roi_spatial_footprints, roi_temporal_footprints, roi_temporal_residuals, bg_spatial_footprints, bg_temporal_footprints
Exemplo n.º 17
0
print(('using ' + str(n_processes) + ' processes'))
#%% start cluster for efficient computation
single_thread = False

if single_thread:
    dview = None
else:
    try:
        c.close()
    except:
        print('C was not existing, creating one')
    print("Stopping  cluster to avoid unnencessary use of memory....")
    sys.stdout.flush()
    if backend == 'SLURM':
        try:
            cm.stop_server(is_slurm=True)
        except:
            print('Nothing to stop')
        slurm_script = '/mnt/xfs1/home/agiovann/SOFTWARE/Constrained_NMF/SLURM/slurmStart.sh'
        cm.start_server(slurm_script=slurm_script)
        pdir, profile = os.environ['IPPPDIR'], os.environ['IPPPROFILE']
        c = Client(ipython_dir=pdir, profile=profile)
    else:
        cm.stop_server()
        cm.start_server()
        c = Client()

    print(('Using ' + str(len(c)) + ' processes'))
    dview = c[:len(c)]
#%% FOR LOADING ALL TIFF FILES IN A FILE AND SAVING THEM ON A SINGLE MEMORY MAPPABLE FILE
def find_rois_cnmf(video_path, params, mc_borders=None, use_multiprocessing=True):
    full_video_path = video_path

    directory = os.path.dirname(full_video_path)
    filename  = os.path.basename(full_video_path)

    memmap_video = tifffile.memmap(video_path)
    print(memmap_video.shape)

    if len(memmap_video.shape) == 5:
        num_z = memmap_video.shape[2]
    else:
        num_z = memmap_video.shape[1]

    roi_spatial_footprints  = [ None for i in range(num_z) ]
    roi_temporal_footprints = [ None for i in range(num_z) ]
    roi_temporal_residuals  = [ None for i in range(num_z) ]
    bg_spatial_footprints   = [ None for i in range(num_z) ]
    bg_temporal_footprints  = [ None for i in range(num_z) ]

    # Create the cluster
    if use_multiprocessing:
        if os.name == 'nt':
            backend = 'multiprocessing'
        else:
            backend = 'ipyparallel'

        cm.stop_server()
        c, dview, n_processes = cm.cluster.setup_cluster(backend=backend, n_processes=None, single_thread=False)
    else:
        dview = None

    for z in range(num_z):
        fname = os.path.splitext(filename)[0] + "_masked_z_{}.tif".format(z)

        video_path = os.path.join(directory, fname)

        if len(memmap_video.shape) == 5:
            tifffile.imsave(video_path, memmap_video[:, :, z, :, :].reshape((-1, memmap_video.shape[3], memmap_video.shape[4])))
        else:
            tifffile.imsave(video_path, memmap_video[:, z, :, :])

        # dataset dependent parameters
        fnames         = [video_path]          # filename to be processed
        fr             = params['imaging_fps'] # imaging rate in frames per second
        decay_time     = params['decay_time']  # length of a typical transient in seconds
        
        # parameters for source extraction and deconvolution
        p              = params['autoregressive_order']             # order of the autoregressive system
        gnb            = params['num_bg_components']                # number of global background components
        merge_thresh   = params['merge_threshold']                  # merging threshold, max correlation allowed
        rf             = None                                       # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
        stride_cnmf    = 6                                          # amount of overlap between the patches in pixels
        K              = params['num_components']                   # number of components per patch
        gSig           = [params['half_size'], params['half_size']] # expected half size of neurons
        init_method    = 'greedy_roi'                               # initialization method (if analyzing dendritic data using 'sparse_nmf')
        rolling_sum    = True
        rolling_length = 50
        is_dendrites   = False                                      # flag for analyzing dendritic data
        alpha_snmf     = None                                       # sparsity penalty for dendritic data analysis through sparse NMF

        # parameters for component evaluation
        min_SNR        = params['min_snr']          # signal to noise ratio for accepting a component
        rval_thr       = params['min_spatial_corr'] # space correlation threshold for accepting a component
        cnn_thr        = params['cnn_threshold']    # threshold for CNN based classifier

        if mc_borders is not None:
            border_pix = mc_borders[z]
        else:
            border_pix = 0

        fname_new = cm.save_memmap(fnames, base_name='memmap_z_{}'.format(z), order='C') # exclude borders

        # now load the file
        Yr, dims, T = cm.load_memmap(fname_new)
        d1, d2 = dims
        images = np.reshape(Yr.T, [T] + list(dims), order='F')

        cnm = cnmf.CNMF(n_processes=1, k=K, gSig=gSig, merge_thresh= merge_thresh, 
                        p = p,  dview=dview, rf=rf, stride=stride_cnmf, memory_fact=1,
                        method_init=init_method, alpha_snmf=alpha_snmf, rolling_sum=rolling_sum,
                        only_init_patch = False, gnb = gnb, border_pix = border_pix, ssub=1, ssub_B=1, tsub=1)

        cnm = cnm.fit(images)

        try:
            A_in, C_in, b_in, f_in = cnm.A, cnm.C, cnm.b, cnm.f
        except:
            A_in, C_in, b_in, f_in = cnm.estimates.A, cnm.estimates.C, cnm.estimates.b, cnm.estimates.f

        cnm2 = cnmf.CNMF(n_processes=1, k=A_in.shape[-1], gSig=gSig, p=p, dview=dview,
                        merge_thresh=merge_thresh,  Ain=A_in, Cin=C_in, b_in = b_in,
                        f_in=f_in, rf = None, stride = None, gnb = gnb, 
                        method_deconvolution='oasis', check_nan = True)

        cnm2 = cnm2.fit(images)

        try:
            roi_spatial_footprints[z]  = cnm2.A
            roi_temporal_footprints[z] = cnm2.C
            roi_temporal_residuals[z]  = cnm2.YrA
            bg_spatial_footprints[z]   = cnm2.b
            bg_temporal_footprints[z]  = cnm2.f
        except:
            roi_spatial_footprints[z]  = cnm2.estimates.A
            roi_temporal_footprints[z] = cnm2.estimates.C
            roi_temporal_residuals[z]  = cnm2.estimates.YrA
            bg_spatial_footprints[z]   = cnm2.estimates.b
            bg_temporal_footprints[z]  = cnm2.estimates.f

        if os.path.exists(video_path):
            os.remove(video_path)

    del memmap_video

    if use_multiprocessing:
        if backend == 'multiprocessing':
            dview.close()
        else:
            try:
                dview.terminate()
            except:
                dview.shutdown()
        cm.stop_server()

    mmap_files = glob.glob(os.path.join(directory, "*.mmap"))
    for mmap_file in mmap_files:
        try:
            os.remove(mmap_file)
        except:
            pass

    log_files = glob.glob('Yr*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

    return roi_spatial_footprints, roi_temporal_footprints, roi_temporal_residuals, bg_spatial_footprints, bg_temporal_footprints
Exemplo n.º 19
0
def demix_and_deconvolve_with_cnmf(scan, num_components=200, AR_order=2,
                                   merge_threshold=0.8, num_processes=20,
                                   num_pixels_per_process=5000, block_size=10000,
                                   num_background_components=4, init_method='greedy_roi',
                                   soma_radius=(5, 5), snmf_alpha=None,
                                   init_on_patches=False, patch_downsampling_factor=None,
                                   percentage_of_patch_overlap=None):
    """ Extract spike train activity from multi-photon scans using CNMF.

    Uses constrained non-negative matrix factorization to find neurons/components
    (locations) and their fluorescence traces (activity) in a timeseries of images, and
    deconvolves them using an autoregressive model of the calcium impulse response
    function. See Pnevmatikakis et al., 2016 for details.

    Default values work alright for somatic images.

    :param np.array scan: 3-dimensional scan (image_height, image_width, num_frames).
    :param int num_components: An estimate of neurons/spatial components in the scan.
    :param int AR_order: Order of the autoregressive process used to model the impulse
        response function, e.g., 0 = no modelling; 2 = model rise plus exponential decay.
    :param int merge_threshold: Maximal temporal correlation allowed between activity of
        overlapping components before merging them.
    :param int num_processes: Number of processes to run in parallel. None for as many
        processes as available cores.
    :param int num_pixels_per_process: Number of pixels that a process handles each
        iteration.
    :param int block_size: 'number of pixels to process at the same time for dot product'
    :param int num_background_components:  Number of background components to use.
    :param string init_method: Initialization method for the components.
        'greedy_roi':Look for a gaussian-shaped patch, apply rank-1 NMF, store components,
            calculate residual scan and repeat for num_components.
        'sparse_nmf': Regularized non-negative matrix factorization (as impl. in sklearn)
        'local_nmf': ...
    :param (float, float) soma_radius: Estimated neuron radius (in pixels) in y and x.
        Used in'greedy_roi' initialization to define the size of the gaussian window.
    :param int snmf_alpha: Regularization parameter (alpha) for the sparse NMF (if used).
    :param bool init_on_patches: If True, run the initialization methods on small patches
        of the scan rather than on the whole image.
    :param int patch_downsampling_factor: Division to the image dimensions to obtain patch
        dimensions, e.g., if original size is 256 and factor is 10, patches will be 26x26
    :param int percentage_of_patch_overlap: Patches are sampled in a sliding window. This
        controls how much overlap is between adjacent patches (0 for none, 0.9 for 90%)

    :returns Location matrix (image_height x image_width x num_components). Inferred
        location of each component.
    :returns Activity matrix (num_components x num_frames). Inferred fluorescence traces
         (spike train convolved with the fitted impulse response function).
    :returns: Inferred location matrix for background components (image_height x
         image_width x num_background_components).
    :returns: Inferred activity matrix for background components (image_height x
        image_width x num_background_components).
    :returns: Raw fluorescence traces (num_components x num_frames) obtained from the
        scan minus activity from background and other components.
    :returns: Spike matrix (num_components x num_frames). Deconvolved spike activity.
    :returns: Autoregressive process coefficients (num_components x AR_order) used to
        model the calcium impulse response of each component:
            c(t) = c(t-1) * AR_coeffs[0] + c(t-2) * AR_coeffs[1] + ...

    ..note:: Based on code provided by Andrea Giovanucci.
    ..note:: The produced number of components is not exactly what you ask for because
        some components will be merged or deleted.
    ..warning:: Computation- and memory-intensive for big scans.
    """
    import caiman
    from caiman.source_extraction.cnmf import cnmf

    # Save as memory mapped file in F order (that's how caiman wants it)
    mmap_filename = _save_as_memmap(scan, base_name='/tmp/caiman', order='F').filename

    # 'Load' scan
    mmap_scan, (image_height, image_width), num_frames = caiman.load_memmap(mmap_filename)
    images = np.reshape(mmap_scan.T, (num_frames, image_height, image_width), order='F')

    # Start the ipyparallel cluster
    client, direct_view, num_processes = caiman.cluster.setup_cluster(
        n_processes=num_processes)

    # Optionally, run the initialization method in small patches to initialize components
    initial_A = None
    initial_C = None
    initial_f = None
    if init_on_patches:
        # Calculate patch size (only square patches allowed)
        bigger_dimension = max(image_height, image_width)
        smaller_dimension = min(image_height, image_width)
        patch_size = bigger_dimension / patch_downsampling_factor
        patch_size = min(patch_size, smaller_dimension) # if bigger than small dimension

        # Calculate num_components_per_patch
        num_nonoverlapping_patches = (image_height/patch_size) * (image_width/patch_size)
        num_components_per_patch = num_components / num_nonoverlapping_patches
        num_components_per_patch = max(num_components_per_patch, 1) # at least 1

        # Calculate patch overlap in pixels
        overlap_in_pixels = patch_size * percentage_of_patch_overlap

        # Make sure they are integers
        patch_size = int(round(patch_size))
        num_components_per_patch = int(round(num_components_per_patch))
        overlap_in_pixels = int(round(overlap_in_pixels))

        # Run CNMF on patches (only for initialization, no impulse response modelling p=0)
        model = cnmf.CNMF(num_processes, only_init_patch=True, p=0,
                          rf=int(round(patch_size / 2)), stride=overlap_in_pixels,
                          k=num_components_per_patch, merge_thresh=merge_threshold,
                          method_init=init_method, gSig=soma_radius,
                          alpha_snmf=snmf_alpha, gnb=num_background_components,
                          n_pixels_per_process=num_pixels_per_process,
                          block_size=block_size, check_nan=False, dview=direct_view,
                          method_deconvolution='cvxpy')
        model = model.fit(images)

        # Delete log files (one per patch)
        log_files = glob.glob('caiman*_LOG_*')
        for log_file in log_files:
            os.remove(log_file)

        # Get results
        initial_A = model.A
        initial_C = model.C
        initial_f = model.f

    # Run CNMF
    model = cnmf.CNMF(num_processes, k=num_components, p=AR_order,
                      merge_thresh=merge_threshold, gnb=num_background_components,
                      method_init=init_method, gSig=soma_radius, alpha_snmf=snmf_alpha,
                      n_pixels_per_process=num_pixels_per_process, block_size=block_size,
                      check_nan=False, dview=direct_view, Ain=initial_A, Cin=initial_C,
                      f_in=initial_f, method_deconvolution='cvxpy')
    model = model.fit(images)

    # Get final results
    location_matrix = model.A  # pixels x num_components
    activity_matrix = model.C  # num_components x num_frames
    background_location_matrix = model.b  # pixels x num_background_components
    background_activity_matrix = model.f  # num_background_components x num_frames
    spikes = model.S  # num_components x num_frames, spike_ traces
    raw_traces = model.C + model.YrA  # num_components x num_frames
    AR_coefficients = model.g  # AR_order x num_components

    # Reshape spatial matrices to be image_height x image_width x num_frames
    new_shape = (image_height, image_width, -1)
    location_matrix = location_matrix.toarray().reshape(new_shape, order='F')
    background_location_matrix = background_location_matrix.reshape(new_shape, order='F')
    AR_coefficients = np.array(list(AR_coefficients))  # unwrapping it (num_components x 2)

    # Stop ipyparallel cluster
    client.close()
    caiman.stop_server()

    # Delete memory mapped scan
    os.remove(mmap_filename)

    return (location_matrix, activity_matrix, background_location_matrix,
            background_activity_matrix, raw_traces, spikes, AR_coefficients)
Exemplo n.º 20
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %% start the cluster
    try:
        cm.stop_server()  # stop it if it was running
    except ():
        pass

    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local',
        n_processes=
        24,  # number of process to use, if you go out of memory try to reduce this one
        single_thread=False)

    # %% First setup some parameters for motion correction
    # dataset dependent parameters
    fnames = ['data_endoscope.tif']  # filename to be processed
    fnames = [download_demo(fnames[0])]  # download file if not already present
    filename_reorder = fnames
    fr = 10  # movie frame rate
    decay_time = 0.4  # length of a typical transient in seconds

    # motion correction parameters
    motion_correct = True  # flag for motion correction
    pw_rigid = False  # flag for pw-rigid motion correction

    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    #                      change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3
    border_nan = 'copy'

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = params.CNMFParams(params_dict=mc_dict)

    # %% MOTION CORRECTION
    #  The pw_rigid flag set above, determines where to use rigid or pw-rigid
    #  motion correction
    if motion_correct:
        # do motion correction rigid
        mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
        mc.motion_correct(save_movie=True)
        fname_mc = mc.fname_tot_els if pw_rigid else mc.fname_tot_rig
        if pw_rigid:
            bord_px = np.ceil(
                np.maximum(np.max(np.abs(mc.x_shifts_els)),
                           np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
        else:
            bord_px = np.ceil(np.max(np.abs(mc.shifts_rig))).astype(np.int)
            plt.subplot(1, 2, 1)
            plt.imshow(mc.total_template_rig)  # % plot template
            plt.subplot(1, 2, 2)
            plt.plot(mc.shifts_rig)  # % plot rigid shifts
            plt.legend(['x shifts', 'y shifts'])
            plt.xlabel('frames')
            plt.ylabel('pixels')

        bord_px = 0 if border_nan == 'copy' else bord_px
        fname_new = cm.save_memmap(fname_mc,
                                   base_name='memmap_',
                                   order='C',
                                   border_to_0=bord_px)
    else:  # if no motion correction just memory map the file
        fname_new = cm.save_memmap(filename_reorder,
                                   base_name='memmap_',
                                   order='C',
                                   border_to_0=0,
                                   dview=dview)

    # load memory mappable file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = Yr.T.reshape((T, ) + dims, order='F')

    # %% Parameters for source extraction and deconvolution (CNMF-E algorithm)

    p = 1  # order of the autoregressive system
    K = None  # upper bound on number of components per patch, in general None for 1p data
    gSig = (
        3, 3
    )  # gaussian width of a 2D gaussian kernel, which approximates a neuron
    gSiz = (13, 13)  # average diameter of a neuron, in general 4*gSig+1
    Ain = None  # possibility to seed with predetermined binary masks
    merge_thr = .7  # merging threshold, max correlation allowed
    rf = 40  # half-size of the patches in pixels. e.g., if rf=40, patches are 80x80
    stride_cnmf = 20  # amount of overlap between the patches in pixels
    #                     (keep it at least large as gSiz, i.e 4 times the neuron size gSig)
    tsub = 2  # downsampling factor in time for initialization,
    #                     increase if you have memory problems
    ssub = 1  # downsampling factor in space for initialization,
    #                     increase if you have memory problems
    #                     you can pass them here as boolean vectors
    low_rank_background = None  # None leaves background of each patch intact,
    #                     True performs global low-rank approximation if gnb>0
    gnb = 0  # number of background components (rank) if positive,
    #                     else exact ring model with following settings
    #                         gnb= 0: Return background as b and W
    #                         gnb=-1: Return full rank background B
    #                         gnb<-1: Don't return background
    nb_patch = 0  # number of background components (rank) per patch if gnb>0,
    #                     else it is set automatically
    min_corr = .8  # min peak value from correlation image
    min_pnr = 10  # min peak to noise ration from PNR image
    ssub_B = 2  # additional downsampling factor in space for background
    ring_size_factor = 1.4  # radius of ring is gSiz*ring_size_factor

    opts.change_params(
        params_dict={
            'dims': dims,
            'method_init': 'corr_pnr',  # use this for 1 photon
            'K': K,
            'gSig': gSig,
            'gSiz': gSiz,
            'merge_thr': merge_thr,
            'p': p,
            'tsub': tsub,
            'ssub': ssub,
            'rf': rf,
            'stride': stride_cnmf,
            'only_init': True,  # set it to True to run CNMF-E
            'nb': gnb,
            'nb_patch': nb_patch,
            'method_deconvolution': 'oasis',  # could use 'cvxpy' alternatively
            'low_rank_background': low_rank_background,
            'update_background_components':
            True,  # sometimes setting to False improve the results
            'min_corr': min_corr,
            'min_pnr': min_pnr,
            'normalize_init': False,  # just leave as is
            'center_psf': True,  # leave as is for 1 photon
            'ssub_B': ssub_B,
            'ring_size_factor': ring_size_factor,
            'del_duplicates':
            True,  # whether to remove duplicates from initialization
            'border_pix': bord_px
        })  # number of pixels to not consider in the borders)

    # %% compute some summary images (correlation and peak to noise)
    # change swap dim if output looks weird, it is a problem with tiffile
    cn_filter, pnr = cm.summary_images.correlation_pnr(images[::1],
                                                       gSig=gSig[0],
                                                       swap_dim=False)
    # if your images file is too long this computation will take unnecessarily
    # long time and consume a lot of memory. Consider changing images[::1] to
    # images[::5] or something similar to compute on a subset of the data

    # inspect the summary images and set the parameters
    inspect_correlation_pnr(cn_filter, pnr)
    # print parameters set above, modify them if necessary based on summary images
    print(min_corr)  # min correlation of peak (from correlation image)
    print(min_pnr)  # min peak to noise ratio

    # %% RUN CNMF ON PATCHES
    cnm = cnmf.CNMF(n_processes=n_processes, dview=dview, Ain=Ain, params=opts)
    cnm.fit(images)

    # %% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #    cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #    cnm1.fit_file(motion_correct=True)

    # %% DISCARD LOW QUALITY COMPONENTS
    min_SNR = 2.5  # adaptive way to set threshold on the transient size
    r_values_min = 0.85  # threshold on space consistency (if you lower more components
    #                        will be accepted, potentially with worst quality)
    cnm.params.set('quality', {
        'min_SNR': min_SNR,
        'rval_thr': r_values_min,
        'use_cnn': False
    })
    cnm.estimates.evaluate_components(images, cnm.params, dview=dview)

    print(' ***** ')
    print('Number of total components: ', len(cnm.estimates.C))
    print('Number of accepted components: ', len(cnm.estimates.idx_components))

    # %% PLOT COMPONENTS
    cnm.dims = dims
    display_images = True  # Set to true to show movies and images
    if display_images:
        cnm.estimates.plot_contours(img=cn_filter,
                                    idx=cnm.estimates.idx_components)
        cnm.estimates.view_components(images, idx=cnm.estimates.idx_components)

# %% MOVIES
    display_images = False  # Set to true to show movies and images
    if display_images:
        # fully reconstructed movie
        cnm.estimates.play_movie(images,
                                 q_max=99.5,
                                 magnification=2,
                                 include_bck=True,
                                 gain_res=10,
                                 bpx=bord_px)
        # movie without background
        cnm.estimates.play_movie(images,
                                 q_max=99.9,
                                 magnification=2,
                                 include_bck=False,
                                 gain_res=4,
                                 bpx=bord_px)

# %% STOP SERVER
    cm.stop_server(dview=dview)
Exemplo n.º 21
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %% start a cluster

    c, dview, n_processes =\
        cm.cluster.setup_cluster(backend='local', n_processes=None,
                                 single_thread=False)

    # %% set up some parameters
    fnames = [
        os.path.join(caiman_datadir(), 'example_movies', 'demoMovie.tif')
    ]
    # file(s) to be analyzed
    is_patches = True  # flag for processing in patches or not
    fr = 10  # approximate frame rate of data
    decay_time = 5.0  # length of transient

    if is_patches:  # PROCESS IN PATCHES AND THEN COMBINE
        rf = 10  # half size of each patch
        stride = 4  # overlap between patches
        K = 4  # number of components in each patch
    else:  # PROCESS THE WHOLE FOV AT ONCE
        rf = None  # setting these parameters to None
        stride = None  # will run CNMF on the whole FOV
        K = 30  # number of neurons expected (in the whole FOV)

    gSig = [6, 6]  # expected half size of neurons
    merge_thresh = 0.80  # merging threshold, max correlation allowed
    p = 2  # order of the autoregressive system
    gnb = 2  # global background order

    params_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'rf': rf,
        'stride': stride,
        'K': K,
        'gSig': gSig,
        'merge_thr': merge_thresh,
        'p': p,
        'nb': gnb
    }

    opts = params.CNMFParams(params_dict=params_dict)
    # %% Now RUN CaImAn Batch (CNMF)
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    cnm = cnm.fit_file()

    # %% plot contour plots of components
    Cns = local_correlations_movie_offline(fnames[0],
                                           remove_baseline=True,
                                           swap_dim=False,
                                           window=1000,
                                           stride=1000,
                                           winSize_baseline=100,
                                           quantil_min_baseline=10,
                                           dview=dview)
    Cn = Cns.max(axis=0)
    cnm.estimates.plot_contours(img=Cn)

    # %% load memory mapped file
    Yr, dims, T = cm.load_memmap(cnm.mmap_file)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')

    # %% refit
    cnm2 = cnm.refit(images, dview=dview)

    # %% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier (this will pick up only neurons
    #           and filter out active processes)

    min_SNR = 2  # peak SNR for accepted components (if above this, acept)
    rval_thr = 0.85  # space correlation threshold (if above this, accept)
    use_cnn = True  # use the CNN classifier
    min_cnn_thr = 0.99  # if cnn classifier predicts below this value, reject
    cnn_lowest = 0.1  # neurons with cnn probability lower than this value are rejected

    cnm2.params.set(
        'quality', {
            'min_SNR': min_SNR,
            'rval_thr': rval_thr,
            'use_cnn': use_cnn,
            'min_cnn_thr': min_cnn_thr,
            'cnn_lowest': cnn_lowest
        })

    cnm2.estimates.evaluate_components(images, cnm2.params, dview=dview)

    # %% visualize selected and rejected components
    cnm2.estimates.plot_contours(img=Cn, idx=cnm2.estimates.idx_components)
    # %% visualize selected components
    cnm2.estimates.view_components(images,
                                   idx=cnm2.estimates.idx_components,
                                   img=Cn)
    #%% only select high quality components (destructive)
    # cnm2.estimates.select_components(use_object=True)
    # cnm2.estimates.plot_contours(img=Cn)
    #%% save results
    cnm2.estimates.Cn = Cn
    cnm2.save(cnm2.mmap_file[:-4] + 'hdf5')

    # %% play movie with results (original, reconstructed, amplified residual)
    cnm2.estimates.play_movie(images, magnification=4)

    # %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)

    log_files = glob.glob('Yr*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
Exemplo n.º 22
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    #%% First setup some parameters

    # dataset dependent parameters
    display_images = False  # Set this to true to show movies and plots
    fname = ['Sue_2x_3000_40_-46.tif']  # filename to be processed
    fr = 30  # imaging rate in frames per second
    decay_time = 0.4  # length of a typical transient in seconds

    # motion correction parameters
    niter_rig = 1  # number of iterations for rigid motion correction
    max_shifts = (6, 6)  # maximum allow rigid shift
    # for parallelization split the movies in  num_splits chuncks across time
    splits_rig = 56
    # start a new patch for pw-rigid motion correction every x pixels
    strides = (48, 48)
    # overlap between pathes (size of patch strides+overlaps)
    overlaps = (24, 24)
    # for parallelization split the movies in  num_splits chuncks across time
    splits_els = 56
    upsample_factor_grid = 4  # upsample factor to avoid smearing when merging patches
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    # parameters for source extraction and deconvolution
    p = 1  # order of the autoregressive system
    gnb = 2  # number of global background components
    merge_thresh = 0.8  # merging threshold, max correlation allowed
    # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    rf = 15
    stride_cnmf = 6  # amount of overlap between the patches in pixels
    K = 4  # number of components per patch
    gSig = [4, 4]  # expected half size of neurons
    # initialization method (if analyzing dendritic data using 'sparse_nmf')
    init_method = 'greedy_roi'
    is_dendrites = False  # flag for analyzing dendritic data
    # sparsity penalty for dendritic data analysis through sparse NMF
    alpha_snmf = None

    # parameters for component evaluation
    min_SNR = 2.5  # signal to noise ratio for accepting a component
    rval_thr = 0.8  # space correlation threshold for accepting a component
    cnn_thr = 0.8  # threshold for CNN based classifier

    #%% download the dataset if it's not present in your folder
    if fname[0] in ['Sue_2x_3000_40_-46.tif', 'demoMovie.tif']:
        fname = [download_demo(fname[0])]

#%% play the movie
# playing the movie using opencv. It requires loading the movie in memory. To
# close the video press q

    m_orig = cm.load_movie_chain(fname[:1])
    downsample_ratio = 0.2
    offset_mov = -np.min(m_orig[:100])
    moviehandle = m_orig.resize(1, 1, downsample_ratio)
    if display_images:
        moviehandle.play(gain=10, offset=offset_mov, fr=30, magnification=2)

#%% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    #%%% MOTION CORRECTION
    # first we create a motion correction object with the parameters specified
    min_mov = cm.load(fname[0], subindices=range(200)).min()
    # this will be subtracted from the movie to make it non-negative

    mc = MotionCorrect(fname[0],
                       min_mov,
                       dview=dview,
                       max_shifts=max_shifts,
                       niter_rig=niter_rig,
                       splits_rig=splits_rig,
                       strides=strides,
                       overlaps=overlaps,
                       splits_els=splits_els,
                       upsample_factor_grid=upsample_factor_grid,
                       max_deviation_rigid=max_deviation_rigid,
                       shifts_opencv=True,
                       nonneg_movie=True)
    # note that the file is not loaded in memory

    #%% Run piecewise-rigid motion correction using NoRMCorre
    mc.motion_correct_pwrigid(save_movie=True)
    m_els = cm.load(mc.fname_tot_els)
    bord_px_els = np.ceil(
        np.maximum(np.max(np.abs(mc.x_shifts_els)),
                   np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
    # maximum shift to be used for trimming against NaNs
    #%% compare with original movie
    moviehandle = cm.concatenate([
        m_orig.resize(1, 1, downsample_ratio) + offset_mov,
        m_els.resize(1, 1, downsample_ratio)
    ],
                                 axis=2)
    display_images = False
    if display_images:
        moviehandle.play(fr=60, q_max=99.5, magnification=2,
                         offset=0)  # press q to exit

#%% MEMORY MAPPING
# memory map the file in order 'C'
    fnames = mc.fname_tot_els  # name of the pw-rigidly corrected file.
    border_to_0 = bord_px_els  # number of pixels to exclude
    fname_new = cm.save_memmap(fnames,
                               base_name='memmap_',
                               order='C',
                               border_to_0=bord_px_els)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    d1, d2 = dims
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)

    #%% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    #%% RUN CNMF ON PATCHES

    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0)
    t1 = time.time()

    cnm = cnmf.CNMF(n_processes=1,
                    k=K,
                    gSig=gSig,
                    merge_thresh=merge_thresh,
                    p=0,
                    dview=dview,
                    rf=rf,
                    stride=stride_cnmf,
                    memory_fact=1,
                    method_init=init_method,
                    alpha_snmf=alpha_snmf,
                    only_init_patch=False,
                    gnb=gnb,
                    border_pix=bord_px_els)
    cnm = cnm.fit(images)

    #%% plot contours of found components
    Cn = cm.local_correlations(images.transpose(1, 2, 0))
    Cn[np.isnan(Cn)] = 0
    plt.figure()
    crd = plot_contours(cnm.A, Cn, thr=0.9)
    plt.title('Contour plots of found components')

    #%% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier

    idx_components, idx_components_bad, SNR_comp, r_values, cnn_preds = \
        estimate_components_quality_auto(images, cnm.A, cnm.C, cnm.b, cnm.f,
                                         cnm.YrA, fr, decay_time, gSig, dims,
                                         dview=dview, min_SNR=min_SNR,
                                         r_values_min=rval_thr, use_cnn=False,
                                         thresh_cnn_min=cnn_thr)

    #%% PLOT COMPONENTS

    if display_images:
        plt.figure()
        plt.subplot(121)
        crd_good = cm.utils.visualization.plot_contours(cnm.A[:,
                                                              idx_components],
                                                        Cn,
                                                        thr=.8,
                                                        vmax=0.75)
        plt.title('Contour plots of accepted components')
        plt.subplot(122)
        crd_bad = cm.utils.visualization.plot_contours(
            cnm.A[:, idx_components_bad], Cn, thr=.8, vmax=0.75)
        plt.title('Contour plots of rejected components')

#%% VIEW TRACES (accepted and rejected)

    if display_images:
        view_patches_bar(Yr,
                         cnm.A.tocsc()[:, idx_components],
                         cnm.C[idx_components],
                         cnm.b,
                         cnm.f,
                         dims[0],
                         dims[1],
                         YrA=cnm.YrA[idx_components],
                         img=Cn)

        view_patches_bar(Yr,
                         cnm.A.tocsc()[:, idx_components_bad],
                         cnm.C[idx_components_bad],
                         cnm.b,
                         cnm.f,
                         dims[0],
                         dims[1],
                         YrA=cnm.YrA[idx_components_bad],
                         img=Cn)

#%% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    A_in, C_in, b_in, f_in = cnm.A[:, idx_components], cnm.C[
        idx_components], cnm.b, cnm.f
    cnm2 = cnmf.CNMF(n_processes=1,
                     k=A_in.shape[-1],
                     gSig=gSig,
                     p=p,
                     dview=dview,
                     merge_thresh=merge_thresh,
                     Ain=A_in,
                     Cin=C_in,
                     b_in=b_in,
                     f_in=f_in,
                     rf=None,
                     stride=None,
                     gnb=gnb,
                     method_deconvolution='oasis',
                     check_nan=True)

    cnm2 = cnm2.fit(images)

    #%% Extract DF/F values

    F_dff = detrend_df_f(cnm2.A,
                         cnm2.b,
                         cnm2.C,
                         cnm2.f,
                         YrA=cnm2.YrA,
                         quantileMin=8,
                         frames_window=250)

    #%% Show final traces
    cnm2.view_patches(Yr, dims=dims, img=Cn)

    #%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

#%% reconstruct denoised movie
    denoised = cm.movie(cnm2.A.dot(cnm2.C) + cnm2.b.dot(cnm2.f)).reshape(
        dims + (-1, ), order='F').transpose([2, 0, 1])

    #%% play along side original data
    moviehandle = cm.concatenate([
        m_els.resize(1, 1, downsample_ratio),
        denoised.resize(1, 1, downsample_ratio)
    ],
                                 axis=2)
    if display_images:
        moviehandle.play(fr=60, gain=15, magnification=2,
                         offset=0)  # press q to exit
Exemplo n.º 23
0
print(('using ' + str(n_processes) + ' processes'))
#%% start cluster for efficient computation
single_thread = False

if single_thread:
    dview = None
else:
    try:
        c.close()
    except:
        print('C was not existing, creating one')
    print("Stopping  cluster to avoid unnencessary use of memory....")
    sys.stdout.flush()
    if backend == 'SLURM':
        try:
            cm.stop_server(is_slurm=True)
        except:
            print('Nothing to stop')
        slurm_script = '/mnt/xfs1/home/agiovann/SOFTWARE/Constrained_NMF/SLURM/slurmStart.sh'
        cm.start_server(slurm_script=slurm_script)
        pdir, profile = os.environ['IPPPDIR'], os.environ['IPPPROFILE']
        c = Client(ipython_dir=pdir, profile=profile)
    else:
        cm.stop_server()
        cm.start_server()
        c = Client()

    print(('Using ' + str(len(c)) + ' processes'))
    dview = c[:len(c)]
#%% FOR LOADING ALL TIFF FILES IN A FILE AND SAVING THEM ON A SINGLE MEMORY MAPPABLE FILE
Exemplo n.º 24
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    #%% start a cluster

    c, dview, n_processes =\
        cm.cluster.setup_cluster(backend='local', n_processes=None,
                                 single_thread=False)

    #%% save files to be processed

    # This datafile is distributed with Caiman
    fnames = [
        os.path.join(caiman_datadir(), 'example_movies', 'demoMovie.tif')
    ]
    # location of dataset  (can actually be a list of filed to be concatenated)
    add_to_movie = -np.min(cm.load(fnames[0],
                                   subindices=range(200))).astype(float)
    # determine minimum value on a small chunk of data
    add_to_movie = np.maximum(add_to_movie, 0)
    # if minimum is negative subtract to make the data non-negative
    base_name = 'Yr'
    fname_new = cm.save_memmap(fnames,
                               dview=dview,
                               base_name=base_name,
                               order='C',
                               add_to_movie=add_to_movie)

    #%% LOAD MEMORY MAPPABLE FILE
    Yr, dims, T = cm.load_memmap(fname_new)
    d1, d2 = dims
    images = np.reshape(Yr.T, [T] + list(dims), order='F')

    #%% play movie, press q to quit
    play_movie = False
    if play_movie:
        cm.movie(images[1400:]).play(fr=50, magnification=4, gain=3.)

#%% correlation image. From here infer neuron size and density
    Cn = cm.movie(images).local_correlations(swap_dim=False)
    plt.imshow(Cn, cmap='gray')
    plt.title('Correlation Image')

    #%% set up some parameters

    is_patches = True  # flag for processing in patches or not

    if is_patches:  # PROCESS IN PATCHES AND THEN COMBINE
        rf = 10  # half size of each patch
        stride = 4  # overlap between patches
        K = 4  # number of components in each patch
    else:  # PROCESS THE WHOLE FOV AT ONCE
        rf = None  # setting these parameters to None
        stride = None  # will run CNMF on the whole FOV
        K = 30  # number of neurons expected (in the whole FOV)

    gSig = [6, 6]  # expected half size of neurons
    merge_thresh = 0.80  # merging threshold, max correlation allowed
    p = 2  # order of the autoregressive system
    gnb = 2  # global background order

    #%% Now RUN CNMF
    cnm = cnmf.CNMF(n_processes,
                    method_init='greedy_roi',
                    k=K,
                    gSig=gSig,
                    merge_thresh=merge_thresh,
                    p=p,
                    dview=dview,
                    gnb=gnb,
                    rf=rf,
                    stride=stride,
                    rolling_sum=False)
    cnm = cnm.fit(images)

    #%% plot contour plots of components

    plt.figure()
    crd = cm.utils.visualization.plot_contours(cnm.A, Cn, thr=0.9)
    plt.title('Contour plots of components')

    #%%
    A_in, C_in, b_in, f_in = cnm.A[:, :], cnm.C[:], cnm.b, cnm.f
    cnm2 = cnmf.CNMF(n_processes=1,
                     k=A_in.shape[-1],
                     gSig=gSig,
                     p=p,
                     dview=dview,
                     merge_thresh=merge_thresh,
                     Ain=A_in,
                     Cin=C_in,
                     b_in=b_in,
                     f_in=f_in,
                     rf=None,
                     stride=None,
                     gnb=gnb,
                     method_deconvolution='oasis',
                     check_nan=True)

    cnm2 = cnm2.fit(images)
    #%% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier (this will pick up only neurons
    #           and filter out active processes)
    fr = 10  # approximate frame rate of data
    decay_time = 5.0  # length of transient
    min_SNR = 2.5  # peak SNR for accepted components (if above this, acept)
    rval_thr = 0.90  # space correlation threshold (if above this, accept)
    use_cnn = True  # use the CNN classifier
    min_cnn_thr = 0.95  # if cnn classifier predicts below this value, reject

    idx_components, idx_components_bad, SNR_comp, r_values, cnn_preds = \
        estimate_components_quality_auto(images, cnm.A, cnm.C, cnm.b, cnm.f,
                                         cnm.YrA, fr, decay_time, gSig, dims,
                                         dview=dview, min_SNR=min_SNR,
                                         r_values_min=rval_thr, use_cnn=use_cnn,
                                         thresh_cnn_min=min_cnn_thr)
    #%% visualize selected and rejected components
    plt.figure()
    plt.subplot(1, 2, 1)
    cm.utils.visualization.plot_contours(cnm2.A[:, idx_components],
                                         Cn,
                                         thr=0.9)
    plt.title('Selected components')
    plt.subplot(1, 2, 2)
    plt.title('Discaded components')
    cm.utils.visualization.plot_contours(cnm2.A[:, idx_components_bad],
                                         Cn,
                                         thr=0.9)

    #%%
    plt.figure()
    crd = cm.utils.visualization.plot_contours(cnm2.A.tocsc()[:,
                                                              idx_components],
                                               Cn,
                                               thr=0.9)
    plt.title('Contour plots of components')
    #%% visualize selected components
    cm.utils.visualization.view_patches_bar(Yr,
                                            cnm2.A.tocsc()[:, idx_components],
                                            cnm2.C[idx_components, :],
                                            cnm2.b,
                                            cnm2.f,
                                            dims[0],
                                            dims[1],
                                            YrA=cnm2.YrA[idx_components, :],
                                            img=Cn)
    #%% STOP CLUSTER and clean up log files
    cm.stop_server()

    log_files = glob.glob('Yr*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
Exemplo n.º 25
0
def run(
    file_path,
    n_cpus,
    motion_correct: bool = True,
    mc_settings: dict = {},
    job_name: str = "job",
    output_directory: str = "",
):
    mkl = os.environ.get("MKL_NUM_THREADS")
    blas = os.environ.get("OPENBLAS_NUM_THREADS")
    vec = os.environ.get("VECLIB_MAXIMUM_THREADS")
    print(f"MKL: {mkl}")
    print(f"blas: {blas}")
    print(f"vec: {vec}")

    # we import the pipeline upon running so they aren't required for all installs
    import caiman as cm
    from caiman.motion_correction import MotionCorrect
    from caiman.source_extraction.cnmf import params as params

    # print the directory caiman is imported from
    caiman_path = os.path.abspath(cm.__file__)
    print(f"caiman path: {caiman_path}")
    sys.stdout.flush()

    # setup the logger
    logger_file = os.path.join(output_directory, "caiman.log")
    logging.basicConfig(
        format=LOGGER_FORMAT,
        filename=logger_file,
        filemode="w",
        level=logging.DEBUG,
    )

    # if indices to perform mcorr are set, format them
    if "indices" in mc_settings:
        indices = mc_settings["indices"]

        indices_formatted = ()
        for axis_slice in indices:
            start = axis_slice[0]
            stop = axis_slice[1]
            if len(axis_slice) == 3:
                step = axis_slice[2]
            else:
                step = 1
            indices_formatted += (slice(start, stop, step), )
        mc_settings["indices"] = indices_formatted
    # load and update the pipeline settings
    mc_parameters = DEFAULT_MCORR_SETTINGS
    for k, v in mc_settings.items():
        mc_parameters[k] = v

    opts = params.CNMFParams(params_dict=mc_parameters)

    # get the filenames
    if os.path.isfile(file_path):
        print(file_path)
        fnames = [file_path]
    else:
        file_pattern = os.path.join(file_path, "*.tif*")
        fnames = sorted(glob.glob(file_pattern))
    print(fnames)
    opts.set("data", {"fnames": fnames})

    if n_cpus > 1:
        print("starting server")
        # start the server
        n_proc = np.max([(n_cpus - 1), 1])
        c, dview, n_processes = cm.cluster.setup_cluster(backend="local",
                                                         n_processes=n_proc,
                                                         single_thread=False)
        sleep(30)
    else:
        print("multiprocessing disabled")
        dview = None
        n_processes = 1
    print(n_processes)
    print("starting motion correction")
    sys.stdout.flush()

    mc = MotionCorrect(fnames, dview=dview, **opts.get_group("motion"))
    mc.motion_correct(save_movie=True)
    pw_rigid = mc_parameters["pw_rigid"]
    fname_mc = mc.fname_tot_els if pw_rigid else mc.fname_tot_rig
    if pw_rigid:
        bord_px = np.ceil(
            np.maximum(np.max(np.abs(mc.x_shifts_els)),
                       np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
    else:
        bord_px = np.ceil(np.max(np.abs(mc.shifts_rig))).astype(np.int)

    border_nan = mc_parameters["border_nan"]
    bord_px = 0 if border_nan == "copy" else bord_px
    _ = cm.save_memmap(fname_mc,
                       base_name="memmap_",
                       order="C",
                       border_to_0=bord_px)

    # if motion correction was performed, save the file
    # we save as hdf5 for better reading performance
    # downstream
    if motion_correct:
        print("saving motion corrected file")
        results_filebase = os.path.join(output_directory, job_name)
        mcorr_fname = results_filebase + "_mcorr.hdf5"
        dataset_name = opts.data["var_name_hdf5"]
        # fnames = opts.data["fnames"]
        # memmap_files = []
        # for f in fnames:
        #     if isinstance(f, bytes):
        #         f = f.decode()
        #     base_file = os.path.splitext(f)[0]
        #     if pw_rigid:
        #         memmap_pattern = base_file + "*_els_*"
        #     else:
        #         memmap_pattern = base_file + "*_rig_*"
        #     memmap_files += sorted(glob.glob(memmap_pattern))

        if pw_rigid:
            memmap_files = mc.fname_tot_els
        else:
            memmap_files = mc.fname_tot_rig

        # get the frame shape
        mov = cm.load(memmap_files[0])
        frame_shape = mov.shape[-2::]

        write_hdf5_movie(
            movie_name=mcorr_fname,
            memmap_files=memmap_files,
            frame_shape=frame_shape,
            dataset_name=dataset_name,
            compression="gzip",
        )

    # save the parameters in the same dir as the results
    final_params = opts.to_dict()
    params_file = os.path.join(output_directory, "all_mcorr_parameters.pkl")
    with open(params_file, "wb") as fp:
        pickle.dump(final_params, fp)

    # deleting mcorr unused memmap files
    if pw_rigid:
        memmap_files = mc.fname_tot_els
    else:
        memmap_files = mc.fname_tot_rig
    print(f"deleting {memmap_files}")
    for f in memmap_files:
        os.remove(f)

    print("stopping server")
    cm.stop_server(dview=dview)
Exemplo n.º 26
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %%  download and list all files to be processed
    #
    ## folder inside ./example_movies where files will be saved
    #fld_name = 'Mesoscope'
    #download_demo('Tolias_mesoscope_1.hdf5', fld_name)
    #download_demo('Tolias_mesoscope_2.hdf5', fld_name)
    #download_demo('Tolias_mesoscope_3.hdf5', fld_name)
    #
    ## folder where files are located
    #folder_name = os.path.join(caiman_datadir(), 'example_movies', fld_name)
    #extension = 'hdf5'                                  # extension of files
    ## read all files to be processed
    #fnames = glob.glob(folder_name + '/*' + extension)
    #
    ## your list of files should look something like this
    #logging.info(fnames)
    #
    #

    start_t = time.time()

    #f_dir = 'E:\data\V1\proc_data\\'
    #f_dir = 'E:\\data\\Auditory\\caiman_out_multiplane\\'
    #f_dir = 'F:\\data\\Auditory\\caiman_out\\movies\\'
    f_dir = 'C:\\Users\\ys2605\\Desktop\\stuff\\AC_data\\caiman_data\\movies\\'
    #f_name = 'A2_freq_grating1_10_2_18_OA_cut'
    #f_dir = 'C:\\Users\\rylab_dataPC\\Desktop\\Yuriy\\DD_data\\proc_data\\'
    #f_name = 'vmmn2_9_16_19a_OA_cut'
    #f_name = 'ammn_2_dplanes2_10_14_19_OA_mpl1_cut';
    f_name = 'A1_ammn_3plt_2plm2_12_27_20_mpl3_cut'
    f_ext = 'hdf5'
    fnames = [f_dir + f_name + '.' + f_ext]

    # %%   Set up some parameters

    fr = 15.5455  # frame rate (Hz) 3pl + 4ms = 15.5455
    decay_time = 0.5  # 2 for s 0.5 for f # approximate length of transient event in seconds
    gSig = (5, 5)  # expected half size of neurons
    p = 2  # order of AR indicator dynamics
    min_SNR = 1  # minimum SNR for accepting new components
    ds_factor = 1  # spatial downsampling factor (increases speed but may lose some fine structure)
    gnb = 2  # number of background components
    gSig = tuple(np.ceil(
        np.array(gSig) /
        ds_factor).astype('int'))  # recompute gSig if downsampling is involved
    mot_corr = True  # flag for online motion correction
    pw_rigid = False  # flag for pw-rigid motion correction (slower but potentially more accurate)
    max_shifts_online = 6  # maximum allowed shift during motion correction
    sniper_mode = True  # use a CNN to detect new neurons (o/w space correlation)
    rval_thr = 0.9  # soace correlation threshold for candidate components
    # set up some additional supporting parameters needed for the algorithm
    # (these are default values but can change depending on dataset properties)
    init_batch = 1000  # number of frames for initialization (presumably from the first file)
    K = 2  # initial number of components
    epochs = 2  # number of passes over the data
    show_movie = True  # show the movie as the data gets processed
    merge_thr = 0.8

    params_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'gSig': gSig,
        'p': p,
        'min_SNR': min_SNR,
        'rval_thr': rval_thr,
        'merge_thr': merge_thr,
        'ds_factor': ds_factor,
        'nb': gnb,
        'motion_correct': mot_corr,
        'init_batch': init_batch,
        'init_method': 'bare',
        'normalize': True,
        'sniper_mode': sniper_mode,
        'K': K,
        'epochs': epochs,
        'max_shifts_online': max_shifts_online,
        'pw_rigid': pw_rigid,
        'dist_shape_update': True,
        'min_num_trial': 10,
        'show_movie': show_movie
    }

    # 'path_to_model': 'C:\Users\ys2605\Anaconda3\envs\caiman2\share\caiman\model',

    opts = cnmf.params.CNMFParams(params_dict=params_dict)

    # %% fit online

    cnm = cnmf.online_cnmf.OnACID(params=opts)

    cnm.fit_online()

    # %% plot contours (this may take time)
    logging.info('Number of components: ' + str(cnm.estimates.A.shape[-1]))
    images = cm.load(fnames)
    Cn = images.local_correlations(swap_dim=False, frames_per_chunk=500)
    cnm.estimates.plot_contours(img=Cn, display_numbers=False)

    # %% view components
    cnm.estimates.view_components(img=Cn)

    # %% plot timing performance (if a movie is generated during processing, timing
    # will be severely over-estimated)

    T_motion = 1e3 * np.array(cnm.t_motion)
    T_detect = 1e3 * np.array(cnm.t_detect)
    T_shapes = 1e3 * np.array(cnm.t_shapes)
    T_track = 1e3 * np.array(cnm.t_online) - T_motion - T_detect - T_shapes
    plt.figure()
    plt.stackplot(np.arange(len(T_motion)), T_motion, T_track, T_detect,
                  T_shapes)
    plt.legend(labels=['motion', 'tracking', 'detect', 'shapes'], loc=2)
    plt.title('Processing time allocation')
    plt.xlabel('Frame #')
    plt.ylabel('Processing time [ms]')
    #%% RUN IF YOU WANT TO VISUALIZE THE RESULTS (might take time)
    if 'dview' in locals():
        cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    if opts.online['motion_correct']:
        shifts = cnm.estimates.shifts[-cnm.estimates.C.shape[-1]:]
        if not opts.motion['pw_rigid']:
            memmap_file = cm.motion_correction.apply_shift_online(
                images, shifts, save_base_name=(f_dir + f_name + 'MC'))
        else:
            mc = cm.motion_correction.MotionCorrect(fnames,
                                                    dview=dview,
                                                    **opts.get_group('motion'))

            mc.x_shifts_els = [[sx[0] for sx in sh] for sh in shifts]
            mc.y_shifts_els = [[sx[1] for sx in sh] for sh in shifts]

            memmap_file = mc.apply_shifts_movie(fnames,
                                                rigid_shifts=False,
                                                save_memmap=True,
                                                save_base_name=(f_dir +
                                                                f_name + 'MC'))
    else:  # To do: apply non-rigid shifts on the fly
        memmap_file = images.save(fnames[0][:-4] + 'mmap')

    cnm.mmap_file = memmap_file
    Yr, dims, T = cm.load_memmap(memmap_file)

    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    min_SNR = 2  # peak SNR for accepted components (if above this, acept)
    rval_thr = 0.85  # space correlation threshold (if above this, accept)
    use_cnn = True  # use the CNN classifier
    min_cnn_thr = 0.99  # if cnn classifier predicts below this value, reject
    cnn_lowest = 0.1  # neurons with cnn probability lower than this value are rejected

    cnm.params.set(
        'quality', {
            'min_SNR': min_SNR,
            'rval_thr': rval_thr,
            'use_cnn': use_cnn,
            'min_cnn_thr': min_cnn_thr,
            'cnn_lowest': cnn_lowest
        })

    cnm.estimates.evaluate_components(images, cnm.params, dview=dview)
    cnm.estimates.Cn = Cn
    cnm.save(
        os.path.splitext(fnames[0])[0] + '_' + str(gSig[0]) +
        'gsig_results.hdf5')

    dview.terminate()

    duration = time.time() - start_t
    print(duration / 60)
Exemplo n.º 27
0
def run(work_dir: str, UUID: str, save_temp_files: str):
    logging.basicConfig(
        stream=sys.stdout,
        level=logging.DEBUG,
        format=
        "%(relativeCreated)12d [%(filename)s:%(funcName)20s():%(lineno)s] [%(process)d] %(message)s"
    )

    start_time = time()

    batch_dir = os.environ['CURR_BATCH_DIR']
    save_temp_files = bool(int(save_temp_files))

    output = {'status': 0, 'output_info': ''}
    n_processes = int(os.environ['_MESMERIZE_N_THREADS'])

    filepath = os.path.join(work_dir, UUID)

    imgpath = f'{filepath}_input.tiff'
    input_params = pickle.load(open(f'{filepath}.params', 'rb'))

    print('******** Creating process pool *********')
    c, dview, n_processes = setup_cluster(backend='local',
                                          n_processes=n_processes,
                                          single_thread=False,
                                          ignore_preexisting=True)

    try:
        if input_params['use_memmap']:
            memmap_uuid = input_params['memmap_uuid']

            memmap_batchdir = glob(
                os.path.join(batch_dir, f'memmap-{memmap_uuid}*.mmap'))

            # Check batch dir
            if len(memmap_batchdir) > 0:
                memmap_path = memmap_batchdir[0]
                print(
                    f'********** Found existing memmap in batch dir: {memmap_path} ********** '
                )

                # copy to work dir
                if not os.path.samefile(batch_dir, work_dir):
                    print('**** Copying memmap to work dir ****')
                    shutil.copy(memmap_path, work_dir)
                    memmap_path = glob(
                        os.path.join(work_dir,
                                     f'memmap-{memmap_uuid}*.mmap'))[0]

            else:
                # remake the memmap with the same UUID so that future batch items can rely on it
                print(
                    '********** Memmap not found, re-making memmap with the same UUID **********'
                )
                memmap_path = cm.save_memmap([imgpath],
                                             base_name=f'memmap-{memmap_uuid}',
                                             is_3D=True,
                                             order='C',
                                             dview=dview)

        else:
            print('********** Making memmap **********')
            memmap_path = cm.save_memmap([imgpath],
                                         base_name=f'memmap-{UUID}',
                                         is_3D=True,
                                         order='C',
                                         dview=dview)

        print(f'Using memmap:\n{memmap_path}')

        print('********** Loading memmap **********')
        Yr, dims, T = cm.load_memmap(memmap_path)
        Y = np.reshape(Yr, dims + (T, ), order='F')

        images = np.reshape(Yr.T, [T] + list(dims), order='F')

        if input_params['use_patches']:
            cnm = cnmf.CNMF(n_processes=n_processes,
                            dview=dview,
                            only_init_patch=True,
                            **input_params['cnmf_kwargs'])

        else:
            cnm = cnmf.CNMF(n_processes,
                            dview=dview,
                            **input_params['cnmf_kwargs'])

        cnm.fit(images)

        print('Number of components:' + str(cnm.estimates.A.shape[-1]))

        cnm.params.change_params(
            params_dict={
                **input_params['eval_kwargs'], 'use_cnn': False
            })

        cnm.estimates.evaluate_components(images, cnm.params, dview=dview)

        if input_params['refit']:
            cnm.params.set('temporal', {'p': input_params['cnmf_kwargs']['p']})
            cnm_ = cnm.refit(images)
        else:
            cnm_ = cnm

        out_filename = f'{UUID}_results.hdf5'
        cnm_.save(out_filename)

        output_files = [out_filename]

        # Save the memmap
        if save_temp_files:
            print("***** Keeping memmap file *****")

            # copy to batch dir if batch_dir != work_dir
            if not os.path.samefile(batch_dir, work_dir):
                print("***** Copying memmap file to batch dir *****")
                shutil.copy(memmap_path, batch_dir)

        # Delete the memmap from the work dir
        if not os.path.samefile(batch_dir, work_dir):
            print("***** Deleting memmap files from work dir *****")
            try:
                os.remove(memmap_path)
            except:
                pass

        output.update({
            'output': UUID,
            'status': 1,
            'output_files': output_files,
            'saved_memmap': save_temp_files
        })

    except Exception as e:
        output.update({'status': 0, 'output_info': traceback.format_exc()})

    cm.stop_server(dview=dview)

    end_time = time()
    processing_time = (end_time - start_time) / 60
    output.update({'processing_time': processing_time})

    json.dump(output, open(filepath + '.out', 'w'))
Exemplo n.º 28
0
print(('using ' + str(n_processes) + ' processes'))
#%% start cluster for efficient computation
single_thread = False

if single_thread:
    dview = None
else:
    try:
        c.close()
    except:
        print('C was not existing, creating one')
    print("Stopping  cluster to avoid unnencessary use of memory....")
    sys.stdout.flush()
    if backend == 'SLURM':
        try:
            cm.stop_server(is_slurm=True)
        except:
            print('Nothing to stop')
        slurm_script = '/mnt/xfs1/home/agiovann/SOFTWARE/Constrained_NMF/SLURM/slurmStart.sh'
        cm.start_server(slurm_script=slurm_script)
        pdir, profile = os.environ['IPPPDIR'], os.environ['IPPPROFILE']
        c = Client(ipython_dir=pdir, profile=profile)
    else:
        cm.stop_server()
        cm.start_server()
        c = Client()

    print(('Using ' + str(len(c)) + ' processes'))
    dview = c[:len(c)]
#%% set parameters and create template by rigid motion correction
t1 = time.time()
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %%  Load demo movie and ROIs
    fnames = download_demo('demo_voltage_imaging.hdf5', 'volpy')  # file path to movie file (will download if not present)
    path_ROIs = download_demo('demo_voltage_imaging_ROIs.hdf5', 'volpy')  # file path to ROIs file (will download if not present)

    # %% Setup some parameters for data and motion correction
    # dataset parameters
    fr = 400                                        # sample rate of the movie
    ROIs = None                                     # Region of interests
    index = None                                    # index of neurons
    weights = None                                  # reuse spatial weights by 
                                                    # opts.change_params(params_dict={'weights':vpy.estimates['weights']})
    # motion correction parameters
    pw_rigid = False                                # flag for pw-rigid motion correction
    gSig_filt = (3, 3)                              # size of filter, in general gSig (see below),
                                                    # change this one if algorithm does not work
    max_shifts = (5, 5)                             # maximum allowed rigid shift
    strides = (48, 48)                              # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24)                             # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3                         # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'index': index,
        'ROIs': ROIs,
        'weights': weights,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

    # %% start a cluster for parallel processing

    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

    # %%% MOTION CORRECTION
    # Create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run piecewise rigid motion correction
    mc.motion_correct(save_movie=True)
    dview.terminate()

    # %% motion correction compared with original movie
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        m_rig = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
                                      m_rig.resize(1, 1, ds_ratio)], axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit

    # % movie subtracted from the mean
        m_orig2 = (m_orig - np.mean(m_orig, axis=0))
        m_rig2 = (m_rig - np.mean(m_rig, axis=0))
        moviehandle1 = cm.concatenate([m_orig2.resize(1, 1, ds_ratio),
                                       m_rig2.resize(1, 1, ds_ratio)], axis=2)
        moviehandle1.play(fr=60, q_max=99.5, magnification=2)

   # %% Memory Mapping
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    fname_new = cm.save_memmap_join(mc.mmap_file, base_name='memmap_',
                               add_to_mov=border_to_0, dview=dview, n_chunks=10)

    dview.terminate()

    # %% change fnames to the new motion corrected one
    opts.change_params(params_dict={'fnames': fname_new})

    # %% SEGMENTATION
    # Create mean and correlation image
    use_maskrcnn = True  # set to True to predict the ROIs using the mask R-CNN
    if not use_maskrcnn:                 # use manual annotations
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]  # load ROIs
        opts.change_params(params_dict={'ROIs': ROIs,
                                        'index': list(range(ROIs.shape[0])),
                                        'method': 'SpikePursuit'})
    else:
        m = cm.load(mc.mmap_file[0], subindices=slice(0, 20000))
        m.fr = fr
        img = m.mean(axis=0)
        img = (img-np.mean(img))/np.std(img)
        m1 = m.computeDFF(secsWindow=1, in_place=True)[0]
        m = m - m1
        Cn = m.local_correlations(swap_dim=False, eight_neighbours=True)
        img_corr = (Cn-np.mean(Cn))/np.std(Cn)
        summary_image = np.stack([img, img, img_corr], axis=2).astype(np.float32)
        del m
        del m1

        # %%
        # Mask R-CNN
        config = neurons.NeuronsConfig()

        class InferenceConfig(config.__class__):
            # Run detection on one image at a time
            GPU_COUNT = 1
            IMAGES_PER_GPU = 1
            DETECTION_MIN_CONFIDENCE = 0.7
            IMAGE_RESIZE_MODE = "pad64"
            IMAGE_MAX_DIM = 512
            RPN_NMS_THRESHOLD = 0.7
            POST_NMS_ROIS_INFERENCE = 1000

        config = InferenceConfig()
        config.display()
        model_dir = os.path.join(caiman_datadir(), 'model')
        DEVICE = "/cpu:0"  # /cpu:0 or /gpu:0
        with tf.device(DEVICE):
            model = modellib.MaskRCNN(mode="inference", model_dir=model_dir,
                                      config=config)
        weights_path = download_model('mask_rcnn')
        model.load_weights(weights_path, by_name=True)
        results = model.detect([summary_image], verbose=1)
        r = results[0]
        ROIs_mrcnn = r['masks'].transpose([2, 0, 1])

    # %% visualize the result
        display_result = False

        if display_result:
            _, ax = plt.subplots(1,1, figsize=(16,16))
            visualize.display_instances(summary_image, r['rois'], r['masks'], r['class_ids'], 
                                    ['BG', 'neurons'], r['scores'], ax=ax,
                                    title="Predictions")

    # %% set rois
        opts.change_params(params_dict={'ROIs':ROIs_mrcnn,
                                        'index':list(range(ROIs_mrcnn.shape[0])),
                                        'method':'SpikePursuit'})

    # %% Trace Denoising and Spike Extraction
    c, dview, n_processes = cm.cluster.setup_cluster(
            backend='local', n_processes=None, single_thread=False, maxtasksperchild=1)
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    # %% some visualization
    print(np.where(vpy.estimates['passedLocalityTest'])[0])    # neurons that pass locality test
    n = 0
    
    # Processed signal and spikes of neurons
    plt.figure()
    plt.plot(vpy.estimates['trace'][n])
    plt.plot(vpy.estimates['spikeTimes'][n],
             np.max(vpy.estimates['trace'][n]) * np.ones(vpy.estimates['spikeTimes'][n].shape),
             color='g', marker='o', fillstyle='none', linestyle='none')
    plt.title('signal and spike times')
    plt.show()

    # Location of neurons by Mask R-CNN or manual annotation
    plt.figure()
    if use_maskrcnn:
        plt.imshow(ROIs_mrcnn[n])
    else:
        plt.imshow(ROIs[n])
    mv = cm.load(fname_new)
    plt.imshow(mv.mean(axis=0),alpha=0.5)
    
    # Spatial filter created by algorithm
    plt.figure()
    plt.imshow(vpy.estimates['spatialFilter'][n])
    plt.colorbar()
    plt.title('spatial filter')
    plt.show()
    
    

    # %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
Exemplo n.º 30
0
def process_data(haussio_data,
                 mask=None,
                 p=2,
                 nrois_init=400,
                 roi_iceberg=0.9,
                 merge_unconnected=None):
    if mask is not None:
        raise RuntimeError("mask not supported in cnmf.process_data")

    fn_cnmf = haussio_data.dirname_comp + '_cnmf.mat'
    shapefn = os.path.join(haussio_data.dirname_comp,
                           haussio.THOR_RAW_FN[:-3] + "shape.npy")
    shape = np.load(shapefn)
    if len(shape) == 5:
        d1, d2 = shape[2], shape[3]
    else:
        d1, d2 = shape[1], shape[2]
    fn_mmap = get_mmap_name(haussio_data.dirname_comp + os.path.sep + 'Yr', d1,
                            d2, shape[0])

    tiffs_to_cnmf(haussio_data)
    if os.path.exists(fn_cnmf):
        resdict = loadmat(fn_cnmf)
        if "dFoF" in resdict.keys():
            A2 = resdict["A"]
            C2 = resdict["C"]
            YrA = resdict["YrA"]
            S2 = resdict["S"]
            dFoF = resdict["dFoF"]
            bl2 = resdict["bl"]
            f = resdict["f"]
            images = haussio_data.read_raw().squeeze()
        else:
            dFoF = None
    if not os.path.exists(fn_cnmf) or dFoF is None:
        c, dview, n_processes = cm.cluster.setup_cluster(
            backend='multiprocessing', n_processes=NCPUS, single_thread=False)

        Yr, dims, T = cm.load_memmap(fn_mmap, 'r+')
        d1, d2 = dims
        images = np.reshape(Yr.T, [T] + list(dims), order='F')

        fr = 1.0 / haussio_data.dt  # imaging rate in frames per second\n",
        decay_time = 0.4  # length of a typical transient in seconds\n",

        # parameters for source extraction and deconvolution\n",
        bord_px_els = 32  # maximum shift to be used for trimming against NaNs
        p = 1  # order of the autoregressive system\n",
        gnb = 2  # number of global background components\n",
        merge_thresh = 0.8  # merging threshold, max correlation allowed\n",
        rf = int(
            np.round(np.sqrt(d1 * d2) / nrois_init)
        )  # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50\n",
        if rf < 16:
            rf = 16
        stride_cnmf = 6  # amount of overlap between the patches in pixels\n",
        npatches = np.round(d1 / (rf * 2) * d2 / (rf * 2))
        K = nrois_init / npatches  # number of components per patch\n",
        if K < 2:
            K = 2
        print(rf, npatches, K)
        gSig = [8, 8]  # expected half size of neurons\n",
        init_method = 'greedy_roi'  # initialization method (if analyzing dendritic data using 'sparse_nmf')\n",
        is_dendrites = False  # flag for analyzing dendritic data\n",
        alpha_snmf = None  # sparsity penalty for dendritic data analysis through sparse NMF\n",

        # parameters for component evaluation\n",
        min_SNR = 2.5  # signal to noise ratio for accepting a component\n",
        rval_thr = 0.8  # space correlation threshold for accepting a component\n",
        cnn_thr = 0.8  # threshold for CNN based classifier"

        cnm = caiman_cnmf.CNMF(n_processes=1,
                               k=K,
                               gSig=gSig,
                               merge_thresh=merge_thresh,
                               p=0,
                               dview=dview,
                               rf=rf,
                               stride=stride_cnmf,
                               memory_fact=1,
                               method_init=init_method,
                               alpha_snmf=alpha_snmf,
                               only_init_patch=False,
                               gnb=gnb,
                               border_pix=bord_px_els)
        cnm = cnm.fit(images)

        idx_components, idx_components_bad, SNR_comp, r_values, cnn_preds = \
            estimate_components_quality_auto(images, cnm.A, cnm.C, cnm.b, cnm.f,
                                             cnm.YrA, fr, decay_time, gSig, dims,
                                             dview = dview, min_SNR=min_SNR,
                                             r_values_min = rval_thr, use_cnn = False,
                                             thresh_cnn_lowest = cnn_thr)
        A_in, C_in, b_in, f_in = cnm.A[:, idx_components], cnm.C[
            idx_components], cnm.b, cnm.f
        cnm2 = caiman_cnmf.CNMF(n_processes=1,
                                k=A_in.shape[-1],
                                gSig=gSig,
                                p=p,
                                dview=dview,
                                merge_thresh=merge_thresh,
                                Ain=A_in,
                                Cin=C_in,
                                b_in=b_in,
                                f_in=f_in,
                                rf=None,
                                stride=None,
                                gnb=gnb,
                                method_deconvolution='oasis',
                                check_nan=True)
        cnm2 = cnm2.fit(images)

        if merge_unconnected is not None:
            idx_merge = []
            for nroi, ca_roi in enumerate(cnm2.C):
                for nroi_compare_counter, ca_roi_compare in enumerate(
                        cnm2.C[nroi + 1:]):
                    nroi_compare = nroi_compare_counter + nroi + 1
                    if nroi_compare not in idx_merge:
                        correls = np.correlate(ca_roi,
                                               ca_roi_compare,
                                               mode='same')
                        correls /= np.sqrt(
                            np.dot(ca_roi, ca_roi) *
                            np.dot(ca_roi_compare, ca_roi_compare))
                        if correls.max() > merge_unconnected:
                            print("Merging ", nroi_compare)
                            idx_merge.append(nroi_compare)
            idx_no_merge = [
                idx for idx in range(cnm2.C.shape[0]) if idx not in idx_merge
            ]
        else:
            idx_no_merge = range(cnm2.C.shape[0])
        A2 = cnm2.A[:, idx_no_merge].tocsc()
        C2 = cnm2.C[idx_no_merge]
        YrA = cnm2.YrA[idx_no_merge]
        S2 = cnm2.S[idx_no_merge]
        dFoF = cnm2.detrend_df_f(frames_window=300)[idx_no_merge]
        # A: spatial components (ROIs)
        # C: denoised [Ca2+]
        # YrA: residuals ("noise", i.e. traces = C+YrA)
        # S: Spikes
        # f: temporal background
        savemat(
            fn_cnmf, {
                "A": A2,
                "C": C2,
                "YrA": YrA,
                "S": S2,
                "dFoF": dFoF,
                "bl": cnm2.b,
                "f": cnm2.f
            })
        dview.terminate()
        cm.stop_server()

    proj_fn = haussio_data.dirname_comp + "_proj.npy"
    if not os.path.exists(proj_fn):
        zproj = utils.zproject(images)
        np.save(proj_fn, zproj)
    else:
        zproj = np.load(proj_fn)

    logfiles = glob.glob("*LOG*")
    for logfile in logfiles:
        try:
            os.unlink(logfile)
        except OSError:
            pass

    polygons = contour(A2, images.shape[1], images.shape[2], thr=roi_iceberg)
    rois = ROIList([sima.ROI.ROI(polygons=poly) for poly in polygons])

    return rois, C2, zproj, S2, images, YrA
Exemplo n.º 31
0
def demix_and_deconvolve_with_cnmf(scan, num_components=200, AR_order=2,
                                   merge_threshold=0.8, num_processes=20,
                                   num_pixels_per_process=5000, block_size=10000,
                                   num_background_components=4, init_method='greedy_roi',
                                   soma_radius=(5, 5), snmf_alpha=None,
                                   init_on_patches=False, patch_downsampling_factor=None,
                                   percentage_of_patch_overlap=None):
    """ Extract spike train activity from multi-photon scans using CNMF.

    Uses constrained non-negative matrix factorization to find neurons/components
    (locations) and their fluorescence traces (activity) in a timeseries of images, and
    deconvolves them using an autoregressive model of the calcium impulse response
    function. See Pnevmatikakis et al., 2016 for details.

    Default values work alright for somatic images.

    :param np.array scan: 3-dimensional scan (image_height, image_width, num_frames).
    :param int num_components: An estimate of neurons/spatial components in the scan.
    :param int AR_order: Order of the autoregressive process used to model the impulse
        response function, e.g., 0 = no modelling; 2 = model rise plus exponential decay.
    :param int merge_threshold: Maximal temporal correlation allowed between activity of
        overlapping components before merging them.
    :param int num_processes: Number of processes to run in parallel. None for as many
        processes as available cores.
    :param int num_pixels_per_process: Number of pixels that a process handles each
        iteration.
    :param int block_size: 'number of pixels to process at the same time for dot product'
    :param int num_background_components:  Number of background components to use.
    :param string init_method: Initialization method for the components.
        'greedy_roi':Look for a gaussian-shaped patch, apply rank-1 NMF, store components,
            calculate residual scan and repeat for num_components.
        'sparse_nmf': Regularized non-negative matrix factorization (as impl. in sklearn)
        'local_nmf': ...
    :param (float, float) soma_radius: Estimated neuron radius (in pixels) in y and x.
        Used in'greedy_roi' initialization to define the size of the gaussian window.
    :param int snmf_alpha: Regularization parameter (alpha) for the sparse NMF (if used).
    :param bool init_on_patches: If True, run the initialization methods on small patches
        of the scan rather than on the whole image.
    :param int patch_downsampling_factor: Division to the image dimensions to obtain patch
        dimensions, e.g., if original size is 256 and factor is 10, patches will be 26x26
    :param int percentage_of_patch_overlap: Patches are sampled in a sliding window. This
        controls how much overlap is between adjacent patches (0 for none, 0.9 for 90%)

    :returns Location matrix (image_height x image_width x num_components). Inferred
        location of each component.
    :returns Activity matrix (num_components x num_frames). Inferred fluorescence traces
         (spike train convolved with the fitted impulse response function).
    :returns: Inferred location matrix for background components (image_height x
         image_width x num_background_components).
    :returns: Inferred activity matrix for background components (image_height x
        image_width x num_background_components).
    :returns: Raw fluorescence traces (num_components x num_frames) obtained from the
        scan minus activity from background and other components.
    :returns: Spike matrix (num_components x num_frames). Deconvolved spike activity.
    :returns: Autoregressive process coefficients (num_components x AR_order) used to
        model the calcium impulse response of each component:
            c(t) = c(t-1) * AR_coeffs[0] + c(t-2) * AR_coeffs[1] + ...

    ..note:: Based on code provided by Andrea Giovanucci.
    ..note:: The produced number of components is not exactly what you ask for because
        some components will be merged or deleted.
    ..warning:: Computation- and memory-intensive for big scans.
    """
    import caiman
    from caiman.source_extraction.cnmf import cnmf

    # Save as memory mapped file in F order (that's how caiman wants it)
    mmap_filename = _save_as_memmap(scan, base_name='/tmp/caiman', order='F').filename

    # 'Load' scan
    mmap_scan, (image_height, image_width), num_frames = caiman.load_memmap(mmap_filename)
    images = np.reshape(mmap_scan.T, (num_frames, image_height, image_width), order='F')

    # Start the ipyparallel cluster
    client, direct_view, num_processes = caiman.cluster.setup_cluster(
        n_processes=num_processes)

    # Optionally, run the initialization method in small patches to initialize components
    initial_A = None
    initial_C = None
    initial_f = None
    if init_on_patches:
        # Calculate patch size (only square patches allowed)
        bigger_dimension = max(image_height, image_width)
        smaller_dimension = min(image_height, image_width)
        patch_size = bigger_dimension / patch_downsampling_factor
        patch_size = min(patch_size, smaller_dimension) # if bigger than small dimension

        # Calculate num_components_per_patch
        num_nonoverlapping_patches = (image_height/patch_size) * (image_width/patch_size)
        num_components_per_patch = num_components / num_nonoverlapping_patches
        num_components_per_patch = max(num_components_per_patch, 1) # at least 1

        # Calculate patch overlap in pixels
        overlap_in_pixels = patch_size * percentage_of_patch_overlap

        # Make sure they are integers
        patch_size = int(round(patch_size))
        num_components_per_patch = int(round(num_components_per_patch))
        overlap_in_pixels = int(round(overlap_in_pixels))

        # Run CNMF on patches (only for initialization, no impulse response modelling p=0)
        model = cnmf.CNMF(num_processes, only_init_patch=True, p=0,
                          rf=int(round(patch_size / 2)), stride=overlap_in_pixels,
                          k=num_components_per_patch, merge_thresh=merge_threshold,
                          method_init=init_method, gSig=soma_radius,
                          alpha_snmf=snmf_alpha, gnb=num_background_components,
                          n_pixels_per_process=num_pixels_per_process,
                          block_size=block_size, check_nan=False, dview=direct_view,
                          method_deconvolution='cvxpy')
        model = model.fit(images)

        # Delete log files (one per patch)
        log_files = glob.glob('caiman*_LOG_*')
        for log_file in log_files:
            os.remove(log_file)

        # Get results
        initial_A = model.A
        initial_C = model.C
        initial_f = model.f

    # Run CNMF
    model = cnmf.CNMF(num_processes, k=num_components, p=AR_order,
                      merge_thresh=merge_threshold, gnb=num_background_components,
                      method_init=init_method, gSig=soma_radius, alpha_snmf=snmf_alpha,
                      n_pixels_per_process=num_pixels_per_process, block_size=block_size,
                      check_nan=False, dview=direct_view, Ain=initial_A, Cin=initial_C,
                      f_in=initial_f, method_deconvolution='cvxpy')
    model = model.fit(images)

    # Get final results
    location_matrix = model.A  # pixels x num_components
    activity_matrix = model.C  # num_components x num_frames
    background_location_matrix = model.b  # pixels x num_background_components
    background_activity_matrix = model.f  # num_background_components x num_frames
    spikes = model.S  # num_components x num_frames, spike_ traces
    raw_traces = model.C + model.YrA  # num_components x num_frames
    AR_coefficients = model.g  # AR_order x num_components

    # Reshape spatial matrices to be image_height x image_width x num_frames
    new_shape = (image_height, image_width, -1)
    location_matrix = location_matrix.toarray().reshape(new_shape, order='F')
    background_location_matrix = background_location_matrix.reshape(new_shape, order='F')
    AR_coefficients = np.array(list(AR_coefficients))  # unwrapping it (num_components x 2)

    # Stop ipyparallel cluster
    client.close()
    caiman.stop_server()

    # Delete memory mapped scan
    os.remove(mmap_filename)

    return (location_matrix, activity_matrix, background_location_matrix,
            background_activity_matrix, raw_traces, spikes, AR_coefficients)
        if plot_on:
            if m_images.shape[0] < 5000:
                Cn = m_images.local_correlations(
                    swap_dim=params_movie['swap_dim'], frames_per_chunk=1500)
                Cn[np.isnan(Cn)] = 0
            else:
                Cn = np.array(
                    cm.load(('/'.join(params_movie['gtname'].split('/')[:-2] +
                                      ['projections', 'correlation_image.tif'])
                             ))).squeeze()

        check_nan = False
        # %% start cluster
        # TODO: show screenshot 10
        try:
            cm.stop_server()
            dview.terminate()
        except:
            print('No clusters to stop')

        c, dview, n_processes = setup_cluster(backend=backend_patch,
                                              n_processes=n_processes,
                                              single_thread=False)
        # %%
        params_dict = {
            'fnames': [fname_new],
            'fr': params_movie['fr'],
            'decay_time': params_movie['decay_time'],
            'rf': params_movie['rf'],
            'stride': params_movie['stride_cnmf'],
            'K': params_movie['K'],
Exemplo n.º 33
0
    corA_cnmfe = np.array(
        [np.corrcoef(A_cnmfe.toarray()[:, n], A[:, n])[0, 1] for n in range(N)])
    corC_cnmfe_patch = np.array(
        [np.corrcoef(C_cnmfe_patch[n], C[n])[0, 1] for n in range(N)])
    corA_cnmfe_patch = np.array(
        [np.corrcoef(A_cnmfe_patch.toarray()[:, n], A[:, n])[0, 1] for n in range(N)])

else:
    corC = np.array([np.corrcoef(C_[mapIdx[n]] + YrA_[mapIdx[n]],
                                 C[n] + YrA_GT[n])[0, 1] for n in range(N)])
    corA = np.array([np.corrcoef(A_[:, mapIdx[n]].toarray().squeeze(), A[:, n])[0, 1]
                     for n in range(N)])
    corC_cnmfe = np.array(
        [np.corrcoef(Craw_cnmfe[n], C[n] + YrA_GT[n])[0, 1] for n in range(N)])
    corA_cnmfe = np.array(
        [np.corrcoef(A_cnmfe.toarray()[:, n], A[:, n])[0, 1] for n in range(N)])
    corC_cnmfe_patch = np.array(
        [np.corrcoef(Craw_cnmfe_patch[n], C[n] + YrA_GT[n])[0, 1] for n in range(N)])
    corA_cnmfe_patch = np.array(
        [np.corrcoef(A_cnmfe_patch.toarray()[:, n], A[:, n])[0, 1] for n in range(N)])


print(np.median(corC), np.median(corA))
print(np.median(corC_cnmfe), np.median(corA_cnmfe))
print(np.median(corC_cnmfe_patch), np.median(corA_cnmfe_patch))
#%%
crd = cm.utils.visualization.plot_contours(A_, cn_filter, thr=.95, vmax=0.95)
plot_centers(A_, A)
#%%
cm.stop_server(dview=dview)
Exemplo n.º 34
0
#%% motion correction with concatenated videos
videoconcat = sys.argv[1]
newpath = os.path.dirname(videoconcat)
ms_ts_name = os.path.join(newpath,"ms_ts.pkl")
if os.path.exists(ms_ts_name):
    with open(ms_ts_name, "rb") as f:
        ms_ts= pickle.load(f)
else:
    print("there is no mt_ts.pkl existed")

fnames=[videoconcat]
m_orig = cm.load_movie_chain(fnames)
# start a cluster for parallel processing (if a cluster already exists it will be closed and a new session will be opened)
if 'dview' in locals():
    cm.stop_server(dview=dview)
c, dview, n_processes = cm.cluster.setup_cluster(
    backend='local', n_processes=None, single_thread=False)

# dataset dependent parameters
fr = 30    # movie frame rate
decay_time = 0.4                 # length of a typical transient in seconds

motion_correct = True            # flag for motion correction
# motion correction parameters
pw_rigid = False                # flag for pw-rigid motion correction

gSig_filt = (8,8)   # size of filter, in general gSig (see below),
#                      change this one if algorithm does not work
max_shifts = (15,15)  # maximum allowed rigid shift
strides = (96,96)  # start a new patch for pw-rigid motion correction every x pixels
def motion_correct(video_path, max_shift, patch_stride, patch_overlap, use_multiprocessing=True):
    full_video_path = video_path

    directory = os.path.dirname(full_video_path)
    filename  = os.path.basename(full_video_path)

    memmap_video = tifffile.memmap(video_path)

    if use_multiprocessing:
        if os.name == 'nt':
            backend = 'multiprocessing'
        else:
            backend = 'ipyparallel'

        # Create the cluster
        cm.stop_server()
        c, dview, n_processes = cm.cluster.setup_cluster(backend=backend, n_processes=None, single_thread=False)
    else:
        dview = None

    z_range = list(range(memmap_video.shape[1]))

    new_video_path = os.path.join(directory, "mc_video_temp.tif")

    shutil.copyfile(video_path, new_video_path)

    mc_video = tifffile.memmap(new_video_path).astype(np.uint16)

    mc_borders = [ None for z in z_range ]

    counter = 0

    for z in z_range:
        print("Motion correcting plane z={}...".format(z))
        video_path = os.path.join(directory, os.path.splitext(filename)[0] + "_z_{}_temp.tif".format(z))
        tifffile.imsave(video_path, memmap_video[:, z, :, :])

        mc_video[:, z, :, :] *= 0

        # --- PARAMETERS --- #

        params_movie = {'fname': video_path,
                        'max_shifts': (max_shift, max_shift),  # maximum allow rigid shift (2,2)
                        'niter_rig': 3,
                        'splits_rig': 1,  # for parallelization split the movies in  num_splits chuncks across time
                        'num_splits_to_process_rig': None,  # if none all the splits are processed and the movie is saved
                        'strides': (patch_stride, patch_stride),  # intervals at which patches are laid out for motion correction
                        'overlaps': (patch_overlap, patch_overlap),  # overlap between pathes (size of patch strides+overlaps)
                        'splits_els': 1,  # for parallelization split the movies in  num_splits chuncks across time
                        'num_splits_to_process_els': [None],  # if none all the splits are processed and the movie is saved
                        'upsample_factor_grid': 4,  # upsample factor to avoid smearing when merging patches
                        'max_deviation_rigid': 3,  # maximum deviation allowed for patch with respect to rigid shift         
                        }

        # load movie (in memory!)
        fname = params_movie['fname']
        niter_rig = params_movie['niter_rig']
        # maximum allow rigid shift
        max_shifts = params_movie['max_shifts']  
        # for parallelization split the movies in  num_splits chuncks across time
        splits_rig = params_movie['splits_rig']  
        # if none all the splits are processed and the movie is saved
        num_splits_to_process_rig = params_movie['num_splits_to_process_rig']
        # intervals at which patches are laid out for motion correction
        strides = params_movie['strides']
        # overlap between pathes (size of patch strides+overlaps)
        overlaps = params_movie['overlaps']
        # for parallelization split the movies in  num_splits chuncks across time
        splits_els = params_movie['splits_els'] 
        # if none all the splits are processed and the movie is saved
        num_splits_to_process_els = params_movie['num_splits_to_process_els']
        # upsample factor to avoid smearing when merging patches
        upsample_factor_grid = params_movie['upsample_factor_grid'] 
        # maximum deviation allowed for patch with respect to rigid
        # shift
        max_deviation_rigid = params_movie['max_deviation_rigid']

        # --- RIGID MOTION CORRECTION --- #

        # Load the original movie
        m_orig = tifffile.memmap(fname)
        # m_orig = cm.load(fname)
        min_mov = np.min(m_orig) # movie must be mostly positive for this to work

        offset_mov = -min_mov

        # Create motion correction object
        mc = MotionCorrect(fname, min_mov,
                           dview=dview, max_shifts=max_shifts, niter_rig=niter_rig, splits_rig=splits_rig, 
                           num_splits_to_process_rig=num_splits_to_process_rig, 
                        strides= strides, overlaps= overlaps, splits_els=splits_els,
                        num_splits_to_process_els=num_splits_to_process_els, 
                        upsample_factor_grid=upsample_factor_grid, max_deviation_rigid=max_deviation_rigid, 
                        shifts_opencv = True, nonneg_movie = True, border_nan='min')

        # Do rigid motion correction
        mc.motion_correct_rigid(save_movie=False)

        # --- ELASTIC MOTION CORRECTION --- #

        # Do elastic motion correction
        mc.motion_correct_pwrigid(save_movie=True, template=mc.total_template_rig, show_template=False)

        # # Save elastic shift border
        bord_px_els = np.ceil(np.maximum(np.max(np.abs(mc.x_shifts_els)),
                                 np.max(np.abs(mc.y_shifts_els)))).astype(np.int)  
        # np.savez(mc.fname_tot_els + "_bord_px_els.npz", bord_px_els)

        fnames = mc.fname_tot_els   # name of the pw-rigidly corrected file.
        border_to_0 = bord_px_els     # number of pixels to exclude
        fname_new = cm.save_memmap(fnames, base_name='memmap_z_{}'.format(z), order = 'C',
                                   border_to_0 = bord_px_els) # exclude borders

        # now load the file
        Yr, dims, T = cm.load_memmap(fname_new)
        d1, d2 = dims
        images = np.reshape(Yr.T, [T] + list(dims), order='F') 

        mc_borders[z] = bord_px_els

        # images += np.amin(images)

        # print(np.amax(images))
        # print(np.amin(images))
        # print(type(images))

        mc_video[:, z, :, :] = (images - np.amin(images)).astype(np.uint16)

        del m_orig
        os.remove(video_path)

        try:
            os.remove(mc.fname_tot_rig)
            os.remove(mc.fname_tot_els)
        except:
            pass

        counter += 1

    if use_multiprocessing:
        if backend == 'multiprocessing':
            dview.close()
        else:
            try:
                dview.terminate()
            except:
                dview.shutdown()
        cm.stop_server()

    mmap_files = glob.glob(os.path.join(directory, '*.mmap'))
    for mmap_file in mmap_files:
        try:
            os.remove(mmap_file)
        except:
            pass

    log_files = glob.glob('Yr*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

    return mc_video, new_video_path, mc_borders