def get_tv_to_rgb_matrix(
    rgb_calibration_file_names, tv_calibration_file_names, rgb_relative_file_names,
        tv_relative_file_names, chessboard_cell_width_meters, inner_width, inner_height,
        on_calibrated_signal=None):

    ret_rgb, mtx_rgb, dist_rgb, rvecs_rgb, tvecs_rgb, img_points_rgb, objpoints, used_rgb_files = \
        calib.calibrate_camera(
            rgb_calibration_file_names, inner_width, inner_height, on_calibrated_signal)

    ret_tv, mtx_tv, dist_tv, rvecs_tv, tvecs_tv, img_points_tv, objpoints, used_tv_files = \
        calib.calibrate_camera(
            tv_calibration_file_names, inner_width, inner_height, on_calibrated_signal)

    if rgb_calibration_file_names is not None:
        image_size = calib.get_image_size(rgb_calibration_file_names[0])
    else:
        image_size = calib.get_image_size(rgb_relative_file_names[0])

    objpoints = calib.build_obj_points(inner_width, inner_height)

    solo_calibrated_points_tv = img_points_tv
    solo_calibrated_points_rgb = img_points_rgb
    img_points_tv = []
    img_points_rgb = []
    for fname_rgb, fname_tv in zip(rgb_relative_file_names, tv_relative_file_names):
        tv_points = solo_calibrated_points_tv[
            tv_calibration_file_names.index(fname_tv)]
        rgb_points = solo_calibrated_points_rgb[
            rgb_calibration_file_names.index(fname_rgb)]
        # rgb_points = calib.get_image_points(fname_rgb, inner_width, inner_height)
        # tv_points = calib.get_image_points(fname_tv, inner_width,
        # inner_height)

        if (rgb_points is not None and tv_points is not None):
            img_points_rgb.append(rgb_points)
            img_points_tv.append(tv_points)

    if len(img_points_rgb) == 0:
        print("Considered photos can't be used to determine relative position")
        return None

    retval, cameraMatrix1, distCoeffs1, cameraMatrix2, \
        distCoeffs2, R, T, E, F = calib.calibrate_rgb_and_tv(
            objpoints, img_points_rgb,
            img_points_tv, image_size, mtx_rgb, dist_rgb, mtx_tv, dist_tv)

    T *= chessboard_cell_width_meters  # now translations is in meters

    A = np.append(np.append(R, T, axis=1), np.array([[0, 0, 0, 1]]), axis=0)
    return A, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2
Exemplo n.º 2
0
def lane_finder(args, thresholds, persp_params):
    image_logger = ImageLogger(args.output_dir)
    if not os.path.isfile('{}.npz'.format(args.cam_calib_filename)):
        mtx, dist_coeff = calibrate_camera(args.is_test, args.camera_img_dir,
                                           image_logger)
        np.savez_compressed(args.cam_calib_filename, mtx=mtx, coeff=dist_coeff)
    else:
        print('Reading calibration data from file')
        cam_data = np.load('{}.npz'.format(args.cam_calib_filename))
        mtx = cam_data['mtx']
        dist_coeff = cam_data['coeff']

    M, Minv = get_perspective_matrix(persp_params['corners_src'],
                                     persp_params['corners_dst'])

    pipeline = LaneFinderPipeline(args, mtx, dist_coeff, image_logger,
                                  thresholds, M, Minv)
    if args.is_test:
        test_image = load_image(os.path.join(args.test_dir, 'test2.jpg'))
        result = pipeline.execute(test_image)
        image_logger.plot_results([[{
            'title': 'Pipelined Img',
            'data': result
        }]])
        image_logger.save_image(result, 'binary_combo')
    else:
        print('Processing video...')
        clip2 = VideoFileClip(args.video_filename)
        vid_clip = clip2.fl_image(pipeline.execute)
        vid_clip.write_videofile(args.video_output_filename, audio=False)
Exemplo n.º 3
0
    def __init__(self):

        # initialize all the default values needed
        self.pers_mat = None
        self.inv_pers_mat = None
        self.processed_frames = 0
        self.lane_detected = False
        self.prev_overlay = None
        self.prev_left_rad = None
        self.prev_right_rad = None

        self.left_fit_list = []
        self.right_fit_list = []
        self.left_fit_conf_list = []
        self.right_fit_conf_list = []
        self.offset_list = []

        self.prev_conf_left_fit = None
        self.prev_conf_right_fit = None

        self.current_roi_src = []
        self.current_roi_dest = []

        self.conf_left_fit = None
        self.conf_right_fit = None
        self.total_confidence = 1

        self.lane_distances = {}
        self.lane_weights = {}

        # calibrate the camera and get the matrix and distortion co-efficients
        self.mtx, self.dist = calibration.calibrate_camera()
        src, dest = self.__get_default_roi()
        self.__load_perspective_matrix(src, dest)
Exemplo n.º 4
0
def main():
    global obj
    global camera_matrix

    args = defineFlags()
    camera_matrix = calibration.calibrate_camera()
    print(camera_matrix)
    if not args.obj:
        raise Exception('Require .obj file path')
    obj = OBJ(args.obj, swapyz=True)
    if args.video:
        output_video = 'pygame_video_output.mp4'
        output_clip = mpy.VideoClip(make_frame, duration=10) # 10 seconds
        output_clip.write_videofile(output_video, audio=False, fps=24)
    else:
        game()
Exemplo n.º 5
0
def camera_calib(loc="camera_cal/calibration*.jpg",
                 camera_calib_data_file='cam_calib.p'):
    # Remove Lens Destortion 1 time per camera only no need to do again and again
    calib_images = glob.glob(loc)
    # get object and image points by calibration images
    objpoints, imgpoints = cal.calibrate_using_checkerd_images(calib_images)
    index = 0
    for cimg in calib_images:
        img = plt.imread(cimg)
        img_size = (img.shape[1], img.shape[0])
        if (len(objpoints) > 0 and len(imgpoints) > 0):
            cal.save_calibration(objpoints, imgpoints, img_size,
                                 camera_calib_data_file)
            # Calibrate Camera
            uimg = cal.calibrate_camera(img, objpoints, imgpoints)
            # plt.imshow(uming)
            plt.imsave('output_images/output_camera_calib_{}'.format(index),
                       uimg)
            index += 1
Exemplo n.º 6
0
    def __init__(self):
        super(LineDetector, self).__init__()
        # STEP 1: CAMERA CALIBRATION
        self.mtx, self.dist = calibrate_camera("camera_cal")
        self.previous_left_position = []
        self.previous_right_position = []

        # Last windows to search lines
        self.left_area = None
        self.right_area = None
        self.areas_set = False
        self.previous_left_curverad = None
        self.previous_right_curverad = None

        self.left_fit_cr = []
        self.right_fit_cr = []

        self.nwindows = 9
        self.inc = 0

        # Variables for lines detection
        # Set the width of the windows +/- margin and set minimum number of pixels found to
        # recenter window
        self.margin, self.minpix = 150, 400
Exemplo n.º 7
0
square_size = dset_calib.attrs['square_size'] 
# units       = dset_calib.attrs['units']

# 0(b). Create destination hdf5 file and its internal structure.
print('Creating destination hdf5 file')
hdf5_output_filename = input_dataset_name + '-PRO' + '.hdf5'
hdf5_complete_filename_and_path = os.path.join('C:/Users/Samantha/Documents/Facultad/Laboratorio_6/Mediciones/', hdf5_output_filename)
hdf5_output_file   = h5py.File(hdf5_complete_filename_and_path, 'w')
# cal_results_dset   = hdf5_output_file.create_dataset('calibration_results')
height_grp         = hdf5_output_file.create_group('height_fields')
# rectangle_dset     = hdf5_output_file.create_dataset('height_fields/rectangle') 
    
# FTP PROCESSING
# 1. Calibrate camera.
print('Calibrating camera')
cam_mtx, roi, mapx, mapy = calibrate_camera(dset_calib, [8, 6], square_size)

# 2. Generate one gray image by averaging gray images.
print('Generate averages gray and reference, and generate mask')
gray = generate_average_image(dset_ftp_g)

# 3. Generate one reference image by averaging references.
ref  = generate_average_image(dset_ftp_r)

# 4. Undistort gray image.
# gray = undistort_image(gray, mapx, mapy)

# 5. From gray image, determine mask and disk and rectangle properties
mask, c_disk, R_disk, c_rect, sl_rect, mask_of_disk_alone, mask_of_rect_alone = generate_mask(gray)

N_vertical_slices = int(N_images/100) + (1 - (N_images/100).is_integer() )
        for point in src:
            axarray[0].plot(*point, '.')
        axarray[1].set_title('After perspective transform')
        axarray[1].imshow(warped, cmap='gray')
        for point in dst:
            axarray[1].plot(*point, '.')
        for axis in axarray:
            axis.set_axis_off()
        plt.show()

    return warped, M, Minv


if __name__ == '__main__':

    ret, mtx, dist, rvecs, tvecs = calibrate_camera(
        calib_images_dir='camera_cal')

    # show result on test images
    for test_img in glob.glob('test_images/*.jpg'):

        img = cv2.imread(test_img)

        undistorted_img = undistort(img, mtx, dist, testing=False)

        binary_img = binarize(undistorted_img, testing=False)

        birdeye_img, M, Minv = birdeye(cv2.cvtColor(undistorted_img,
                                                    cv2.COLOR_BGR2RGB),
                                       testing=True)
Exemplo n.º 9
0
    func = sys.argv[1].lower()
    if func == "capture":
        direc = sys.argv[2] if len(sys.argv) > 2 else IMAGE_DIR
        images = capture_images(direc)
    elif func == "calib":
        direc = sys.argv[2] if len(sys.argv) > 2 else IMAGE_DIR
        images = read_images(direc)
    else: 
        print("invalid function")
        exit(1)

    if len(images) == 0:
        print("no images captured or read")
        exit(1)

    # get grid data
    objpoints, imgpoints = collect_calib_data(images)

    if len(objpoints) == 0:
        print("No grids found in images")
        exit(1)

    # calibrate
    mtx, dist, rvecs, tvecs = calibration.calibrate_camera(objpoints, imgpoints, (images[0].shape[1::-1]))

    calibf = sys.argv[3] if len(sys.argv) > 3 else "camera_calib.json"
    print("saving calibration data to %s" % calibf)
    calibration.dump_calibration(calibf, mtx, dist, rvecs, tvecs)
    
    
Exemplo n.º 10
0
    output = clip.fl_image(pipeline)
    output.write_videofile(output_name, audio=False)


def image_preview(file_name):
    image = mpimg.imread(file_name)
    warped = proc.warp(image)
    detector.lane_width = 800  # bypass lane width estimation stage
    detector.detect_lane(warped, debug=True)
    image = detector.draw_final_lane(image)
    plt.figure()
    plt.imshow(image)
    plt.show()


if __name__ == '__main__':
    # calibrate the camera if not already done so
    data_file = './calibration_data.p'
    if not os.path.exists(data_file):
        mtx, dist = calibration.calibrate_camera('./camera_cal', 9, 6)
        calibration.save_data(data_file, mtx, dist)

    # load calibration data
    mtx, dist = calibration.load_data(data_file)
    #utils.plot_all('./test_images', calibration.undistort_image, mtx, dist)
    detector = detector.Detector()

    image_preview('./test_images/test4.jpg')
    #video_preview('project_video.mp4', pipeline)
    #video_output('challenge_video.mp4', pipeline)