Exemplo n.º 1
0
def loadVisibilitiesAndSamples(dataFiles, pol, blList, redundancyDict):
    """Based on Zaki and Carina's omni_get_k.py"""
    print 'Now reading all data files...'
    data = {}
    samples = {}
    jds = []
    lsts = []
    files = []
    conjugate = [(0, 101), (0, 62), (0, 100), (0, 97), (12, 43), (57, 64)]
    for fl in dataFiles:
        print '    Reading %s' % fl
        meta, _, mdl, _ = omni.from_npz(fl)
        jd = meta['jds']
        lst = meta['lsts']
        jds.append(jd)
        lsts.append(lst)
        files.append(fl.split('/')[-1])  #ignore the folder
        for b in bls:
            if b in conjugate: _d = np.conj(mdl[pol][b])
            else: _d = mdl[pol][b]
            if b not in data.keys(): data[b] = _d
            else: data[b] = np.concatenate((data[b], _d), axis=0)
            samples[b] = redundancyDict[b] * np.ones(data[b].shape)
            samples[b][
                data[b] ==
                0] = 0  #TODO: we need a more sophisticated way of handling flagging than this!!!
    return data, samples
Exemplo n.º 2
0
def loadVisibilitiesAndSamples(dataFiles, pol, blList, redundancyDict, flags):
    """Loads visibilities and samples from omnical npzs. Applies flags."""
    print 'Now reading all data files...'
    data = {}
    samples = {}
    jds = []
    lsts = []
    files = []
    conjugate = [(0,101), (0,62), (0,100), (0,97), (12,43), (57,64)]
    for fl in dataFiles:
        print '    Reading %s'%fl
        meta,_,mdl,_ = omni.from_npz(fl)
        jd = meta['jds']
        lst = meta['lsts']
        jds.append(jd)
        lsts.append(lst)
        files.append(fl.split('/')[-1]) #ignore the folder
        for b in bls:
            if b in conjugate: _d = np.conj(mdl[pol][b])
            else: _d = mdl[pol][b]
            if b not in data.keys(): data[b] = _d
            else: data[b] = np.concatenate((data[b],_d), axis=0)
            samples[b] = redundancyDict[b] * np.ones(data[b].shape)
            samples[b][data[b]==0] = 0
    if flags is not None:
        for b in bls: data[b][flags==1] = 0 #apply flags
        for b in bls: samples[b][flags==1] = 0 #apply flags
    return data, samples
Exemplo n.º 3
0
def loadVisibilitiesAndSamples(dataFiles, pol, blList, redundancyDict, flags):
    """Loads visibilities and samples from omnical npzs. Applies flags."""
    print 'Now reading all data files...'
    data = {}
    samples = {}
    jds = []
    lsts = []
    files = []
    conjugate = [(0, 101), (0, 62), (0, 100), (0, 97), (12, 43), (57, 64)]
    for fl in dataFiles:
        print '    Reading %s' % fl
        meta, _, mdl, _ = omni.from_npz(fl)
        jd = meta['jds']
        lst = meta['lsts']
        jds.append(jd)
        lsts.append(lst)
        files.append(fl.split('/')[-1])  #ignore the folder
        for b in bls:
            if b in conjugate: _d = np.conj(mdl[pol][b])
            else: _d = mdl[pol][b]
            if b not in data.keys(): data[b] = _d
            else: data[b] = np.concatenate((data[b], _d), axis=0)
            samples[b] = redundancyDict[b] * np.ones(data[b].shape)
            samples[b][data[b] == 0] = 0
    if flags is not None:
        for b in bls:
            data[b][flags == 1] = 0  #apply flags
        for b in bls:
            samples[b][flags == 1] = 0  #apply flags
    return data, samples
Exemplo n.º 4
0
def flag_by_chisq(filenames, nsig=12, deg=8, outfile=False):
    '''Use the omnical global chisq to flag the model visibilities.'''
    m,g,v,x = omni.from_npz(filenames)
    f = {}
    for pol in g.keys():
        if not pol in f: f[pol] = {}
        for k in g[pol].keys():        
            chisq = m['chisq'+str(k)+pol[0]]
            #iterate twice on flattening bandpass to find rfi
            mask = n.zeros_like(chisq, dtype=n.bool)
            #Run loop twice to get better fit after removing large rfi
            for i in range(2):
                wgts = n.logical_not(mask)
                chisq *= wgts
                med_chisq = n.median(chisq, axis=0) 
                w = n.median(chisq,axis=0)!=0. 
                fit = n.polyfit(n.arange(len(med_chisq))[w], n.log10(med_chisq[w]), deg=8)
                flat_chisq = chisq/10**n.polyval(fit, n.arange(len(med_chisq)))
                med = n.median(flat_chisq)
                sig = n.sqrt(n.median(n.abs(flat_chisq-med)**2))
                mask |= n.where(flat_chisq > (med + nsig*sig), True, False)
                #import IPython; IPython.embed()
            f[pol][k] = n.logical_not(mask)#weights for the data
    if outfile:
        pass 
    return m,g,v,x,f
Exemplo n.º 5
0
def loadVisibilitiesAndSamples(dataFiles, pol, blList, redundancyDict):
    """Based on Zaki and Carina's omni_get_k.py"""
    print 'Now reading all data files...'
    data = {}
    samples = {}
    jds = []
    lsts = []
    files = []
    conjugate = [(0,101), (0,62), (0,100), (0,97), (12,43), (57,64)]
    for fl in dataFiles:
        print '    Reading %s'%fl
        meta,_,mdl,_ = omni.from_npz(fl)
        jd = meta['jds']
        lst = meta['lsts']
        jds.append(jd)
        lsts.append(lst)
        files.append(fl.split('/')[-1]) #ignore the folder
        for b in bls:
            if b in conjugate: _d = np.conj(mdl[pol][b])
            else: _d = mdl[pol][b]
            if b not in data.keys(): data[b] = _d
            else: data[b] = np.concatenate((data[b],_d), axis=0)
            samples[b] = redundancyDict[b] * np.ones(data[b].shape)
            samples[b][data[b]==0] = 0 #TODO: we need a more sophisticated way of handling flagging than this!!!
    return data, samples
Exemplo n.º 6
0
def getBaselines(freqs, intSeps, exampleDataFile, calFile='psa6622_v003'):
    aa = a.cal.get_aa(calFile, freqs)
    blstr, _, bl2sep = zsa.grid2ij(aa.ant_layout)
    m, _, mdl, _ = omni.from_npz(exampleDataFile)
    bls = [(0, i) for i in intSeps]
    for ij in mdl['xx'].keys():
        bl = a.miriad.ij2bl(ij[0], ij[1])
        try:
            s = tuple(map(int, bl2sep[bl].split(',')))
        except (KeyError):
            continue
        if s in bls and s[0] == 0:
            bls[s[-1] - 1] = ij
    return bls
Exemplo n.º 7
0
def getBaselines(freqs, intSeps, exampleDataFile, calFile='psa6622_v003'):
    aa = a.cal.get_aa(calFile, freqs)
    blstr, _, bl2sep = zsa.grid2ij(aa.ant_layout)
    m, _, mdl,_= omni.from_npz(exampleDataFile)
    bls = [(0,i) for i in intSeps]
    for ij in mdl['xx'].keys():
        bl = a.miriad.ij2bl(ij[0],ij[1]) 
        try:
            s = tuple(map(int,bl2sep[bl].split(',')))
        except(KeyError):
            continue
        if s in bls and s[0] == 0:
            bls[s[-1]-1] = ij
    return bls
Exemplo n.º 8
0
def loadVisibilitiesAndSamples(dataFile, pol, blList, redundancyDict, flags):
    """Loads visibilities and samples from an omnical npz. Applies flags."""
    data, samples = {}, {}
    jds, lsts = [], []
    conjugate = [(0,101), (0,62), (0,100), (0,97), (12,43), (57,64)]
    if verbose: print 'Reading %s'%dataFile
    meta,_,mdl,_ = omni.from_npz(dataFile)
    jd = meta['jds']
    lst = meta['lsts']
    jds.append(jd)
    lsts.append(lst)
    for b in bls:
        if b in conjugate: _d = np.conj(mdl[pol][b])
        else: _d = mdl[pol][b]
        if b not in data.keys(): data[b] = _d
        else: data[b] = np.concatenate((data[b],_d), axis=0)
        samples[b] = redundancyDict[b] * np.ones(data[b].shape)
        samples[b][data[b]==0] = 0
    if flags is not None:
        for b in bls: data[b][flags==1] = 0 #apply flags
        for b in bls: samples[b][flags==1] = 0 #apply flags
    return data, samples
Exemplo n.º 9
0
    alwaysFlaggedChannels = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 169, 183, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 75, 76, 77]
    alsoFlagTheseChannels = [14, 15, 55, 101, 123, 179, 180, 181, 182, 184, 186]    
    flaggedChannels = sorted(list(set(alwaysFlaggedChannels).union(set(alsoFlagTheseChannels))))

    seps = np.arange(1,16) #* 15m  = baseline lengths
    dx = 15.0
    separations = dx*seps
    freqs = np.arange(.1,.2,.1/203)
    #freqs = np.arange(.1,.2,.1/203)[160:]
    chans = range(len(freqs))
    chan2FreqDict = {chan: freqs[chan] for chan in chans}
    uTolerance = 15.0 * 15 * (freqs[1]-freqs[0]) / 3e8 * 1e9  

    aa = a.cal.get_aa('psa6622_v003', freqs)
    blstr, _, bl2sep = zsa.grid2ij(aa.ant_layout)
    m, _, mdl,_= omni.from_npz(dataFiles[0])
    bls = [(0,i) for i in seps]
    for ij in mdl['xx'].keys():
        bl = a.miriad.ij2bl(ij[0],ij[1]) 
        try:
            s = tuple(map(int,bl2sep[bl].split(',')))
        except(KeyError):
            continue
        if s in bls and s[0] == 0:
            bls[s[-1]-1] = ij
    bl2SepDict = {bl: np.asarray([sep,0.0]) for bl,sep in zip(bls,separations)}
    #bl2SepDict = {bl: np.asarray([sep]) for bl,sep in zip(bls,separations)}

    def blRedundancyDictFromCalFile(calFile = 'psa6622_v003'):
        """ Uses Omnical to figure out the number of redundant baselines for a given separation (as demarkated by a representative baseline tuple). 
        Returns redundancyDict and also saves it as an instance variable."""
Exemplo n.º 10
0
#! /usr/bin/env python
import numpy as n
import aipy as a
import optparse, sys
import capo.omni as omni, capo.zsa as zsa, capo.arp as arp
import pylab as p, os

o = optparse.OptionParser()
a.scripting.add_standard_options(o, cal=True)
opts, args = o.parse_args(sys.argv[1:])

pol = 'xx'
freqs = n.arange(.1, .2, .1 / 203)
aa = a.cal.get_aa('psa6622_v003', freqs)
blstr, _, bl2sep = zsa.grid2ij(aa.ant_layout)
m, _, mdl, _ = omni.from_npz(args[0])
seps = n.arange(1, 16)  #* 15m  = baseline lengths
bls = [(0, i) for i in seps]
sep2ij = {}
for ij in mdl['xx'].keys():
    bl = a.miriad.ij2bl(ij[0], ij[1])
    try:
        s = tuple(map(int, bl2sep[bl].split(',')))
    except (KeyError):
        continue
    if s in bls and s[0] == 0:
        bls[s[-1] - 1] = ij

#print bls
conjugate = [(0, 101), (0, 62), (0, 100), (0, 97), (12, 43), (57, 64)]
Exemplo n.º 11
0
import numpy as n
import ipdb as PDB
cal = 'psa6622_v002'
exec('from {cal} import prms'.format(cal=cal))
grid=grid2ij(prms['ant_layout'])[0]
def ij2grid(bl):
    for sep in grid:
        if bl in grid[sep].split(','):
            return sep
def bltxt(bltuple):
    return '%s_%s'%bltuple
print ij2grid('0_103')
seps = ['0,1']
data = {}
for filename in sys.argv[1:]:
    meta, gains, vismdl, xtalk, jds, lsts, freqs = from_npz(filename)
    #for select off my bls
    for pol in vismdl:
        try: data[pol]
        except(KeyError): data[pol] = {} 
        for bl in vismdl[pol]:
            blsep = ij2grid(bltxt(bl))
            if blsep in seps:
                try: data[pol][blsep].append(vismdl[pol][bl])
                except(KeyError):data[pol][blsep] = [vismdl[pol][bl]]
datacount = 0
for pol in data:
    for sep in data[pol]:
        try:
            data[pol][sep] = n.concatenate(data[pol][sep])
        except(TypeError):
Exemplo n.º 12
0
import aipy as a
import numpy as np
import optparse, sys, os
import capo.omni as omni, capo.zsa as zsa, capo.arp as arp
import healpy as hp
import matplotlib.pyplot as plt

#%%
meta, _, mdl, _ = omni.from_npz(
    './SimulatedVisibilities/simple.2456679.35658.xx.npz')

meta2, _, mdl2, _ = omni.from_npz('../Data/zen.2456679.35658.xx.npz')
#%%
data = mdl['xx']
data2 = mdl2['xx']

bls = [(0, 103), (1, 4), (0, 101), (0, 62), (0, 100), (1, 13),
       (1, 70), (1, 56), (1, 71), (1, 59), (0, 97), (12, 43), (9, 71), (9, 59),
       (57, 64)]
conjugate = [(0, 101), (0, 62), (0, 100), (0, 97), (12, 43), (57, 64)]

aa = a.cal.get_aa('psa6622_v003', 0.1 / 203, 0.1, 203)
blLengths = [
    np.abs((np.round(
        aa.get_baseline(blIndex[0], blIndex[1]) * a.const.c / 1.5e12))[0])
    for blIndex in bls
]

freqs = aa.get_afreqs()

plt.figure(1)
Exemplo n.º 13
0
import numpy as n
import aipy as a
import optparse,sys
import capo.omni as omni, capo.zsa as zsa, capo.arp as arp
import pylab as p, os

o = optparse.OptionParser()
a.scripting.add_standard_options(o, cal=True)
opts,args = o.parse_args(sys.argv[1:])


pol='xx'
freqs = n.arange(.1,.2,.1/203)
aa = a.cal.get_aa('psa6622_v003', freqs)
blstr, _, bl2sep = zsa.grid2ij(aa.ant_layout)
m, _, mdl,_= omni.from_npz(args[0])
seps = n.arange(1,16) #* 15m  = baseline lengths
bls = [(0,i) for i in seps]
sep2ij = {}
for ij in mdl['xx'].keys():
    bl = a.miriad.ij2bl(ij[0],ij[1]) 
    try:
        s = tuple(map(int,bl2sep[bl].split(',')))
    except(KeyError):
        continue
    if s in bls and s[0] == 0:
        bls[s[-1]-1] = ij

#print bls
conjugate = [(0,101), (0,62), (0,100), (0,97), (12,43), (57,64)]
Exemplo n.º 14
0
uTolerance = 15.0 * 15 * (freqs[1] - freqs[0]) / 3e8 * 1e9

o = optparse.OptionParser()
a.scripting.add_standard_options(o, cal=True)
opts, dataFiles = o.parse_args(sys.argv[1:])

if len(sys.argv[1:]) == 0:  #This option is for testing
    #dataFiles = ["./Data/" + file for file in os.listdir("./Data") if file.endswith("uvcRRE.npz")]
    dataFiles = [
        "./Data/" + file for file in os.listdir("./Data")
        if file.endswith("2456943.57058.xx.uvcRRE.npz")
    ]

aa = a.cal.get_aa('psa6622_v003', freqs)
blstr, _, bl2sep = zsa.grid2ij(aa.ant_layout)
m, _, mdl, _ = omni.from_npz(dataFiles[0])

bls = [(0, i) for i in seps]
sep2ij = {}
for ij in mdl['xx'].keys():
    bl = a.miriad.ij2bl(ij[0], ij[1])
    try:
        s = tuple(map(int, bl2sep[bl].split(',')))
    except (KeyError):
        continue
    if s in bls and s[0] == 0:
        bls[s[-1] - 1] = ij

baselineFreqPairs = {}
print 'Now finding all baseline/frequency pairs...'
for ch1, f1 in enumerate(freqs):
dx = 15.0
separations = dx*seps
freqs = np.arange(.1,.2,.1/203)
uTolerance = 15.0 * 15 * (freqs[1]-freqs[0]) / 3e8 * 1e9  

o = optparse.OptionParser()
a.scripting.add_standard_options(o, cal=True)
opts,dataFiles = o.parse_args(sys.argv[1:])

if len(sys.argv[1:]) == 0: #This option is for testing
    #dataFiles = ["./Data/" + file for file in os.listdir("./Data") if file.endswith("uvcRRE.npz")] 
    dataFiles = ["./Data/" + file for file in os.listdir("./Data") if file.endswith("2456943.57058.xx.uvcRRE.npz")] 
    
aa = a.cal.get_aa('psa6622_v003', freqs)
blstr, _, bl2sep = zsa.grid2ij(aa.ant_layout)
m, _, mdl,_= omni.from_npz(dataFiles[0])

bls = [(0,i) for i in seps]
sep2ij = {}
for ij in mdl['xx'].keys():
    bl = a.miriad.ij2bl(ij[0],ij[1]) 
    try:
        s = tuple(map(int,bl2sep[bl].split(',')))
    except(KeyError):
        continue
    if s in bls and s[0] == 0:
        bls[s[-1]-1] = ij


baselineFreqPairs = {}
print 'Now finding all baseline/frequency pairs...'
Exemplo n.º 16
0
 uv.rewind()
 if opts.infile:
     xfile = '%f.xtalk.rep.npz' % jd
     if not os.path.exists(xfile): xfile = '%f.xtalk.npz' % jd
     if not os.path.exists(xfile):
         print xfile, 'does not exist.  Skipping...'
         continue
     print '    using', xfile
     xtalk = np.load(xfile)
 else:
     guess, cnt, xtalk = {}, {}, {}
     if opts.omnimdl:
         #if pass in omnical file, load in the mdl
         omnifile = opts.omnimdl % '.'.join(
             filename.split('/')[-1].split('.')[0:4])
         m, _, mdl, _ = omni.from_npz(omnifile)
         #make info object so that we can get a mapping of mdl bls to all bls.
         aa = a.cal.get_aa(opts.cal, np.array([.150]))
         info = omni.aa_to_info(aa)
         redmapping = {}
         for k in mdl[a.miriad.pol2str[uv['pol']]].keys():
             for gp in info.get_reds():
                 if k in gp:
                     for kk in gp:
                         redmapping[kk] = k
     for (uvw, t, (i, j)), d, f in uv.all(raw=True):
         ti = np.where(m['jds'] == t)[0]
         bl = str(a.pol.ijp2blp(i, j, uv['pol']))
         if not guess.has_key(bl): guess[bl], cnt[bl] = 0, 0
         if (i, j) in [(97, 80), (80, 97), (72, 96), (96, 72), (43, 88),
                       (88, 43)]:
Exemplo n.º 17
0
 (uvw,jd,(i,j)),d,f = uv.read(raw=True)
 uv.rewind()
 if opts.infile:
     xfile = '%f.xtalk.rep.npz' % jd
     if not os.path.exists(xfile): xfile = '%f.xtalk.npz' % jd
     if not os.path.exists(xfile):
         print xfile, 'does not exist.  Skipping...'
         continue
     print '    using', xfile
     xtalk = np.load(xfile)
 else:
     guess, cnt, xtalk = {}, {}, {}
     if opts.omnimdl:
         #if pass in omnical file, load in the mdl
         omnifile = opts.omnimdl % '.'.join(filename.split('/')[-1].split('.')[0:4])
         m,_,mdl,_ = omni.from_npz(omnifile)
         #make info object so that we can get a mapping of mdl bls to all bls. 
         aa = a.cal.get_aa(opts.cal, np.array([.150]))
         info = omni.aa_to_info(aa)
         redmapping = {}
         for k in mdl[a.miriad.pol2str[uv['pol']]].keys():
             for gp in info.get_reds():
                 if k in gp:
                     for kk in gp : redmapping[kk] = k
     for (uvw,t,(i,j)),d,f in uv.all(raw=True):
         ti = np.where(m['jds']==t)[0]
         bl = str(a.pol.ijp2blp(i,j,uv['pol']))
         if not guess.has_key(bl): guess[bl], cnt[bl] = 0, 0
         if (i,j) in [(97,80), (80,97), (72,96), (96,72), (43, 88), (88,43)]:
             if opts.verbose: print 'No Model Visibility for {0}'.format((i,j))
             ml = np.zeros_like(d)
Exemplo n.º 18
0
def ij2grid(bl):
    for sep in grid:
        if bl in grid[sep].split(','):
            return sep


def bltxt(bltuple):
    return '%s_%s' % bltuple


print ij2grid('0_103')
seps = ['0,1']
data = {}
for filename in sys.argv[1:]:
    meta, gains, vismdl, xtalk, jds, lsts, freqs = from_npz(filename)
    #for select off my bls
    for pol in vismdl:
        try:
            data[pol]
        except (KeyError):
            data[pol] = {}
        for bl in vismdl[pol]:
            blsep = ij2grid(bltxt(bl))
            if blsep in seps:
                try:
                    data[pol][blsep].append(vismdl[pol][bl])
                except (KeyError):
                    data[pol][blsep] = [vismdl[pol][bl]]
datacount = 0
for pol in data:
Exemplo n.º 19
0
a single npz file per decimal JD. This lets us use omni_apply.py
to calibrate xx,xy,yx,yy at once, even though we only used info
from the linear instrumental polarizations.

Assumes xx and yy npz files are in the same directory.
Returns 
"""
o = optparse.OptionParser()
o.set_usage('merge_omni_npz.py [options] /path/to/*xx.npz')
opts,args = o.parse_args(sys.argv[1:])

def merge_dicts(*dict_args):
    result = {}
    for dictionary in dict_args:
        result.update(dictionary)
    return result

for xx_npz in args:
    yy_npz = xx_npz.replace("xx","yy")
    new_npz = xx_npz.replace("xx.","")
    print "Reading %s %s"%(xx_npz,yy_npz)    
    metax,gainsx,vismdlx,xtalkx = omni.from_npz(xx_npz)
    metay,gainsy,vismdly,xtalky = omni.from_npz(yy_npz)    
    meta = merge_dicts(metax,metay)
    gains = merge_dicts(gainsx,gainsy)
    vismdl = merge_dicts(vismdlx,vismdly)
    xtalk = merge_dicts(xtalkx,xtalky)
    print "    => %s"%new_npz
    omni.to_npz(new_npz,meta,gains,vismdl,xtalk)

Exemplo n.º 20
0
#o.add_option('-C',dest='cal',default='psa6622_v003',type='string',
#            help='Path and name of calfile.')
a.scripting.add_standard_options(o,chan=True)
opts,args = o.parse_args(sys.argv[1:])
chan = int(opts.chan)

### Save Options ###
for filename in args:
    print filename,'-->',
    outfile = filename[:-4]+'.slice.npz'
    print outfile
    if os.path.exists(outfile): 
        print "     ... exists. skipping"
        continue
   
    meta,gains,vismdl,xtalk = from_npz(filename)
    slice_gains = {}
    slice_vismdl = {}
    slice_xtalk = {}
    for pol in gains:
        slice_gains[pol] = {}
        for ant,gain in gains[pol].iteritems():
            slice_gains[pol][ant] = n.array([g[chan] for g in gain])
    for pol in vismdl:
        slice_vismdl[pol] = {}
        for bl,vis in vismdl[pol].iteritems():
            slice_vismdl[pol][bl] = n.array([v[chan] for v in vis])
        slice_xtalk[pol] = {}
        for bl,xt in xtalk[pol].iteritems():
            slice_xtalk[pol][bl] = n.array(xt[chan])
    to_npz(outfile,meta,slice_gains,slice_vismdl,slice_xtalk)
Exemplo n.º 21
0
to calibrate xx,xy,yx,yy at once, even though we only used info
from the linear instrumental polarizations.

Assumes xx and yy npz files are in the same directory.
Returns 
"""
o = optparse.OptionParser()
o.set_usage('merge_omni_npz.py [options] /path/to/*xx.npz')
opts, args = o.parse_args(sys.argv[1:])


def merge_dicts(*dict_args):
    result = {}
    for dictionary in dict_args:
        result.update(dictionary)
    return result


for xx_npz in args:
    yy_npz = xx_npz.replace("xx", "yy")
    new_npz = xx_npz.replace("xx.", "")
    print "Reading %s %s" % (xx_npz, yy_npz)
    metax, gainsx, vismdlx, xtalkx = omni.from_npz(xx_npz)
    metay, gainsy, vismdly, xtalky = omni.from_npz(yy_npz)
    meta = merge_dicts(metax, metay)
    gains = merge_dicts(gainsx, gainsy)
    vismdl = merge_dicts(vismdlx, vismdly)
    xtalk = merge_dicts(xtalkx, xtalky)
    print "    => %s" % new_npz
    omni.to_npz(new_npz, meta, gains, vismdl, xtalk)
Exemplo n.º 22
0
#allus = np.arange(100,102,.1)

#pixelDecs = np.asarray([-25])/180.0*np.pi
#pixelRAs = np.asarray([90])/180.0*np.pi
#fluxes = np.asarray([100])
pixelDecs = np.asarray([-30, -35, -20, -10, 5, -30, -50, -40, -60, -20
                        ]) / 180.0 * np.pi
pixelRAs = np.asarray([90, 60, 120, 76, 91, 44, 50, 70, 30, 10
                       ]) / 180.0 * np.pi
fluxes = np.asarray([100, 49, 125, 60, 20, 99, 22, 102, 5, 30]) * 1.0
#spectralIndices = np.ones(len(fluxes)) * -2.55
spectralIndices = np.asarray(
    [-2.45, -2.3, -2.7, -2.4, -2.55, -2.63, -2.51, -2.3, -2.9, -2.5]) + 2

for source in sourceFiles:
    meta, _, _, _ = omni.from_npz(source)
    #    times = meta['jds']
    times = [meta['jds'][0]]
    meta['SimulationOptions'] = opts.__dict__
    #vismdl = {opts.pol: {blIndex: np.zeros((len(times), opts.nchan), dtype=complex) for blIndex in blIndices}}
    visibilities = np.zeros((len(allus), len(freqs)), dtype=complex)

    allPixelTops, allPixelAzAlts = [], []
    for time in times:
        aa.set_jultime(time)
        pixelEq = a.coord.radec2eq([pixelRAs, pixelDecs])
        pixelTop = a.coord.eq2top_m(-aa.sidereal_time(), aa.lat).dot(pixelEq)
        allPixelTops.append(pixelTop)
        allPixelAzAlts.append(a.coord.top2azalt(pixelTop))

    for chan in range(opts.nchan):
Exemplo n.º 23
0
import capo.omni as omni
import numpy as n, pylab as p, capo.plot as plot
import sys


args = sys.argv()[1:]

m,g,v,x = omni.from_npz(args, verbose=True)
    
Exemplo n.º 24
0
conjugate = [(0,101), (0,62), (0,100), (0,97), (12,43), (57,64)]
aa = a.cal.get_aa(opts.cal, opts.sdf, opts.sfreq, opts.nchan)
freqs = aa.get_afreqs()
#Fixed coordinate calculations
healpixCoords = np.transpose(np.asarray(hp.pix2ang(NSIDE,np.arange(12*NSIDE**2))))
pixelRAs = healpixCoords[:,1]
pixelDecs = -healpixCoords[:,0] + np.pi/2
galCoords = SkyCoord(frame="icrs", ra=pixelRAs*u.rad, dec=pixelDecs*u.rad).transform_to("galactic")


#I should probably make this command line parameterizable
allus = np.arange(10,160,.125)


for source in sourceFiles:
    meta,_,_,_ = omni.from_npz(source)
#    times = meta['jds']
    times = [meta['jds'][0]]
    meta['SimulationOptions'] = opts.__dict__
    #vismdl = {opts.pol: {blIndex: np.zeros((len(times), opts.nchan), dtype=complex) for blIndex in blIndices}}
    visibilities = np.zeros((len(allus), len(freqs)),dtype=complex)
    
    allPixelTops, allPixelAzAlts = [],[] 
    for time in times:
        aa.set_jultime(time)
        pixelEq = a.coord.radec2eq([pixelRAs,pixelDecs])
        pixelTop = a.coord.eq2top_m(-aa.sidereal_time(),aa.lat).dot(pixelEq)
        allPixelTops.append(pixelTop)
        allPixelAzAlts.append(a.coord.top2azalt(pixelTop))

    for chan in range(opts.nchan):
Exemplo n.º 25
0
import aipy as a
import numpy as np
import optparse, sys, os
import capo.omni as omni, capo.zsa as zsa, capo.arp as arp
import healpy as hp
import matplotlib.pyplot as plt

#%%
meta,_,mdl,_ = omni.from_npz('./SimulatedVisibilities/simple.2456679.35658.xx.npz')

meta2,_,mdl2,_ = omni.from_npz('../Data/zen.2456679.35658.xx.npz')
#%%
data = mdl['xx']
data2 = mdl2['xx']

bls = [(0, 103), (1, 4), (0, 101), (0, 62), (0, 100), (1, 13), (1, 70), (1, 56), (1, 71), (1, 59), (0, 97), (12, 43), (9, 71), (9, 59), (57, 64)]
conjugate = [(0,101), (0,62), (0,100), (0,97), (12,43), (57,64)]

aa = a.cal.get_aa('psa6622_v003', 0.1/203, 0.1, 203)
blLengths = [np.abs((np.round(aa.get_baseline(blIndex[0],blIndex[1]) * a.const.c / 1.5e12))[0]) for blIndex in bls]

freqs = aa.get_afreqs()








Exemplo n.º 26
0
#! /usr/bin/env python -u
import numpy as n
import aipy as a
import optparse, sys
import capo.omni as omni, capo.zsa as zsa, capo.arp as arp
import pylab as p

o = optparse.OptionParser()
a.scripting.add_standard_options(o, cal=True)
opts, args = o.parse_args(sys.argv[1:])

pol = 'xx'
freqs = n.arange(.1, .2, .1 / 203)
aa = a.cal.get_aa('psa6622_v003', freqs)
blstr, _, bl2sep = zsa.grid2ij(aa.ant_layout)
_, _, mdl, _, jds, lsts, freqs = omni.from_npz(args[0])
seps = n.arange(1, 16)  #* 15m  = baseline lengths
bls = [(0, i) for i in seps]
sep2ij = {}
for ij in mdl['xx'].keys():
    bl = a.miriad.ij2bl(ij[0], ij[1])
    try:
        s = tuple(map(int, bl2sep[bl].split(',')))
    except (KeyError):
        continue
    if s in bls and s[0] == 0:
        bls[s[-1] - 1] = ij

print bls
conjugate = [(0, 101), (0, 62), (0, 100), (0, 97), (12, 43), (57, 64)]
Exemplo n.º 27
0
import numpy as n
import aipy as a
import optparse, sys
import capo.omni as omni, capo.zsa as zsa, capo.arp as arp
import pylab as p

o = optparse.OptionParser()
a.scripting.add_standard_options(o, cal=True)
opts, args = o.parse_args(sys.argv[1:])


pol = "xx"
freqs = n.arange(0.1, 0.2, 0.1 / 203)
aa = a.cal.get_aa("psa6622_v003", freqs)
blstr, _, bl2sep = zsa.grid2ij(aa.ant_layout)
_, _, mdl, _, jds, lsts, freqs = omni.from_npz(args[0])
seps = n.arange(1, 16)  # * 15m  = baseline lengths
bls = [(0, i) for i in seps]
sep2ij = {}
for ij in mdl["xx"].keys():
    bl = a.miriad.ij2bl(ij[0], ij[1])
    try:
        s = tuple(map(int, bl2sep[bl].split(",")))
    except (KeyError):
        continue
    if s in bls and s[0] == 0:
        bls[s[-1] - 1] = ij

print bls
conjugate = [(0, 101), (0, 62), (0, 100), (0, 97), (12, 43), (57, 64)]