Exemplo n.º 1
0
    def test_wrong_background_size(self):
        pipeline_parameters = {
            "camera_name": "simulation",
            "image_background": "white_background"
        }

        simulated_camera = get_simulated_camera()
        image = simulated_camera.get_image()
        x_axis, y_axis = simulated_camera.get_x_y_axis()

        background_provider = MockBackgroundManager()

        # Invalid background size.
        background_provider.save_background("white_background",
                                            numpy.zeros(shape=(100, 100)),
                                            append_timestamp=False)

        parameters = PipelineConfig("test_pipeline",
                                    pipeline_parameters).get_configuration()
        image_background_array = background_provider.get_background(
            "white_background")

        with self.assertRaisesRegex(RuntimeError,
                                    "Invalid background_image size"):
            process_image(image, 0, time.time(), x_axis, y_axis, parameters,
                          image_background_array)
Exemplo n.º 2
0
    def test_image_threshold(self):
        simulated_camera = get_simulated_camera()
        image = simulated_camera.get_image()
        x_axis, y_axis = simulated_camera.get_x_y_axis()
        x_size, y_size = simulated_camera.get_geometry()

        pipeline_parameters = {
            "camera_name": "simulation",
            "image_threshold": 9999999
        }

        pipeline_config = PipelineConfig("test_pipeline", pipeline_parameters)
        parameters = pipeline_config.get_configuration()

        result = process_image(image, 0, time.time(), x_axis, y_axis,
                               parameters)

        expected_image = numpy.zeros(shape=(y_size, x_size), dtype="uint16")
        self.assertTrue(numpy.array_equal(result["image"], expected_image),
                        "An image of zeros should have been produced.")

        pipeline_parameters = {
            "camera_name": "simulation",
            "image_threshold": 0
        }

        pipeline_config = PipelineConfig("test_pipeline", pipeline_parameters)
        parameters = pipeline_config.get_configuration()

        result = process_image(image, 0, time.time(), x_axis, y_axis,
                               parameters)

        self.assertTrue(numpy.array_equal(result["image"], image),
                        "The image should be the same as the original image.")
Exemplo n.º 3
0
    def test_noop_pipeline(self):
        pipeline_config = PipelineConfig("test_pipeline")

        simulated_camera = get_simulated_camera()
        image = simulated_camera.get_image()
        x_axis, y_axis = simulated_camera.get_x_y_axis()
        parameters = pipeline_config.get_configuration()

        result = process_image(image, 0, time.time(), x_axis, y_axis,
                               parameters)
        required_fields_in_result = [
            'x_center_of_mass', 'x_axis', 'y_axis', 'x_profile',
            'y_fit_standard_deviation', 'y_rms', 'timestamp', 'y_profile',
            'image', 'max_value', 'x_fit_offset', 'x_fit_gauss_function',
            'y_center_of_mass', 'min_value', 'y_fit_mean', 'x_fit_mean',
            'x_rms', 'y_fit_amplitude', 'x_fit_amplitude',
            'y_fit_gauss_function', 'x_fit_standard_deviation', 'y_fit_offset',
            "processing_parameters", "intensity", "x_fwhm", "y_fwhm", 'width',
            'height'
        ]

        self.assertSetEqual(set(required_fields_in_result), set(result.keys()),
                            "Not all required keys are present in the result")

        self.assertTrue(
            numpy.array_equal(result["image"], image),
            "The input and output image are not the same, but the pipeline should not change it."
        )

        self.assertDictEqual(
            parameters, json.loads(result["processing_parameters"]),
            "The passed and the received processing parameters are not the same."
        )
Exemplo n.º 4
0
        def run_the_pipeline(configuration, simulated_image=None):
            parameters = PipelineConfig("test_pipeline",
                                        configuration).get_configuration()

            simulated_camera = get_simulated_camera()

            if simulated_image is None:
                simulated_image = simulated_camera.get_image()

            x_axis, y_axis = simulated_camera.get_x_y_axis()

            return process_image(simulated_image,
                                 0,
                                 time.time(),
                                 x_axis=x_axis,
                                 y_axis=y_axis,
                                 parameters=parameters)
Exemplo n.º 5
0
    def test_intensity(self):
        simulated_camera = get_simulated_camera()
        image = simulated_camera.get_image()
        x_axis, y_axis = simulated_camera.get_x_y_axis()

        parameters = PipelineConfig("test_pipeline", {
            "camera_name": "simulation"
        }).get_configuration()

        result = process_image(image, 0, time.time(), x_axis, y_axis,
                               parameters)

        x_sum = result["x_profile"].sum()
        y_sum = result["y_profile"].sum()

        # The sums of X and Y profile should always give us the same result as the intensity.
        self.assertAlmostEqual(x_sum, result["intensity"], delta=10000)
        self.assertAlmostEqual(y_sum, result["intensity"], delta=10000)
Exemplo n.º 6
0
    def test_profiles(self):
        height = 10
        width = 10

        square_start = 4
        square_end = 6
        n_pixels = square_end - square_start
        pixel_value = 10000

        image = numpy.zeros((height, width), dtype="uint16")
        x_axis = numpy.linspace(0, width - 1, width, dtype='f')
        y_axis = numpy.linspace(0, height - 1, height, dtype='f')

        parameters = PipelineConfig("test_pipeline", {
            "camera_name": "simulation"
        }).get_configuration()

        # Add signal in the center
        image[square_start:square_end, square_start:square_end] = 10000

        result = process_image(image, 0, time.time(), x_axis, y_axis,
                               parameters)

        x_profile = result["x_profile"]
        y_profile = result["y_profile"]

        numpy.testing.assert_array_equal(x_profile[0:square_start],
                                         numpy.zeros(shape=square_start))
        numpy.testing.assert_array_equal(
            x_profile[square_start:square_end],
            numpy.zeros(shape=n_pixels) + (n_pixels * pixel_value))
        numpy.testing.assert_array_equal(x_profile[square_end],
                                         numpy.zeros(shape=width - square_end))

        numpy.testing.assert_array_equal(y_profile[0:square_start],
                                         numpy.zeros(shape=square_start))
        numpy.testing.assert_array_equal(
            y_profile[square_start:square_end],
            numpy.zeros(shape=n_pixels) + (n_pixels * pixel_value))
        numpy.testing.assert_array_equal(
            y_profile[square_end], numpy.zeros(shape=height - square_end))
Exemplo n.º 7
0
    def test_image_background(self):
        pipeline_parameters = {
            "camera_name": "simulation",
            "image_background": "white_background"
        }

        simulated_camera = get_simulated_camera()
        image = simulated_camera.get_image()
        x_axis, y_axis = simulated_camera.get_x_y_axis()

        background_provider = MockBackgroundManager()
        x_size, y_size = simulated_camera.get_geometry()
        background_provider.save_background("white_background",
                                            numpy.zeros(shape=(y_size,
                                                               x_size)),
                                            append_timestamp=False)

        pipeline_config = PipelineConfig("test_pipeline", pipeline_parameters)
        parameters = pipeline_config.get_configuration()
        image_background_array = background_provider.get_background(
            parameters.get("image_background"))
        if image_background_array is not None:
            image_background_array = image_background_array.astype("uint16",
                                                                   copy=False)
            image = subtract_background(image, image_background_array)

        result = process_image(image, 0, time.time(), x_axis, y_axis,
                               parameters)

        self.assertTrue(numpy.array_equal(result["image"], image),
                        "A zero background should not change the image.")

        max_value_in_image = result["max_value"]

        pipeline_parameters = {
            "camera_name": "simulation",
            "image_background": "max_background",
            "image_threshold": 0
        }

        max_background = numpy.zeros(shape=(y_size, x_size), dtype="uint16")
        max_background.fill(max_value_in_image)
        background_provider.save_background("max_background",
                                            max_background,
                                            append_timestamp=False)

        pipeline_config = PipelineConfig("test_pipeline", pipeline_parameters)
        parameters = pipeline_config.get_configuration()
        image_background_array = background_provider.get_background(
            parameters.get("image_background"))
        if image_background_array is not None:
            image_background_array = image_background_array.astype("uint16",
                                                                   copy=False)
            image = subtract_background(image, image_background_array)

        expected_image = numpy.zeros(shape=(y_size, x_size))

        result = process_image(image, 0, time.time(), x_axis, y_axis,
                               parameters)

        self.assertTrue(
            numpy.array_equal(result["image"], expected_image),
            "The image should be all zeros - negative numbers are not allowed."
        )
Exemplo n.º 8
0
    def test_region_of_interest_default_values(self):

        simulated_camera = get_simulated_camera()
        image = simulated_camera.get_image()
        x_axis, y_axis = simulated_camera.get_x_y_axis()

        parameters = PipelineConfig("test_pipeline", {
            "camera_name": "simulation"
        }).get_configuration()

        good_region_keys = set([
            "good_region", "gr_x_axis", "gr_y_axis", "gr_x_fit_gauss_function",
            "gr_x_fit_offset", "gr_x_fit_amplitude",
            "gr_x_fit_standard_deviation", "gr_x_fit_mean",
            "gr_y_fit_gauss_function", "gr_y_fit_offset", "gr_y_fit_amplitude",
            "gr_y_fit_standard_deviation", "gr_y_fit_mean", "gr_intensity",
            "gr_x_profile", "gr_y_profile"
        ])

        slices_key_formats = set([
            "slice_%s_center_x", "slice_%s_center_y",
            "slice_%s_standard_deviation", "slice_%s_intensity"
        ])

        result = process_image(image, 0, time.time(), x_axis, y_axis,
                               parameters)

        self.assertFalse(any((x in result for x in good_region_keys)),
                         'There should not be good region keys.')

        parameters = PipelineConfig("test_pipeline", {
            "camera_name": "simulation",
            "image_good_region": {
                "threshold": 99999
            }
        }).get_configuration()

        result = process_image(image, 0, time.time(), x_axis, y_axis,
                               parameters)

        self.assertTrue(all((x in result for x in good_region_keys)),
                        'There should be good region keys.')
        self.assertTrue(all((result[x] is None for x in good_region_keys)),
                        'All values should be None.')

        number_of_slices = 7

        parameters = PipelineConfig(
            "test_pipeline", {
                "camera_name": "simulation",
                "image_good_region": {
                    "threshold": 99999
                },
                "image_slices": {
                    "number_of_slices": number_of_slices
                }
            }).get_configuration()

        result = process_image(image, 0, time.time(), x_axis, y_axis,
                               parameters)

        self.assertTrue(all((x in result for x in good_region_keys)),
                        'There should be good region keys.')
        self.assertTrue(
            all((x in result
                 for x in (x % counter for x in slices_key_formats
                           for counter in range(number_of_slices)))))