Exemplo n.º 1
0
    def init_seq_idx(conf_seq, data):
        idx_dct, ext_dct, n_dct = get(data, "indexing", "extended", "n")

        base_shape, diff_ii = get(idx_dct, "base_shape", "diff_ii")
        caps, refs, cm = get(ext_dct, "caps", "refs", "cm")
        n_conf, n_diff = get(n_dct, "n_conf", "n_diff")

        ic = conf_seq.initial_conditions

        # Set initial condition

        # shape (n_conf, n_cf, n_diff,)
        ic_ii = np.array(list(iic.ref_ii for iic in ic), dtype=int)
        # shape (n_conf, n_cf, n_diff,)
        cf_ii = conf_seq.configuration_sets[0].cf

        m_refs_idx = (
            Ellipsis,
            cf_ii,
            ic_ii,
            diff_ii,
        )
        m_caps_idx = (
            Ellipsis,
            cf_ii,
            diff_ii,
        )

        init_idxs = {"m_refs_idx": m_refs_idx, "m_caps_idx": m_caps_idx}
        return init_idxs
Exemplo n.º 2
0
 def u_thres_to_code(u, thres, data):
     s_thres = get(get(data, "std")[0], "s_thres")[0]
     if s_thres > 0:
         thres = np.random.normal(thres, s_thres, np.shape(thres))
     # reinterpret shape (..., n_diff) to (..., n_thres, n_diff)
     code = np.diff(u, axis=-1) if np.size(u, -1) == 2 else u
     code = np.sum(code >= thres[..., np.newaxis, :], axis=-1)
     return code
Exemplo n.º 3
0
    def recreate_cache(eff,
                       caps,
                       refs,
                       thres,
                       ins,
                       common_mode,
                       c_seq,
                       codes,
                       scalar=None):
        fun = sims.Simulator

        scalar = default(scalar, len(np.shape(eff)) == 0)
        if scalar:
            codes = codes[:, np.newaxis, ...]

        data = fun.simulate_setup(eff,
                                  caps,
                                  refs,
                                  thres,
                                  ins,
                                  common_mode,
                                  c_seq,
                                  scalar=scalar)

        ext_dct = get(data, "extended")[0]
        eff, thres, cm = get(ext_dct, "eff", "thres", "cm")

        # shape (..., n_conf, n_diff,)
        seq_idx = fun.init_seq_idx(c_seq, data)
        set_data = None
        du_idx = None
        trans_idx = None

        sets_cache = []
        cache = {"data": data, "seq_idx": seq_idx, "sets": sets_cache}

        for ii_set, c_set in enumerate(c_seq.configuration_sets):
            set_data = fun.init_set(c_set, data, set_data, du_idx)

            if set_data["previous"] is not None:
                ds_offset = data["ds_offset"]
                code = codes[ds_offset:ds_offset + 1, ...]
                trans_idx = fun.transition_step_idx(c_set, set_data, data,
                                                    code)

            ds_offset = data["ds_offset"]
            code = codes[ds_offset:ds_offset + c_set.ds_samples, ...]
            du_idx = fun.du_indexes(code, c_set, set_data, data)
            sets_cache.append((
                set_data,
                trans_idx,
                du_idx,
            ))

        return cache
Exemplo n.º 4
0
    def du_indexes(code, conf_set, set_data, data):
        n_samples = np.size(code, 0)

        idx_dct, ext_dct, n_dct = get(data, "indexing", "extended", "n")
        idx_set, n_set, ds_map = get(set_data, "indexing", "n", "ds_map")

        refs, ins = get(ext_dct, "refs", "ins")
        diff_ii, diff_ii_ext, cap_axis, base_ii, base_len = get(
            idx_dct, "diff_ii", "diff_ii_ext", "cap_axis", "base_ii",
            "base_len")

        cs_ii, cs_ii_base, = get(idx_set, "cs_ii", "cs_ii_base")

        ds_offset = data["ds_offset"]
        in_ref_ii, in_ins_ii = conf_set.generate_in(n_samples, ds_offset)
        data["ds_offset"] = ds_offset + n_samples

        # Using take instead of indexing because for some reason it's faster
        ref_ii = ds_map.take(code, axis=1)
        ds_map_transpose = tuple(range(1, base_len + 1 + 2)) + (
            0,
            -1,
        )
        # shape = (n_samples, base_shape, n_conf, n_cs, n_diff)
        ref_ii = np.transpose(ref_ii, ds_map_transpose)
        set_data["indexing"]["ref_ii"] = ref_ii[-1, ...]

        ext_idx = (
            np.newaxis,
            Ellipsis,
        )
        ext_base_ii = tuple(bb[ext_idx] for bb in base_ii)

        m_ref = ext_base_ii + (
            cs_ii_base[ext_idx],
            ref_ii,
            diff_ii_ext[ext_idx],
        )
        m_in_ref = (Ellipsis, ) + (
            cs_ii[ext_idx],
            in_ref_ii,
            diff_ii[ext_idx],
        )
        m_in_ins = (Ellipsis, ) + (
            in_ins_ii,
            diff_ii[ext_idx],
        )

        ravel = np.ravel_multi_index
        r_ref = ravel(m_ref, refs.shape, mode='wrap')

        return {"r_ref": r_ref, "m_in_ref": m_in_ref, "m_in_ins": m_in_ins}
Exemplo n.º 5
0
    def du_compute(indexes, conf_set, set_data, data):
        idx_dct, ext_dct, n_dct = get(data, "indexing", "extended", "n")

        caps, refs, ins, cm = get(ext_dct, "caps", "refs", "ins", "cm")
        cap_axis, base_len, base_ii, diff_ii = get(idx_dct, "cap_axis",
                                                   "base_len", "base_ii",
                                                   "diff_ii")

        n_diff = get(n_dct, "n_diff")[0]
        r_ref, m_in_ref, m_in_ins = get(indexes, "r_ref", "m_in_ref",
                                        "m_in_ins")

        cs_ii, cf_ii = get(get(set_data, "indexing")[0], "cs_ii", "cf_ii")

        std = get(data, "std")[0]
        s_ref, s_in = get(std, "s_ref", "s_in")

        cs = caps[np.newaxis, ..., cs_ii, diff_ii]  # used in du
        cf = caps[np.newaxis, ..., cf_ii, diff_ii]
        CF = np.sum(cf, axis=-2, keepdims=True)  # used in du

        # Using take instead of indexing because for some reason it's faster
        ref = refs.ravel().take(r_ref)
        if s_ref > 0:
            ref = np.random.normal(ref, s_ref, size=np.shape(ref))

        in_ref = refs[m_in_ref]
        if s_ref > 0:
            in_ref = np.random.normal(in_ref, s_ref, size=np.shape(in_ref))

        in_ins = ins[m_in_ins]
        if s_in > 0:
            in_ins = np.random.normal(in_ins, s_in, size=np.shape(in_ins))

        in_ref = np.transpose(in_ref, (-4, ) + tuple(range(base_len)) + (
            -3,
            -2,
            -1,
        ))
        in_ins = np.transpose(in_ins, (-4, ) + tuple(range(base_len)) + (
            -3,
            -2,
            -1,
        ))
        # sum done un numpy to prevent issue 79 of numexpr
        du = np.sum(ne.evaluate("(cs/CF)*(in_ref + in_ins - ref)"),
                    cap_axis + 1)

        if n_diff == 2:
            du += cm[np.newaxis, ...] - np.mean(du, axis=-1, keepdims=True)

        return du
Exemplo n.º 6
0
    def init_seq(indexes, data):
        idx_dct, ext_dct, n_dct, std = get(data, "indexing", "extended", "n",
                                           "std")

        base_shape = get(idx_dct, "base_shape")[0]
        caps, refs, cm = get(ext_dct, "caps", "refs", "cm")
        n_conf, n_diff = get(n_dct, "n_conf", "n_diff")
        s_ref = get(std, "s_ref")[0]

        m_refs_idx, m_caps_idx = get(indexes, "m_refs_idx", "m_caps_idx")

        u = np.zeros(base_shape + (
            n_conf,
            n_diff,
        ))

        # shape (base_shape, n_conf, n_cf, n_diff,)
        ic_refs = refs[m_refs_idx]
        if s_ref > 0:
            ic_refs = np.random.normal(ic_refs, s_ref, size=np.shape(ic_refs))

        ic_cf = caps[m_caps_idx]
        ic_g = ic_cf / np.sum(ic_cf, axis=-2, keepdims=True)
        u += np.sum(ic_g * ic_refs, axis=-2)

        if n_diff == 2:
            u += cm - np.mean(u, axis=-1, keepdims=True)

        u = u[np.newaxis, ...]

        return u
Exemplo n.º 7
0
    def init_set(conf_set, data, prev_set_data, prev_du_idx):
        idx_dct, ext_dct, n_dct = get(data, "indexing", "extended", "n")

        n_refs, n_codes = get(n_dct, "n_refs", "n_codes")
        base_len, diff_ii = get(idx_dct, "base_len", "diff_ii")

        n_cs = conf_set.n_cs
        cs_ii = conf_set.cs
        cf_ii = conf_set.cf

        cs_ii_base = cs_ii[(np.newaxis, ) * base_len + (Ellipsis, )]

        meta = conf_set.meta
        ds_map = gen.ds_map(n_cs, n_refs, n_codes, meta.differential)

        if prev_du_idx is None:
            prev_dct = None
        else:
            prev_dct = {
                "r_ref": prev_du_idx["r_ref"],
                "cs_ii": prev_set_data["indexing"]["cs_ii"],
                "cf_ii": prev_set_data["indexing"]["cf_ii"]
            }

        return {
            "indexing": {
                "cs_ii": cs_ii,
                "cf_ii": cf_ii,
                "cs_ii_base": cs_ii_base,
            },
            "n": {
                "n_cs": n_cs
            },
            "previous": prev_dct,
            "ds_map": ds_map
        }
Exemplo n.º 8
0
    def recreate(eff,
                 caps,
                 refs,
                 thres,
                 ins,
                 common_mode,
                 c_seq,
                 cache,
                 scalar=None,
                 limit_samples=None):
        fun = sims.Simulator
        scalar = default(scalar, len(np.shape(eff)) == 0)
        limit_samples = default(limit_samples, c_seq.samples) + 1
        samples = 0

        cache = dict(cache)
        cache["data"] = fun.simulate_setup(eff,
                                           caps,
                                           refs,
                                           thres,
                                           ins,
                                           common_mode,
                                           c_seq,
                                           scalar=scalar)
        data = cache["data"]
        seq_idx = cache["seq_idx"]

        u_history = []

        # shape (..., n_conf, n_diff,)
        u = fun.init_seq(seq_idx, data)
        u_history.append(u)
        samples += 1

        # Simulate each configuration set
        dct_idx, dct_ext, dct_n = get(data, "indexing", "extended", "n")

        n_conf, n_diff = get(dct_n, "n_conf", "n_diff")
        eff, cm = get(dct_ext, "eff", "cm")
        base_shape, base_len = get(dct_idx, "base_shape", "base_len")

        c_sets = c_seq.configuration_sets

        def multi_idx_filter(idx_tuple, sub_idx):
            return tuple(ii[sub_idx] if hasattr(ii, "__getitem__") else ii
                         for ii in idx_tuple)

        for ii_set, c_set, data_trans_du in zip(range(len(c_sets)), c_sets,
                                                cache["sets"]):
            set_data, trans_idx, du_idx = data_trans_du

            if set_data["previous"] is not None:
                u = fun.transition_step(trans_idx, u[-1:, ...], set_data, data)
                u_history.append(u)
                samples += 1

            r_du = (1 - eff) * cm
            n_u = np.empty((c_set.ds_samples, ) + base_shape + (
                n_conf,
                n_diff,
            ))

            local_du_idx = dict(du_idx)
            # used in u
            du = fun.du_compute(du_idx, c_set, set_data, data)

            for idx in cartesian(*tuple(range(ss) for ss in base_shape)):
                local_idx = tuple(slice(ii, ii + 1)
                                  for ii in idx) + (Ellipsis, )
                ext_local_idx = (slice(None), ) + local_idx

                local_du_idx["r_ref"] = local_du_idx["r_ref"][ext_local_idx]
                local_du_idx["m_in_ref"] = multi_idx_filter(
                    local_du_idx["m_in_ref"], ext_local_idx)
                local_du_idx["m_in_ins"] = multi_idx_filter(
                    local_du_idx["m_in_ins"], ext_local_idx)

                zi = u[(slice(-1, None), ) + local_idx] * eff[local_idx]
                local_u = lfilter([1], [1, -eff[local_idx].item()],
                                  du[ext_local_idx] +
                                  r_du[(np.newaxis, ) + local_idx],
                                  zi=zi,
                                  axis=0)[0]
                n_u[ext_local_idx] = local_u

            u = n_u
            u_history.append(u)
            samples += np.size(u, 0)

            if samples >= limit_samples:
                break

        u_history = np.concatenate(u_history, axis=0)
        u_history = u_history[:limit_samples, ...]

        if scalar:
            assert np.size(u_history, 1) == 1
            u_history = u_history[:, 0, ...]

        return u_history
Exemplo n.º 9
0
    def transition_step(indexes, u, set_data, data):
        idx_dct, ext_dct, n_dct = get(data, "indexing", "extended", "n")

        cap_axis = get(idx_dct, "cap_axis")[0]
        n_diff = get(n_dct, "n_diff")[0]

        eff, caps, refs, thres, ins, cm = get(ext_dct, "eff", "caps", "refs",
                                              "thres", "ins", "cm")

        m_cf_cs_idx, m_cs_cf_idx, m_cs_cs_idx, m_cf_cf_idx = get(
            indexes, "m_cf_cs_idx", "m_cs_cf_idx", "m_cs_cs_idx",
            "m_cf_cf_idx")

        r_this_r_ref, r_prev_r_ref = get(indexes, "r_this_r_ref",
                                         "r_prev_r_ref")

        m_this_in_ref, m_this_in_ins = get(indexes, "m_this_in_ref",
                                           "m_this_in_ins")

        std = get(data, "std")[0]
        s_ref, s_in = get(std, "s_ref", "s_in")

        cf_cs = caps[m_cf_cs_idx]
        cs_cf = caps[m_cs_cf_idx]
        cs_cs = caps[m_cs_cs_idx]  # used in du
        cf_cf = caps[m_cf_cf_idx]

        prev_ref = refs.ravel().take(r_prev_r_ref)
        if s_ref > 0:
            prev_ref = np.random.normal(prev_ref,
                                        s_ref,
                                        size=np.shape(prev_ref))

        this_ref = refs.ravel().take(r_this_r_ref)
        if s_ref > 0:
            this_ref = np.random.normal(this_ref,
                                        s_ref,
                                        size=np.shape(this_ref))

        this_in_ref = refs[m_this_in_ref]  # used in du
        if s_ref > 0:
            this_in_ref = np.random.normal(this_in_ref,
                                           s_ref,
                                           size=np.shape(this_in_ref))

        this_in_ins = ins[m_this_in_ins]  # used in du
        if s_in > 0:
            this_in_ins = np.random.normal(this_in_ins,
                                           s_in,
                                           size=np.shape(this_in_ins))

        # used in du
        u_gain = (np.sum(cf_cf, axis=-2) + np.sum(cf_cs, axis=-2)) / (
            np.sum(cf_cf, axis=-2) + np.sum(cs_cf, axis=-2))

        # Sum on next_cs shaped
        du_stmt = ("sum(cs_cs*(this_in_ref + this_in_ins)"
                   " - (cf_cs + cs_cs)*(this_ref), axis={})").format(cap_axis)
        du = ne.evaluate(du_stmt)

        # Sum on prev_cs shaped
        du_stmt = ("sum(cs_cf*prev_ref, axis={})").format(cap_axis)
        du += ne.evaluate(du_stmt)

        assert np.size(u, 0) == 1, "Only one sample."

        CF = np.sum(cf_cf, axis=cap_axis) + np.sum(cs_cf, axis=cap_axis)

        # Apply gain and charge loss
        u = ne.evaluate("u*u_gain*eff + (1-eff)*cm + du/CF")

        # common mode feedback
        if n_diff == 2:
            u += cm - np.mean(u, axis=-1, keepdims=True)[np.newaxis, ...]

        return u
Exemplo n.º 10
0
    def transition_step_idx(conf_set, set_data, data, code):
        assert np.size(code, 0) == 1

        idx_dct, ext_dct, n_dct = get(data, "indexing", "extended", "n")
        idx_set, pre_set, n_set, ds_map = get(set_data, "indexing", "previous",
                                              "n", "ds_map")

        cs_ii, cf_ii, cs_ii_base = get(idx_set, "cs_ii", "cf_ii", "cs_ii_base")
        prev_cs_ii, prev_cf_ii = get(pre_set, "cs_ii", "cf_ii")
        prev_r_ref = get(pre_set, "r_ref")[0][-1, ...]

        diff_ii, diff_ii_ext, cap_axis = get(idx_dct, "diff_ii", "diff_ii_ext",
                                             "cap_axis")

        base_shape, base_len, base_ii = get(idx_dct, "base_shape", "base_len",
                                            "base_ii")

        eff, caps, refs, thres, ins, cm = get(ext_dct, "eff", "caps", "refs",
                                              "thres", "ins", "cm")

        n_conf, n_diff = get(n_dct, "n_conf", "n_diff")

        # Compute transition
        cs_cf_ii, cf_cs_ii, cs_cs_ii, cf_cf_ii = transition_cx_change(
            prev_cs_ii, prev_cf_ii, cs_ii, cf_ii)

        # shape(n_cs, ..., n_conf, n_diff)
        this_ref_ii = ds_map[:, code, :]
        # shape(..., n_conf, n_cs, n_diff)
        ds_map_transpose = tuple(range(1, base_len + 1 + 2)) + (
            0,
            -1,
        )
        # shape = (n_samples, base_shape, n_conf, n_cs, n_diff) (before idx)
        this_ref_ii = np.transpose(this_ref_ii, ds_map_transpose)[0, ...]

        ds_offset = data["ds_offset"]
        in_ref_ii, in_ins_ii = conf_set.generate_in(1, ds_offset)
        data["ds_offset"] = ds_offset + 1

        m_this_ref_idx = base_ii + (
            cs_ii_base,
            this_ref_ii,
            diff_ii_ext,
        )
        r_this_ref_idx = np.ravel_multi_index(m_this_ref_idx, refs.shape)

        transition_idx = {
            "m_cf_cs_idx": (
                Ellipsis,
                cf_cs_ii,
                diff_ii,
            ),
            "m_cs_cf_idx": (
                Ellipsis,
                cs_cf_ii,
                diff_ii,
            ),
            "m_cs_cs_idx": (
                Ellipsis,
                cs_cs_ii,
                diff_ii,
            ),
            "m_cf_cf_idx": (
                Ellipsis,
                cf_cf_ii,
                diff_ii,
            ),
            "r_this_r_ref": r_this_ref_idx,
            "r_prev_r_ref": prev_r_ref,
            "m_this_in_ref": (
                Ellipsis,
                cs_ii,
                in_ref_ii[0, ...],
                diff_ii,
            ),
            "m_this_in_ins": (
                Ellipsis,
                in_ins_ii[0, ...],
                diff_ii,
            )
        }

        return transition_idx
Exemplo n.º 11
0
    def simulate(self,
                 eff,
                 caps,
                 refs,
                 thres,
                 ins,
                 common_mode,
                 c_seq,
                 scalar=None,
                 raise_=False):
        scalar = default(scalar, len(np.shape(eff)) == 0)

        meta = c_seq.meta

        data = self.simulate_setup(eff,
                                   caps,
                                   refs,
                                   thres,
                                   ins,
                                   common_mode,
                                   c_seq,
                                   scalar=scalar)

        self._standard_deviations(meta, data)

        idx_dct, ext_dct, n_dct = get(data, "indexing", "extended", "n")

        eff, thres, cm = get(ext_dct, "eff", "thres", "cm")
        n_diff = get(n_dct, "n_diff")[0]

        u_history = []

        with self._random_state as _:
            # shape (..., n_conf, n_diff,)
            seq_idx = self.init_seq_idx(c_seq, data)
            u = self.init_seq(seq_idx, data)

            if self.u_history:
                u_history.append(u)

            # Simulate each configuration set
            codes = []

            du_idx = None
            set_data = None
            n_sets = len(c_seq.configuration_sets)

            for ii_set, c_set in enumerate(c_seq.configuration_sets):
                set_data = self.init_set(c_set, data, set_data, du_idx)

                if set_data["previous"] is not None:
                    code = self.u_thres_to_code(u[-1, ...], thres, data)
                    code = code[np.newaxis, ...]

                    trans_idx = self.transition_step_idx(
                        c_set, set_data, data, code)
                    u = self.transition_step(trans_idx, u[-1:, ...], set_data,
                                             data)

                    codes.append(code)

                    if self.u_history:
                        u_history.append(u)

                for sample in range(c_set.ds_samples):
                    # print(" {}/{} Sample {}/{} ({:0.2f}%)".format(
                    #     ii_set+1, n_sets, sample+1, c_set.ds_samples, 100*sample/c_set.ds_samples),
                    #     end='\r')
                    code = self.u_thres_to_code(u[-1, ...], thres, data)
                    code = code[np.newaxis, ...]
                    codes.append(code)

                    du_idx = self.du_indexes(code, c_set, set_data, data)
                    # used in u
                    du = self.du_compute(du_idx, c_set, set_data, data)
                    u = ne.evaluate("u*eff + (1-eff)*cm + du")

                    # common mode feedback
                    if n_diff == 2:
                        u += cm[np.newaxis, ...] - np.mean(
                            u, axis=-1, keepdims=True)

                    if self.u_history:
                        u_history.append(u)

            codes = np.concatenate(codes, axis=0)

            if self.u_history:
                u_history = np.concatenate(u_history, axis=0)

            if scalar:
                assert np.size(codes, 1) == 1
                assert np.size(u_history, 1) == 1

                codes = codes[:, 0, ...]
                u_history = u_history[:, 0, ...]

            if ((u_history < meta.fsr[0] - meta.lsb).any()
                    or (u_history > meta.fsr[1] + meta.lsb).any()):

                message = "Residual out of range."

                if raise_:
                    raise ValueError(message)
                else:
                    warnings.warn(message)

            return codes, u_history