Exemplo n.º 1
0
plt.use("TkAgg")
from matplotlib import pyplot as plt
import json

iter = 1

file_location = 'data/1.csv'


startDate = {"year": 2013, "week": 1}
instrument = 'EURUSD'


data = ld.load(ld.Interval.HOURE, instrument, startDate, 54*4)

candles = candle.Candles(data)
candles.calc_gradients([2,3,4,5,6,7,8,9,10,20,40,80,100])
candles.calc_sma_seq([2,3,4,5,6,7,8,9,10])
candles.norm_by_column_sma()
candles.norm_by_column_grad()
candles.setGradToSimulation()
env = FOREX(candles)

dense_lstm_net = [
    dict(type='dense', size=32),
    dict(type='internal_lstm', size=10)
]

dense_net = [
    dict(type='dense', size=32),
    dict(type='dense', size=64),
Exemplo n.º 2
0
from tensorforce.execution import Runner
from forex import FOREX
import candle
import numpy as np
import FXCMDataLoader as ld
import matplotlib as plt
plt.use("TkAgg")
from matplotlib import pyplot as plt
import json

startDate = {"year": 2018, "week": 1}
instrument = 'EURUSD'

traindata = ld.load(ld.Interval.HOURE, instrument, startDate, 50)

candles = candle.Candles(traindata)
candles.calc_sma([2, 3, 4, 5, 6, 7, 8, 9, 10])
candles.setSMAToSimulation()
train_env = FOREX(candles)

mid = candles.closeMid

print("asdasdasd")
print(mid[-1] / mid[0])

dense_lstm_net = [
    dict(type='dense', size=32),
    dict(type='internal_lstm', size=64)
]

dense_net = [
Exemplo n.º 3
0
EU_USD.rename(index=str,
              columns={
                  "BidOpen": "Open",
                  "BidHigh": "High",
                  "BidLow": "Low",
                  "BidClose": "Close"
              },
              inplace=True)

EU_USD.drop('AskOpen', axis=1, inplace=True)
EU_USD.drop('AskClose', axis=1, inplace=True)
EU_USD.drop('AskHigh', axis=1, inplace=True)
EU_USD.drop('AskLow', axis=1, inplace=True)
EU_USD.index = pd.to_datetime(EU_USD.index)

candles = cn.Candles(raw_data)
candles.calc_sma_seq([
    5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220,
    240, 280, 300
])
candles.norm_by_column_sma()
candles.setSMAToSimulation()
env = FOREX(candles)

dense_lstm_net = [
    dict(type='dense', size=32),
    dict(type='internal_lstm', size=10)
]

dense_net = [
    dict(type='dense', size=32),
Exemplo n.º 4
0
#data['HLDiff'].plot()

file_location = 'data/1.csv'
http_location = 'https://candledata.fxcorporate.com/D1/EURUSD/2017.csv.gz'

#AUDCAD, AUDCHF, AUDJPY, AUDNZD, CADCHF, EURAUD,
#EURCHF, EURGBP, EURJPY, EURUSD, GBPCHF, GBPJPY,
#GBPNZD, GBPUSD, NZDCAD, NZDCHF, NZDJPY, NZDUSD,
#USDCAD, USDCHF, USDJPY, AUDUSD, CADJPY, GBPCAD,
#USDTRY, EURNZD

startDate = {"year": 2012, "week": 1}
instrument = 'EURUSD'

data = ld.load(ld.Interval.HOURE, instrument, startDate, 54 * 7)
candles = candle.Candles(data)

data_brit = ld.load(ld.Interval.HOURE, 'EURGBP', startDate, 54 * 7)

cand_brit = candle.Candles(data_brit)

#candles.calc_gradients([50,100,150,200])

#candles.calc_sma_seq([10,30,50,70,90,110,130,150,170,190,210])
#candles.calc_sma([3,4,5,6])

#for i in list(range(2,14)):
#    result = gradient_linreg_slidewindow(closeAsk_y, window_size)
#    plt.plot(result['gradiens'])
#    window_size = window_size + 1
#plt.plot(closeAsk_y)