Exemplo n.º 1
0
    def test_perplexity_with_all_skips(self):
        output_probs = np.array([[0.2, 0.3, 0.5], [1.0, 0.0, 0.0]])
        output_tokens = np.array([0, 0])
        sequence_likelihood = np.log(output_probs[np.arange(len(output_probs)), output_tokens]).sum()

        skip_token_id = 0

        with self.assertRaises(MetricsException):
            _calculate_mean_perplexity(np.array([output_tokens]), np.array([sequence_likelihood]), skip_token_id)
Exemplo n.º 2
0
    def test_perplexity(self):
        output_probs = np.array([[0.2, 0.3, 0.5], [1.0, 0.0, 0.0]])
        output_tokens = np.array([0, 0])
        sequence_likelihood = np.log(output_probs[np.arange(len(output_probs)), output_tokens]).sum()

        perp = _calculate_mean_perplexity(np.array([output_tokens]), np.array([sequence_likelihood]), 2)
        perp_exp = np.exp(-0.5 * np.log(0.2))

        self.assertAlmostEqual(perp, perp_exp, delta=_DELTA)
Exemplo n.º 3
0
    def test_perplexity_with_skip_token_exp(self):
        output_probs = np.array([[0.2, 0.3, 0.5], [1.0, 0.0, 0.0]])
        output_tokens = np.array([2, 1])
        skip_token_id = 1

        mask = output_tokens != skip_token_id
        sequence_likelihood = np.log(output_probs[np.arange(len(output_probs[mask])), output_tokens[mask]]).sum()

        perp_exp = np.exp(-np.log(0.5))
        perp = _calculate_mean_perplexity(np.array([output_tokens]), np.array([sequence_likelihood]), skip_token_id)

        self.assertAlmostEqual(perp, perp_exp, delta=_DELTA)