def main():
    sim_context = SawyerSimContext()
    sim = sim_context.get_sim_instance()
    logger = sim_context.get_logger()
    state_space = sim_context.get_state_space()
    svc = sim_context.get_state_validity()
    sawyer_robot = sim_context.get_robot()
    _ = sawyer_robot.get_simulator_id()
    _ = sim_context.get_sim_objects(['Ground'])[0]

    sawyer_robot.move_to_joint_pos([0, 0, 0, 0, 0, 0, 0])
    time.sleep(1)

    with DisabledCollisionsContext(sim, [], []):
        #######
        # LazyPRM #
        #######
        # Use parametric linear interpolation with 10 steps between points.
        interp = partial(parametric_lerp, steps=10)
        # See params for PRM specific parameters
        prm = LazyPRM(state_space,
                      svc,
                      interp,
                      params={
                          'n_samples': 4000,
                          'k': 8,
                          'ball_radius': 2.5
                      })
        logger.info("Planning....")
        plan = prm.plan(
            np.array([0, 0, 0, 0, 0, 0, 0]),
            np.array([
                1.5262755737449423, -0.1698540226273928, 2.7788151824762055,
                2.4546623466066135, 0.7146948867821279, 2.7671787952787184,
                2.606128412644311
            ]))
        # get_path() reuses the interp function to get the path between vertices of a successful plan
        path = prm.get_path(plan)
    if len(path) == 0:
        logger.info("Planning failed....")
        sys.exit(1)
    logger.info("Plan found....")

    # splinging uses numpy so needs to be converted
    path = [np.array(p) for p in path]
    # Create a MinJerk spline trajectory using JointTrajectoryCurve and execute
    jtc = JointTrajectoryCurve()
    traj = jtc.generate_trajectory(path, move_time=2)
    sawyer_robot.execute_trajectory(traj)

    key = input("Press any key to excute plan.")

    try:
        while True:
            sim.step()
    except KeyboardInterrupt:
        p.disconnect()
        sys.exit(0)
def main():

    sim_context = SawyerSimContext()
    sim = sim_context.get_sim_instance()
    _ = sim_context.get_logger()
    state_space = sim_context.get_state_space()
    svc = sim_context.get_state_validity()
    sawyer_robot = sim_context.get_robot()
    _ = sawyer_robot.get_simulator_id()
    _ = sim_context.get_sim_objects(['Ground'])[0]

    sawyer_robot.move_to_joint_pos([0, 0, 0, 0, 0, 0, 0])
    time.sleep(1)
    ############
    # PLANNING #
    ############
    valid_samples = []
    # Disabled collisions during planning with certain eclusions in place.
    with DisabledCollisionsContext(sim, [], []):
        while True:
            sample = state_space.sample()
            if svc.validate(sample):
                valid_samples.append(sample)
            if len(valid_samples) >= 1:
                break

    # Generate local plan between two points and execute local plan.
    steps = 100
    move_time = 5
    start_pos = [0] * 7
    print(np.array(sawyer_robot.get_current_joint_states()[0:7]))
    print(np.array(valid_samples[0]))
    qt, qdt, qddt = interpolate_5poly(np.array(start_pos[0:7]),
                                      np.array(valid_samples[0]), steps)
    traj = list(
        zip([move_time * n / steps for n in range(0, steps)],
            [list(q) for q in qt]))
    print(traj)
    sawyer_robot.execute_trajectory(traj)
    # Loop until someone shuts us down
    try:
        while True:
            sim.step()
    except KeyboardInterrupt:
        p.disconnect()
        sys.exit(0)
Exemplo n.º 3
0
def main():

    sim_context = SawyerSimContext()
    sim = sim_context.get_sim_instance()
    _ = sim_context.get_logger()
    state_space = sim_context.get_state_space()
    svc = sim_context.get_state_validity()
    sawyer_robot = sim_context.get_robot()
    _ = sawyer_robot.get_simulator_id()
    _ = sim_context.get_sim_objects(['Ground'])[0]

    sawyer_robot.move_to_joint_pos([0, 0, 0, 0, 0, 0, 0])
    time.sleep(1)

    valid_samples = []
    # Disabled collisions during planning with certain eclusions in place.
    with DisabledCollisionsContext(sim, [], []):
        while True:
            sample = state_space.sample()
            if svc.validate(sample):
                valid_samples.append(sample)
            if len(valid_samples) >= 1:
                break

    # Generate local plan between two points and execute local plan.
    start_pos = [0] * 7
    sawyer_robot.move_to_joint_pos(start_pos)
    time.sleep(.1)
    # This interpolate_5poly will be replaced with the sequence of points generated by a planner.
    qt, _, _ = interpolate_5poly(np.array(start_pos[0:7]),
                                 np.array(valid_samples[0]), 50)
    jtc = JointTrajectoryCurve()
    traj = jtc.generate_trajectory(qt, move_time=2)
    sawyer_robot.execute_trajectory(traj)
    # Loop until someone shuts us down
    try:
        while True:
            sim.step()
    except KeyboardInterrupt:
        p.disconnect()
        sys.exit(0)
Exemplo n.º 4
0
def main():
    config = {}
    config["sim_objects"] = [{
        "object_name": "Ground",
        "model_file_or_sim_id": "plane.urdf",
        "position": [0, 0, 0]
    }, {
        "object_name": "Table",
        "model_file_or_sim_id": ASSETS_PATH + 'table.sdf',
        "position": [0.0, 0, 0],
        "orientation": [0, 0, 1.5708]
    }]
    sim_context = SawyerSimContext(config)
    sim = sim_context.get_sim_instance()
    _ = sim_context.get_logger()
    scs = sim_context.get_state_space()
    svc = sim_context.get_state_validity()
    sawyer_robot = sim_context.get_robot()
    _ = sawyer_robot.get_simulator_id()

    table_obj = sim_context.get_sim_objects(names="Table")[0]

    sawyer_robot.move_to_joint_pos([0, 0, 0, 0, 0, 0, 0])
    time.sleep(1)

    n_samples = 1000
    valid_samples = []
    starttime = timeit.default_timer()

    # Disabled collisions during planning with certain eclusions in place.
    with DisabledCollisionsContext(sim, [], []):
        print("Sampling start time is :", starttime)
        for i in range(0, n_samples):
            sample = scs.sample()
            if svc.validate(sample):
                print(sample)
                valid_samples.append(sample)
        print("The time difference is :", timeit.default_timer() - starttime)
        print("{} valid of {}".format(len(valid_samples), n_samples))

    p.disconnect()
def main():
    sim_context = SawyerSimContext(setup=False)
    sim_context.setup(sim_overrides={"use_gui": False})
    sim = sim_context.get_sim_instance()
    logger = sim_context.get_logger()
    state_space = sim_context.get_state_space()
    svc = sim_context.get_state_validity()
    sawyer_robot = sim_context.get_robot()
    sawyer_id = sawyer_robot.get_simulator_id()
    ground_plane = sim_context.get_sim_objects(['Ground'])[0]

    # Get the robot moving!
    sawyer_robot.move_to_joint_pos(target_position=[1] * 7)

    while sawyer_robot.check_if_at_position([1] * 7, 0.5) is False:
        p.stepSimulation()
        print('\n\n\n\n\n\n')
        # Get current states
        pos, vel, torq = getJointStates(sawyer_id)
        names, mpos, mvel, mtorq = getMotorJointStates(sawyer_id)
        print("Moving joint names:")
        print(names)

        sawyerEELink = get_joint_info_by_name(sawyer_id, 'right_l6').idx
        print(sawyerEELink)
        result = p.getLinkState(sawyer_id,
                                sawyerEELink,
                                computeLinkVelocity=1,
                                computeForwardKinematics=1)
        link_trn, link_rot, com_trn, com_rot, frame_pos, frame_rot, link_vt, link_vr = result
        # Get the Jacobians for the CoM of the end-effector link.
        # Note that in this example com_rot = identity, and we would need to use com_rot.T * com_trn.
        # The localPosition is always defined in terms of the link frame coordinates.
        zero_vec = [0.0] * len(mpos)

        jac_t, jac_r = p.calculateJacobian(sawyer_id, sawyerEELink, com_trn,
                                           mpos, zero_vec, zero_vec)
        J = np.vstack([np.array(jac_t),
                       np.array(jac_r)])[:, [0, 2, 3, 4, 5, 6, 7]]
        print("JACOBIAN")
        print(J)
        J_cross = np.dot(J.T, np.linalg.inv(np.dot(J, J.T)))
        print("PSEUDOINVERSE JACOBIAN")
        print(J_cross)

        print("Link linear position and velocity of CoM from getLinkState:")
        print(link_vt, link_vr)
        print(
            "Link linear and angular velocity of CoM from linearJacobian * q_dot:"
        )
        print(np.dot(J, np.array(mvel)[[0, 2, 3, 4, 5, 6, 7]].T))
        print()
        print()
        print("Link joint velocities of CoM from getLinkState:")
        print(np.array(mvel)[[0, 2, 3, 4, 5, 6, 7]])
        print(
            "Link q given link linear position and velocity using J_cross * x_dot."
        )
        x = np.hstack([np.array(link_vt), np.array(link_vr)])
        q = np.dot(J_cross, np.array(x).T)
        print(q)
              ['right_gripper_l_finger_joint', (0.0, 0.020833)],
              ['right_gripper_r_finger_joint', (-0.020833, 0.0)],
              ['head_pan', (-5.0952, 0.9064)]]
    #############################################
    #         Import Serialized LfD Graph       #
    #############################################
    with open(
            os.path.dirname(os.path.abspath(__file__)) +
            "/serialization_test.json", "r") as f:
        serialized_data = json.load(f)
    config = serialized_data["config"]
    intermediate_trajectories = serialized_data["intermediate_trajectories"]
    keyframes = OrderedDict(
        sorted(serialized_data["keyframes"].items(), key=lambda t: int(t[0])))

    sim_context = SawyerSimContext(None, setup=False, planning_context=None)
    sim_context.setup(sim_overrides={"run_parallel": False})
    sim = sim_context.get_sim_instance()
    logger = sim_context.get_logger()
    sawyer_robot = sim_context.get_robot()
    svc = sim_context.get_state_validity()
    interp_fn = partial(parametric_lerp, steps=5)

    #############################################
    #          CREATE A PLANNING GRAPH          #
    #############################################
    # This will be used to generate a sequence  #
    # of constrained motion plans.              #
    #############################################

    planning_G = nx.Graph()
def main():

    configuration = {}

    configuration["sim"] = {
        "use_real_time": False,
        "use_gui": False,
        "run_parallel": True
    }

    configuration["logging"] = {"handlers": ['logging'], "level": "debug"}

    configuration["sawyer"] = {
        "robot_name": "sawyer0",
        "position": [0, 0, 0.9],
        "fixed_base": True
    }

    configuration["sim_objects"] = [
        {
            "object_name": "Ground",
            "model_file_or_sim_id": "plane.urdf",
            "position": [0, 0, 0]
        },
        # {
        #     "object_name": "Table",
        #     "model_file_or_sim_id": ASSETS_PATH + 'table.sdf',
        #     "position": [0.7, 0, 0],
        #     "orientation":  [0, 0, 1.5708]
        # },
        {
            "object_name": "cube0",
            "model_file_or_sim_id": "cube_small.urdf",
            "position": [0.75, 0, .55]
        },
        {
            "object_name": "cube1",
            "model_file_or_sim_id": "cube_small.urdf",
            "position": [0.74, 0.05, .55]
        },
        {
            "object_name": "cube2",
            "model_file_or_sim_id": "cube_small.urdf",
            "position": [0.67, -0.1, .55]
        },
        {
            "object_name": "cube3",
            "model_file_or_sim_id": "cube_small.urdf",
            "position": [0.69, 0.1, .55]
        }
    ]

    num_workers = 8
    worker_fn = partial(parallel_projection_worker,
                        sim_context_cls=SawyerSimContext,
                        sim_config=configuration)
    with Pool(num_workers) as p:
        multi_s = timer()
        results = p.map(worker_fn, [25, 25, 25, 25, 25, 25, 25, 25])
        valid_samples = list(itertools.chain.from_iterable(results))
        multi_e = timer()

    print("Number of valid samples: {}".format(len(valid_samples)))

    configuration["sim"] = {
        "use_real_time": True,
        "use_gui": True,
        "run_parallel": False
    }

    sim_context = SawyerSimContext(configuration)
    sim = sim_context.get_sim_instance()
    _ = sim_context.get_logger()
    scs = sim_context.get_state_space()
    svc = sim_context.get_state_validity()
    sawyer_robot = sim_context.get_robot()
    _ = sawyer_robot.get_simulator_id()
    _ = sim_context.get_sim_objects(['Ground'])[0]

    for sample in valid_samples:
        world_pose, local_pose = sawyer_robot.solve_forward_kinematics(sample)
        trans, quat = world_pose[0], world_pose[1]
        print(trans, quat2rpy(quat))
        sawyer_robot.move_to_joint_pos(list(sample))
        while sawyer_robot.check_if_at_position(list(sample), 0.5) is False:
            time.sleep(0.1)
            pass
        time.sleep(1.5)

    # # Loop until someone shuts us down
    try:
        while True:
            pass
            # sim.step()
    except KeyboardInterrupt:
        p.disconnect()
        sys.exit(0)
    ##################################
    #         Planning Context       #
    ##################################

    config = {}
    config["sim_objects"] = [{
        "object_name": "Ground",
        "model_file_or_sim_id": "plane.urdf",
        "position": [0, 0, 0]
    }, {
        "object_name": "Table",
        "model_file_or_sim_id": ASSETS_PATH + 'table.sdf',
        "position": [3.0, 0, 0],
        "orientation": [0, 0, 1.5708]
    }]
    sim_context = SawyerSimContext(config, setup=True, planning_context=None)
    sim = sim_context.get_sim_instance()
    logger = sim_context.get_logger()
    sawyer_robot = sim_context.get_robot()
    svc = sim_context.get_state_validity()
    interp_fn = partial(parametric_lerp, steps=5)

    #############################################
    #         Import Serialized LfD Graph       #
    #############################################
    with open(
            os.path.dirname(os.path.abspath(__file__)) +
            "/serialization_test.json", "r") as f:
        serialized_data = json.load(f)
    config = serialized_data["config"]
    intermediate_trajectories = serialized_data["intermediate_trajectories"]