Exemplo n.º 1
1
# In[3]:

"""create a heatmap of daily total steps burned"""
allFiles = glob.glob("Data/Activities_Summary/*.csv") # create a list of all data files
fulldf = []
for file_ in allFiles: # for loop to merge data files
    df = pd.read_csv(str(file_), index_col=0)
    fulldf.append(df)
fulldf = pd.concat(fulldf)
fulldf.index=pd.to_datetime(fulldf.index) # use date as index
fulldf = fulldf[fulldf.steps != 0] # remove days without data
events = pd.Series(fulldf['steps'])
# create a heat map of steps walked per day
fig,ax=calmap.calendarplot(events, monthticks=True, cmap='GnBu', vmin=0, vmax=max(fulldf['steps'])+1000,
                    fillcolor='gainsboro', linecolor='white', linewidth=2,
                    fig_kws=dict(figsize=(12, 8)));
cax = fig.add_axes([1.0, 0.2, 0.02, 0.6])
norm1 = mpl.colors.Normalize(0,max(fulldf['steps'])+1000)
cb = mpl.colorbar.ColorbarBase(cax, cmap='GnBu', norm=norm1, spacing='proportional')
cb.set_label('# of Steps')


# In[4]:

dayofweek = []

for day in fulldf.index: # create new column for day of week
    #datentime=dt.datetime.strptime(day, '%Y-%m-%d')
    #dateonly=datentime.date()
    dateonly=day.date()
Exemplo n.º 2
0
def calendar_plot_by_year(series_to_plot, normalize_each_year=False):
    """Creates a calendar heatmap of of data contained in a Series

    Arg:
        series_to_plot: Pandas Series object [index = dates]
        normalize_each_year: Boolean flag to separately color each year
    """

    # calculate number of years
    start_year = series_to_plot.sort_index().index[0].year
    end_year = series_to_plot.sort_index().index[-1].year
    num_years = end_year - start_year + 1

    # send directly to function if we want to few heatmap across full time period
    if not normalize_each_year:
        calmap.calendarplot(series_to_plot, cmap='YlGn', fillcolor='grey', \
            linewidth=.05, daylabels=['M', 'T', 'W', 'T', 'F', 'S', 'S'], \
            fig_kws=dict(figsize=(12, 2*num_years)))
        return

    # plot each year and build figure
    fig = plt.figure(figsize=(12, 2 * num_years))
    for i, year in enumerate(range(start_year, end_year + 1), 1):
        year_to_plot = series_to_plot[series_to_plot.index.year == year]

        # plot
        axes = fig.add_subplot(num_years, 1, i)
        calmap.yearplot(year_to_plot, year=year, cmap='YlGn', fillcolor='grey', linewidth=.05, \
                        daylabels=['M', 'T', 'W', 'T', 'F', 'S', 'S'], ax=axes)
        axes.set_ylabel(year)
Exemplo n.º 3
0
def create_dfs():
    try:
        df = pd.read_pickle("./castellion_stats.pkl")
        df2 = pd.read_pickle("./castellion_winloss.pkl")
    except:
        df = pd.DataFrame({'Date': today, 'Count': 1}, index=[0])
        df2 = pd.DataFrame({'Wins': 0, 'Games': 1}, index=[0])
    dates = [today]
    if df.Date.isin(dates).any():
        df.loc[df.Date.isin(dates), 'Count'] += 1
    else:
        df = df.append({'Date': today, 'Count': 1}, ignore_index=True)
    df2['Games'][0] += 1
    print(df2['Games'])
    df['Date'] = pd.to_datetime(df['Date'])
    df.to_pickle("./castellion_stats.pkl")
    df2.to_pickle("./castellion_winloss.pkl")
    df.set_index('Date', inplace=True)
    plt.figure(figsize=(16, 10), dpi=80)
    calmap.calendarplot(df['2021']['Count'],
                        fig_kws={'figsize': (16, 10)},
                        yearlabel_kws={
                            'color': 'black',
                            'fontsize': 14
                        },
                        subplot_kws={'title': 'Days Played'},
                        cmap='YlOrRd')
    plt.savefig('heatmap.png', bbox_inches='tight')
    return df2
Exemplo n.º 4
0
def calmap():
    if os.path.exists(
            os.path.join(root_path, "Daily Data", "Portfolio",
                         "Portfolio_Returns.csv")):
        port_rets = pd.read_csv(os.path.join(root_path, "Daily Data",
                                             "Portfolio",
                                             "Portfolio_Returns.csv"),
                                index_col=0)

        import numpy as np
        np.random.seed(sum(map(ord, 'calmap')))
        import calmap

        events = port_rets['Portfolio Value']
        events.index = pd.to_datetime(events.index)

        #calmap.yearplot(events, year=2018)

        calmap.calendarplot(events,
                            monthticks=3,
                            daylabels='MTWTFSS',
                            dayticks=[0, 2, 4, 6],
                            cmap='YlGn',
                            fillcolor='grey',
                            linewidth=0,
                            fig_kws=dict(figsize=(8, 4)))
        plt.show()
    else:
        print(
            'You have not downloaded data for your portfolio yet in oder for the optimization module to be run. Please download the data by running the following function --- port_data.portfolio_daily_data()'
        )
Exemplo n.º 5
0
def _plot_calendar(events, cmap="Reds", fillcolor="whitesmoke", **kwargs):
    import calmap

    # Filter away journal entries and sort
    events = list(sorted(filter(lambda e: e.type == "data", events)))

    for e in events:
        e.data["substance"] = "Any"

    period_counts = _count_doses(events, one_per_day=True, monthly=False)
    assert len(period_counts) == 1

    doses = [n_dose for n_dose in next(iter(period_counts.values())).values()]
    labels = [
        pd.Timestamp("-".join(map(str, date))) for sd in period_counts
        for date in period_counts[sd].keys()
    ]

    series = pd.Series(doses, index=labels)
    series = series[~series.index.duplicated()]
    series = series.resample("D").sum().asfreq("D")
    # print(series.tail(20))

    calmap.calendarplot(series,
                        fillcolor=fillcolor,
                        cmap=cmap,
                        linewidth=1,
                        fig_kws=kwargs)
    plt.show()
Exemplo n.º 6
0
def plot_calendar(df, habitname, show=True, year=None):
    df = df[df.index.get_level_values("HabitName").isin([habitname])].reset_index()
    df = df.set_index(pd.DatetimeIndex(df["CalendarDate"]))
    if year:
        calmap.yearplot(df["Value"], year=year)
    else:
        calmap.calendarplot(df["Value"])
    if show:
        plt.show()
Exemplo n.º 7
0
def calendarImg(dataset):
    for i, id_input in enumerate(dataset.id):
        df = calendarDF[calendarDF.listing_id.isin([id_input])]
        df['available_num'] =[3 if x ==1 else -1 for x in df['available']] # instead of t and f, it will be 3 and -1
        df['date'] = pd.to_datetime(df['date'], format='%Y-%m-%d').dt.strftime('%Y-%m-%d %H:%M:%S') # convert date format with h:m:s
        events=pd.Series(df['available_num']) # convert the dataset into series
        events.index= pd.DatetimeIndex(df['date']) # set date as the index 
        calmap.calendarplot(events, monthticks=1, daylabels='MTWTFSS',cmap='YlGn', fillcolor='grey', linewidth=1, fig_kws=dict(figsize=(16, 4)))
        name = "img"+str(i)+".png"
        plt.savefig(name)
Exemplo n.º 8
0
def Calendar_Heat_Map(self):
    df = pd.read_csv("dataVset/yahoo.csv", parse_dates=['date'])
    df.set_index('date', inplace=True)

    # Plot
    # plt.figure(figsize=(16, 10), dpi=80)
    calmap.calendarplot(df['2014']['VIX.Close'],
                        fig_kws={'figsize': (16, 10)},
                        yearlabel_kws={
                            'color': 'black',
                            'fontsize': 14
                        },
                        subplot_kws={'title': 'Yahoo Stock Prices'})

    plt.show()
Exemplo n.º 9
0
def plot_calmap(events=_get_random_events()):
    # cmap choices: viridis
    calmap.calendarplot(
        events,
        monthticks=True,
        daylabels="MTWTFSS",
        cmap="PuBuGn",
        fillcolor="whitesmoke",
        linewidth=1,
        vmin=0,
        fig_kws=dict(figsize=(12, 6)),
        fig_suptitle="CTimer clock count",
    )

    plt.show()
def calendar_plot(overall_dict, dates, filename):
    names = list(overall_dict.keys())
    weights = [i + 1 for i in range(len(names))]
    daily_weights = list()
    for day_index in range(len(dates)):
        min = 999999
        weight = None
        for name in names:
            if overall_dict[name][day_index] is not None:
                if overall_dict[name][day_index] < min:
                    min = overall_dict[name][day_index]
                    weight = weights[names.index(name)]
                elif overall_dict[name][day_index] == min:
                    weight = 0
        daily_weights.append(weight)
    datetimes = [
        dt.datetime(year=int(date.split('/')[2]),
                    month=int(date.split('/')[0]),
                    day=int(date.split('/')[1])) for date in dates
    ]
    series = pd.Series(data=daily_weights, index=datetimes)
    cmap = matplotlib.colors.ListedColormap(
        ['grey', 'skyblue', 'navajowhite', 'palegreen', 'lightcoral', 'plum'])
    fig, ax = calmap.calendarplot(series,
                                  fillcolor='silver',
                                  cmap=cmap,
                                  fig_kws=dict(figsize=(10, 4)))
    labels = ['Tie'] + names
    formatter = plt.FuncFormatter(lambda val, loc: labels[int(val)])
    fig.colorbar(ax[0].get_children()[1],
                 ax=ax.ravel().tolist(),
                 shrink=0.4,
                 format=formatter)
    plt.savefig(filename)
    plt.close('all')
Exemplo n.º 11
0
    def plot_yoy_growth(self):

        # CALENDAR MAP IMAGE
        calmap.calendarplot(
            self.yoy_growth.iloc[self.yoy_growth.index.year > 2016]['index'],
            monthticks=1,
            daylabels='MTWTF',
            dayticks=[0, 2, 4],
            cmap='RdYlGn',
            linewidth=0.2,
            yearascending=False,
            yearlabel_kws=dict(color='#696969'),
            fig_kws=dict(figsize=(12, 8)))

        plt.savefig('assets/yoy_calmap.png')

        # YOY GROWTH - show different colour for positive and negative yoy growth
        postive_growth = go.Scatter(
            y=[0 if x < 0 else x for x in self.yoy_growth['28dayMA']],
            x=self.yoy_growth.index,
            fill='tozeroy',
            line=dict(color='#2F80ED'))

        negative_growth = go.Scatter(
            y=[0 if x > 0 else x for x in self.yoy_growth['28dayMA']],
            x=self.yoy_growth.index,
            fill='tozeroy')

        baseline = go.Scatter(y=[0 for x in self.yoy_growth.index],
                              x=self.yoy_growth.index,
                              line=dict(color='black'))

        layout = go.Layout(plot_bgcolor='#ffffff',
                           yaxis=dict(tickformat="%"),
                           xaxis=dict(range=([
                               self.yoy_growth.index.min(),
                               self.yoy_growth.index.max() +
                               pd.DateOffset(months=6)
                           ])),
                           showlegend=False,
                           hovermode='x')

        yoy_growth_chart = go.Figure(
            data=[postive_growth, negative_growth, baseline], layout=layout)

        return yoy_growth_chart
Exemplo n.º 12
0
def calheatmap(year):
    '''
    Plot a Calendar heat map. Number of citations vs Date in a specific year 
    Input:
    year: year in [2015, 2016, 2017, 2018]
    '''

    assert year in [2015, 2016, 2017, 2018]

    df = pd.read_csv(str(year) + 'parking-citations.csv',
                     parse_dates=['Issue Date'])
    gp = df['Fine amount'].groupby(df['Issue Date'])
    calmap.calendarplot(
        gp.count(),
        fig_kws={'figsize': (16, 10)},
        yearlabels=False,
        subplot_kws={'title': 'Number of Citations in Year ' + str(year)})
    plt.show()
Exemplo n.º 13
0
def plotCalendar(df):
    for column in df.columns:
        # https://pythonhosted.org/calmap/
        fig, ax = calmap.calendarplot(
            df[column], daylabels='MTWTFSS',
            cmap='RdYlGn')  #The _r at the end inverts the map, so 1 is green.
        plt.title(column)
        plt.legend()
        plt.savefig(column + '.png')
    return
Exemplo n.º 14
0
def calmap(port_rets):
    import numpy as np
    np.random.seed(sum(map(ord, 'calmap')))
    import calmap

    events = port_rets['Portfolio Value']
    events.index = pd.to_datetime(events.index)

    #calmap.yearplot(events, year=2018)

    calmap.calendarplot(events,
                        monthticks=3,
                        daylabels='MTWTFSS',
                        dayticks=[0, 2, 4, 6],
                        cmap='YlGn',
                        fillcolor='grey',
                        linewidth=0,
                        fig_kws=dict(figsize=(8, 4)))
    plt.show()
Exemplo n.º 15
0
def plot_daily_flow_rate_average(
        df: pd.DataFrame,
        factory: str,
        flare: str,
        max_rates: MaxRateCollection,
        bound_scale: bool,
        filter_run: dict = None,
        **kwargs
        ) -> Optional[Plot]:
    """Plot heat-map for flare's average hourly flow rate per-day"""

    if is_skip_plot(dict(type='plot_daily_flow_rate_average', factory=factory, flare=flare), filter_run):
        return None

    max_hourly_rate = max_rates.hourly if max_rates else None

    if bound_scale and not max_hourly_rate:
        # Bounded plot can only be made on hourly-limited flare
        return None

    # Build title
    flare_title = get_flare_title(flare, factory)
    title = f'ממוצע יומי של ספיקה שעתית {flare_title}'
    title += '\nביחידות ק"ג/שעה'
    if not max_hourly_rate:
        title += f' {NO_LAW_STR}'
    elif not bound_scale:
        title += f' {law_str_unbounded_func(max_hourly_rate.rate)}'
    else:
        title += f' {law_str_func(max_hourly_rate.rate)}'

    # Plot graph
    num_years = len(df.sum(axis=1).resample('Y').sum())  # there must be a more elegant way to do this!
    fig, axes = calmap.calendarplot(
        df[flare],
        how='mean',  # Hourly
        vmax=max_hourly_rate.rate if bound_scale else None,
        fillcolor='grey',
        linewidth=0,
        fig_kws=dict(figsize=(15, 2 + 3 * num_years)),
        cmap=kwargs.pop('cmap', plt.cm.get_cmap(colormap_negative_name)),
        **kwargs
    )
    fig.suptitle(get_display(title), fontsize=30)

    # Plot color bar
    fig.colorbar(axes[0].get_children()[1],
                 ax=axes.ravel().tolist(),
                 orientation='horizontal',
                 shrink=1.0,
                 extend='max' if bound_scale else 'neither'
                 )

    return Plot(fig, title, df)
Exemplo n.º 16
0
def main():
    df = (pd.read_excel('Growth_Without_Goals.xlsx',
                        sheetname='Log')).set_index('Date')

    for column in df.columns:
        # https://pythonhosted.org/calmap/
        fig, ax = calmap.calendarplot(df[column],
                                      daylabels='MTWTFSS',
                                      cmap='RdYlGn')
        plt.title(column)
        plt.savefig(column + '.png')
Exemplo n.º 17
0
def calplot_funk(df, keycol, filename_base):
    '''docstring for calplot_funk function'''
    fig, ax = calmap.calendarplot(
        df[keycol],
        fillcolor='grey',  # linewidth=0,#cmap='RdYlGn',
        fig_kws=dict(figsize=(17, 12)),
        subplot_kws={'title': keycol},
        vmin=0)
    fig.colorbar(ax[0].get_children()[1],
                 ax=ax.ravel().tolist(),
                 orientation='horizontal')
    filename = filename_base + '_' + keycol + '.png'
    plt.savefig(filename)
    return plt.show()
Exemplo n.º 18
0
def calendarPlot():
    import calmap
    df = pd.read_csv(
        "https://raw.githubusercontent.com/swapnilsaurav/Dataset/master/stock_price.csv"
    )
    # Prepare the data for plotting
    # print("df= \n", df)
    df["date"] = pd.to_datetime(df["date"])
    # print("df[date]\n", df["date"])

    # The data must be a series with a date time index
    df.set_index("date", inplace=True)

    x = df[df["year"] == 2016]["Close"]
    print("x=\n", x)
    # Plot the data using calmap
    calmap.calendarplot(x,
                        fig_kws={'figsize': (16, 10)},
                        yearlabel_kws={
                            "color": "black",
                            "fontsize": 14
                        },
                        subplot_kws={"title": "Stock Prices"})
    plt.show()
Exemplo n.º 19
0
def calmap(portfolio):
    port_rets = pd.read_csv(root_path + '/Daily_Data/Portfolio/' +
                            portfolio.Portfolio_Name +
                            '_Portfolio_Returns.csv',
                            index_col=0)

    import numpy as np
    np.random.seed(sum(map(ord, 'calmap')))
    import calmap

    events = port_rets['Portfolio Value']
    events.index = pd.to_datetime(events.index)

    #calmap.yearplot(events, year=2018)

    calmap.calendarplot(events,
                        monthticks=3,
                        daylabels='MTWTFSS',
                        dayticks=[0, 2, 4, 6],
                        cmap='YlGn',
                        fillcolor='grey',
                        linewidth=0,
                        fig_kws=dict(figsize=(8, 4)))
    plt.show()
Exemplo n.º 20
0
def plot_daily_number_of_exceptions_from_allowed_hourly_flow_rate_average(
        df: pd.DataFrame,
        factory: str,
        max_rates: Optional[MaxRateCollection],
        filter_run: dict = None,
        **kwargs
        ) -> Optional[Plot]:
    """Plot heat-map for number of exceptions per-day"""
    if is_skip_plot(dict(type='plot_daily_number_of_exceptions_from_allowed_hourly_flow_rate_average',
                         factory=factory, flare=None), filter_run):
        return None

    if not max_rates:
        return None
    max_hourly_rate = max_rates.hourly
    if not max_hourly_rate:
        return None

    max_total_hourly_rate = max_hourly_rate.rate

    df = df.copy()
    df['Exception'] = df['Total'] > max_total_hourly_rate

    num_years = len(df.sum(axis=1).resample('Y').sum())  # there must be a more elegant way to do this!
    fig, axes = calmap.calendarplot(
        df['Exception'],
        fillcolor='grey',
        linewidth=0,
        fig_kws=dict(figsize=(15, 3 + 3 * num_years)),
        cmap=kwargs.pop('cmap', plt.cm.get_cmap(colormap_negative_name, 24)),
        **kwargs
    )

    cbar = fig.colorbar(axes[0].get_children()[1],
                        ax=axes.ravel().tolist(),
                        orientation='horizontal',
                        shrink=1.0,
                        ticks=[0, 6, 12, 18, 24])
    # cbar.ax.get_yaxis().labelpad = 15
    cbar.ax.set_xlabel(get_display('שעות חריגה ביום'), fontsize=20)

    title = f'כמות חריגות יומיות מהיתר ספיקה שעתית בלפידי {factory}'
    title += '\nביחידות שעות חריגה ליום'
    fig.suptitle(get_display(title), fontsize=30)

    return Plot(fig, title, df)
Exemplo n.º 21
0
def plot_calendar_heatmap(data,
                          width=800,
                          height=200,
                          style='whitegrid',
                          format=SVG,
                          cache=True):
    fig, ax = calmap.calendarplot(data,
                                  how=None,
                                  dayticks=(0, 2, 4, 6),
                                  yearlabel_kws={
                                      'color': 'black',
                                      'fontsize': 10,
                                      'fontweight': 'normal'
                                  },
                                  cmap='YlGn',
                                  fillcolor='#eeeeee')
    return fig, width, height * len(data.index.year.unique())
Exemplo n.º 22
0
def heatmap_data(data1, data2, data3):

    value1 = []

    all_day = pd.date_range('01/01/2017', periods=1095, freq='1D')

    for i in range(365):
        value1.append(data1["Value"][i])

    for i in range(365):
        value1.append(data2["Value"][i])

    for i in range(365):
        value1.append(data3["Value"][i])

    events = pd.Series(value1, index=all_day)

    fig, ax = calmap.calendarplot(events,
                                  linewidth=0,
                                  fig_kws=dict(figsize=(17, 8)))

    fig.colorbar(ax[0].get_children()[1], ax=ax.ravel().tolist())
    plt.show(fig)
Exemplo n.º 23
0
            numPerDay = 0

        else:
            numPerDay = numPerDay + 1

    print(nArr)

    newArray = np.asarray(nArr)

    print(newArray)

    df = pd.DataFrame({'Date': newArray[:, 0], 'AppNum': newArray[:, 1]})

    print(df)

    df.set_index('Date', inplace=True)
    # Plot
    plt.figure(figsize=(16, 10), dpi=80)
    calmap.calendarplot(df[year[i]]['AppNum'],
                        fig_kws={'figsize': (16, 10)},
                        yearlabel_kws={
                            'color': 'black',
                            'fontsize': 14
                        },
                        subplot_kws={
                            'title':
                            '{} Diligence of Sending Applications'.format(
                                year[i])
                        })
    plt.show()
Exemplo n.º 24
0
allFiles = glob.glob(
    "Data/Activities_Summary/*.csv")  # create a list of all data files
fulldf = []
for file_ in allFiles:  # for loop to merge data files
    df = pd.read_csv(str(file_), index_col=0)
    fulldf.append(df)
fulldf = pd.concat(fulldf)
fulldf.index = pd.to_datetime(fulldf.index)  # use date as index
fulldf = fulldf[fulldf.steps != 0]  # remove days without data
events = pd.Series(fulldf['steps'])
# create a heat map of steps walked per day
fig, ax = calmap.calendarplot(events,
                              monthticks=True,
                              cmap='GnBu',
                              vmin=0,
                              vmax=max(fulldf['steps']) + 1000,
                              fillcolor='gainsboro',
                              linecolor='white',
                              linewidth=2,
                              fig_kws=dict(figsize=(12, 8)))
cax = fig.add_axes([1.0, 0.2, 0.02, 0.6])
norm1 = mpl.colors.Normalize(0, max(fulldf['steps']) + 1000)
cb = mpl.colorbar.ColorbarBase(cax,
                               cmap='GnBu',
                               norm=norm1,
                               spacing='proportional')
cb.set_label('# of Steps')

# In[4]:

dayofweek = []
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 30 20:15:47 2019

@author: Jie Zhang,微信公众号【EasyShu】,本代码源自《Python数据可视化之美》
"""
import pandas as pd
import numpy as np
from plotnine import *

import matplotlib.pyplot as plt

import calmap

df = pd.read_csv('Calendar.csv', parse_dates=['date'])
df.set_index('date', inplace=True)

fig, ax = calmap.calendarplot(df['value'],
                              fillcolor='grey',
                              linecolor='w',
                              linewidth=0.1,
                              cmap='RdYlGn',
                              yearlabel_kws={
                                  'color': 'black',
                                  'fontsize': 12
                              },
                              fig_kws=dict(figsize=(10, 5), dpi=80))
fig.colorbar(ax[0].get_children()[1], ax=ax.ravel().tolist())
plt.show()
#fig.savefig('日历图1.pdf')
Exemplo n.º 26
0
# https://pythonhosted.org/calmap/

import calmap
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

np.random.seed(sum(map(ord, 'calmap')))

all_days = pd.date_range('1/15/2014', periods=700, freq='D')
days = np.random.choice(all_days, 500)
events = pd.Series(np.random.randn(len(days)), index=days)

calmap.calendarplot(events,
                    monthticks=3,
                    daylabels='MTWTFSS',
                    dayticks=[0, 2, 4, 6],
                    cmap='YlGn',
                    fillcolor='grey',
                    linewidth=0,
                    fig_kws=dict(figsize=(8, 4)))

plt.show()
Exemplo n.º 27
0
# https://github.com/martijnvermaat/calmap
# http://stackoverflow.com/a/11274226
# http://pandas.pydata.org/pandas-docs/version/0.17.0/generated/pandas.Series.from_csv.html
# http://pandas.pydata.org/pandas-docs/version/0.17.1/generated/pandas.DataFrame.sort_index.html

import os

# generating matplotlib graphs without a x-server
# http://stackoverflow.com/a/4935945
import matplotlib as mpl
mpl.use('Agg')

import calmap

import matplotlib.pyplot as plt

import pandas

csv_file = os.getcwd() + "/../data/steps-count.csv"
events = pandas.Series.from_csv(csv_file)
events = events.sort_index(ascending=False)

ax = calmap.calendarplot(events, yearascending=False, daylabels='mtwtfss',
                         linewidth=0.5, vmax=10000, vmin=1, cmap='Greens',
                         fig_kws=dict(figsize=(8, 4)))
plt.setp(ax)

# todo: title always showing up in the last calmap/subplot
# plt.title("Total Daily Steps Heatmap")
plt.savefig("total_daily_steps_heatmap.png")
Exemplo n.º 28
0
import matplotlib.pyplot as plt

pd.set_option('display.max_columns', 20)

# KOSPI 데이터 준비
df = pd.read_excel('./data/kospi.xls', parse_dates=['년/월/일'])
print(df.head(), '\n')

df.columns = [
    'date', 'price', 'up_down', 'change', 'start', 'high', 'low', 'vol_num',
    'vol_amt', 'mkt_cap'
]
df = df.set_index('date', drop=True)
print(df.head(), '\n')

# Calendar Map 표현
plt.figure(figsize=(16, 8))
calmap.calendarplot(
    df.change,
    monthticks=1,
    daylabels='MTWTFSS',
    dayticks=[0, 2, 4, 6],
    cmap='YlGn',
    linewidth=0.05,
    fillcolor='grey',
    fig_kws=dict(figsize=(14, 6)),
    yearlabel_kws=dict(color='black', fontsize=12),
    subplot_kws=dict(title='2018 KOSPI Price Trend'),
)
plt.show()
import matplotlib as mpl
import calmap
import pandas as pd
import matplotlib.pyplot as plt

# Import Data
df = pd.read_csv(
    "https://raw.githubusercontent.com/selva86/datasets/master/yahoo.csv",
    parse_dates=['date'])
df.set_index('date', inplace=True)

# Plot
plt.figure(figsize=(16, 10), dpi=80)
calmap.calendarplot(df['2014']['VIX.Close'],
                    fig_kws={'figsize': (16, 10)},
                    yearlabel_kws={
                        'color': 'black',
                        'fontsize': 14
                    },
                    subplot_kws={'title': 'Yahoo Stock Prices'})
plt.show()
Exemplo n.º 30
0
def test_calendarplot(events):
    """
    With `calendarplot` we can plot several years in one figure.
    """
    fig, axes = calmap.calendarplot(events)
    return fig
Exemplo n.º 31
0
def test_calendarplot(events):
    """
    With `calendarplot` we can plot several years in one figure.
    """
    fig, axes = calmap.calendarplot(events)
    return fig
Exemplo n.º 32
0
def dbplot():

    data = pd.read_excel("C:\\Users\\user\\Desktop\\death_criminal.xlsx")
    data2 = pd.read_excel("C:\\Users\\user\\Desktop\\death_police.xlsx")

    #state = data['State']
    state_data = Victims.objects.all()
    state_list = []
    for i in state_data:
        state_list = i.state
    state = pd.DataFrame(state_list)

    state_list = list(set(state))
    state_list_count = {}
    state_list_prob = {}

    for i in state_list:
        state_list_count[i] = 0

    for i in range(0, len(data)):
        state_data = data['State'][i]
        if state_data in state_list:
            state_list_count[state_data] += 1

    for i, j in state_list_count.items():
        state_list_prob[i] = j / len(data)

    state_list_count2 = sorted(state_list_count.items(),
                               reverse=True,
                               key=lambda item: item[1])
    x = []
    y = []
    for i in range(0, 20):
        x.append(state_list_count2[i][0])
        y.append(state_list_count2[i][1])
    plt.figure(figsize=(10, 5))
    plt.bar(x[0:20], y[0:20], color='red')
    plt.xlabel('state')
    plt.savefig(
        'C:/Users/user/Desktop/dbproject/dbwebprograming/rip_floyd/static/img/plot1.png'
    )

    ##날짜 그래프

    col1 = 'Date of Incident (month/day/year)'
    date_list = list(set(data[col1]))
    date_count = {}

    for i in range(0, len(data)):
        date_data = data[col1][i]
        if date_data in date_count:
            date_count[date_data] += 1
        else:
            date_count[date_data] = 1

    days = list(date_count.keys())
    happens = list(date_count.values())
    events = pd.Series(happens, index=days)

    calmap.calendarplot(events)
    plt.savefig(
        'C:/Users/user/Desktop/dbproject/dbwebprograming/rip_floyd/static/img/plot2.png'
    )
    ##인종별
    racial_list = list(set(data["Victim's race"]))
    racial_list_count = {}
    for i in range(0, len(data)):
        racial_data = data["Victim's race"][i]
        if racial_data in racial_list_count:
            racial_list_count[racial_data] += 1
        else:
            racial_list_count[racial_data] = 1

    plt.figure(figsize=(10, 5))
    plt.bar(list(racial_list_count.keys())[0:4],
            list(racial_list_count.values())[0:4],
            color='red')
    plt.xlabel('Racial')
    plt.savefig(
        'C:/Users/user/Desktop/dbproject/dbwebprograming/rip_floyd/static/img/plot3.png'
    )

    ##경찰들 순직사건 주별로

    police_list_count = {}
    for i in range(0, len(data2)):
        data2['state'][i] = data2['state'][i].split(', ')[1]

    for i in range(0, len(data2)):
        info = data2['state'][i]
        if info in police_list_count:
            police_list_count[info] += 1
        else:
            police_list_count[info] = 1

    police_list_count2 = sorted(police_list_count.items(),
                                reverse=True,
                                key=lambda item: item[1])
    x2 = []
    y2 = []
    for i in range(0, 20):
        x2.append(police_list_count2[i][0])
        y2.append(police_list_count2[i][1])

    plt.figure(figsize=(10, 5))
    plt.bar(x2[0:20], y2[0:20], color='red')
    plt.xlabel('State')
    plt.savefig(
        'C:/Users/user/Desktop/dbproject/dbwebprograming/rip_floyd/static/img/plot4.png'
    )

    ##경찰들의 총기순직사건과 범죄자들의 과잉진압 사건 회귀분석

    x1_value = []  #state별 범죄사망자
    x2_value = []  #state별 경찰사망자
    for i in state_list:
        x1_value.append(state_list_count.get(i))
        x2_value.append(police_list_count.get(i))

    reg_x1 = pd.DataFrame(x1_value, index=state_list, columns=['events'])
    reg_x2 = pd.DataFrame(x2_value, index=state_list, columns=['events'])
    reg_x2 = reg_x2.fillna(0)
    reg = LinearRegression()
    reg.fit(reg_x1, reg_x2)

    r2 = reg.score(reg_x1, reg_x2)
    y_pred = reg.predict(reg_x1)

    plt.scatter(reg_x1, reg_x2)
    plt.plot(reg_x1, y_pred)
    plt.savefig(
        'C:/Users/user/Desktop/dbproject/dbwebprograming/rip_floyd/static/img/plot5.png'
    )
Exemplo n.º 33
0
temp.rename(columns={'raining': 'hours_raining'}, inplace=True)
temp['day'] = temp['day'].apply(lambda x: x.to_datetime().date())
rainy_days = rainy_days.merge(temp, left_on='date', right_on='day', how='left')
rainy_days.drop('day', axis=1, inplace=True)

print ("In the year, there were {} rainy days of {} at {}".format(rainy_days['rain'].sum(), len(rainy_days), station) )
print ("It was wet while cycling {} working days of {} at {}".format(wet_cycling['get_wet_cycling'].sum(), 
                                                      len(wet_cycling),
                                                     station))
print ("You get wet cycling {} % of the time!!".format(wet_cycling['get_wet_cycling'].sum()*1.0*100/len(wet_cycling)))

import calmap

temp = rainy_days.copy().set_index(pd.DatetimeIndex(analysis['rainy_days']['date']))
#temp.set_index('date', inplace=True)
fig, ax = calmap.calendarplot(temp['hours_raining'], fig_kws={"figsize":(15,4)})
plt.title("Hours raining")
fig, ax = calmap.calendarplot(temp['total_rain'], fig_kws={"figsize":(15,4)})
plt.title("Total Rainfall Daily")

temp[['get_wet_cycling', 'total_rain', 'hours_raining']].plot()

def analyse_station(data_raw, station):
    """
    Function to analyse weather data for a period from one weather station.
    
    Args:
        data_raw (pd.DataFrame): Pandas Dataframe made from CSV downloaded from wunderground.com
        station (String): Name of station being analysed (for comments)
    
    Returns: