Exemplo n.º 1
0
def M_step(log_R, log_activation, vote, lambda_val=0.01):
    R_shape = tf.shape(log_R)
    log_R = log_R + log_activation

    R_sum_i = cl.reduce_sum(tf.exp(log_R), axis=-3, keepdims=True)
    log_normalized_R = log_R - \
        tf.reduce_logsumexp(log_R, axis=-3, keepdims=True)

    pose = cl.reduce_sum(vote * tf.exp(log_normalized_R),
                         axis=-3,
                         keepdims=True)
    log_var = tf.reduce_logsumexp(log_normalized_R +
                                  cl.log(tf.square(vote - pose)),
                                  axis=-3,
                                  keepdims=True)
    shape = [1 for i in range(len(pose.shape) - 2)] + [pose.shape[-2], 1]
    beta_v = tf.Variable(initial_value=tf.keras.initializers.TruncatedNormal(
        mean=15., stddev=3.)(shape),
                         name="beta_v",
                         shape=shape)
    cost = R_sum_i * (beta_v + 0.5 * log_var)

    beta_a = tf.Variable(initial_value=tf.keras.initializers.TruncatedNormal(
        mean=100.0, stddev=10)(shape),
                         name="beta_a",
                         shape=shape)
    cost_sum_h = cl.reduce_sum(cost, axis=-1, keepdims=True)
    logit = lambda_val * (beta_a - cost_sum_h)
    log_activation = tf.math.log_sigmoid(logit)

    return (pose, log_var, log_activation)
Exemplo n.º 2
0
        def _body(i, logits, poses):
            if self.leaky:
                route = _leaky_routing(logits)
            else:
                route = tf.nn.softmax(logits, axis=-3)

            if self.use_bias:
                preactivate = cl.reduce_sum(
                    route * votes, axis=-4, keepdims=True) + self.biases
            else:
                preactivate = cl.reduce_sum(route * votes,
                                            axis=-4,
                                            keepdims=True)

            pose = cl.ops.squash(preactivate, axis=squash_on)
            poses = poses.write(i, pose)

            if vote_shape[-1] == 1:
                distances = cl.matmul(votes, pose, transpose_a=True)
            else:
                diff = votes - pose
                distances = tf.linalg.trace(cl.matmul(diff,
                                                      diff))[..., tf.newaxis,
                                                             tf.newaxis]
            logits += distances

            return (i + 1, logits, poses)
Exemplo n.º 3
0
def fcm_loss(inputs, probs, num_iters=5, m=2):
    """
    Args:
        inputs: [num_samples, 1, x_dims, 1]
        probs: [num_samples, num_clusters, 1, 1].
    """
    # centers: [1, num_clusters, x_dims]
    k = 1
    b = 0
    weights = []
    delta_probs = []
    for i in range(num_iters):
        probs_m = tf.pow(probs, m)
        centers = cl.reduce_sum(probs_m * inputs, axis=0, keepdims=True) / cl.reduce_sum(probs_m, axis=0, keepdims=True)
        # distance matrix with shape [num_samples, num_clusters, 1, 1]
        distance_matrix = cl.norm(inputs - centers, axis=(2, 3), keepdims=True)
        distance_matrix = tf.pow(distance_matrix, 2 / (m - 1))
        probs_plus = 1 / (distance_matrix / cl.reduce_sum(distance_matrix, axis=1, keepdims=True))
        delta_probs.append(tf.norm(probs_plus - probs))
        weights.append(tf.exp(tf.cast(k * i + b, tf.float32)))
        probs = probs_plus

    weights = tf.stack(weights, axis=0)
    delta_probs = tf.stack(delta_probs, axis=0)
    loss = tf.reduce_sum(weights * delta_probs) / tf.reduce_sum(weights)
    return loss
Exemplo n.º 4
0
def dynamicRouting_v1(votes,
                      num_routing=3,
                      use_bias=True,
                      leaky=True):
    """ Dynamic routing algorithm.

    See [Sabour et al., 2017](https://arxiv.org/abs/1710.09829).

    Args:
        votes: A 5-D or 7-D tensor with shape [batch_size, ..., in_channels/num_inputs, num_outputs] + out_caps_dims.
        num_routing: Integer, number of routing iterations.
        use_bias: Boolean, whether the layer uses a bias.
        leaky: Boolean, whether the algorithm uses leaky routing.

    Returns:
        poses: A 4-D or 6-D tensor.
        probs: A 2-D or 4-D tensor.
    """
    vote_shape = cl.shape(votes)
    logit_shape = vote_shape[:-2] + [1, 1]
    logits = tf.fill(logit_shape, 0.0)
    squash_on = -2 if vote_shape[-1] == 1 else [-2, -1]
    if use_bias:
        bias_shape = [1 for i in range(len(vote_shape) - 3)] + vote_shape[-3:]
        biases = tf.get_variable("biases",
                                 bias_shape,
                                 initializer=tf.constant_initializer(0.1),
                                 dtype=tf.float32)

    vote_stopped = tf.stop_gradient(votes, name="stop_gradient")
    for i in range(num_routing):
        with tf.variable_scope("iter_" + str(i)):
            if leaky:
                route = _leaky_routing(logits)
            else:
                route = cl.softmax(logits, axis=-3)
            if i == num_routing - 1:
                if use_bias:
                    preactivate = cl.reduce_sum(tf.multiply(route, votes), axis=-4, keepdims=True) + biases
                else:
                    preactivate = cl.reduce_sum(tf.multiply(route, votes), axis=-4, keepdims=True)
                poses = cl.ops.squash(preactivate, axis=squash_on)
            else:
                if use_bias:
                    preactivate = cl.reduce_sum(tf.multiply(route, vote_stopped), axis=1, keepdims=True) + biases
                else:
                    preactivate = cl.reduce_sum(tf.multiply(route, vote_stopped), axis=1, keepdims=True)
                poses = cl.ops.squash(preactivate, axis=squash_on)
                logits += cl.reduce_sum(vote_stopped * poses, axis=-4, keepdims=True)

    poses = tf.squeeze(poses, axis=-4)
    probs = tf.norm(poses, axis=(-2, -1))
    return(poses, probs)
Exemplo n.º 5
0
def E_step(pose, log_var, log_activation, vote):
    normalized_vote = cl.divide(tf.square(vote - pose), 2 * tf.exp(log_var))
    log_probs = normalized_vote + cl.log(2 * np.pi) + log_var
    log_probs = -0.5 * cl.reduce_sum(log_probs, axis=-1, keepdims=True)
    log_activation_logit = log_activation + log_probs
    log_activation_logit = log_probs
    log_R = log_activation_logit - tf.reduce_logsumexp(log_activation_logit, axis=-2, keepdims=True)
    return log_R
Exemplo n.º 6
0
    def M_step(self, log_R, log_activation, vote, lambda_val=0.01):
        log_R = log_R + log_activation

        R_sum_i = cl.reduce_sum(tf.exp(log_R), axis=-3, keepdims=True)
        log_normalized_R = log_R - \
            tf.reduce_logsumexp(log_R, axis=-3, keepdims=True)

        pose = cl.reduce_sum(vote * tf.exp(log_normalized_R),
                             axis=-3,
                             keepdims=True)
        log_var = tf.reduce_logsumexp(log_normalized_R +
                                      cl.log(tf.square(vote - pose)),
                                      axis=-3,
                                      keepdims=True)
        cost = R_sum_i * (self.beta_v + 0.5 * log_var)
        cost_sum_h = cl.reduce_sum(cost, axis=-1, keepdims=True)
        logit = lambda_val * (self.beta_a - cost_sum_h)
        log_activation = tf.math.log_sigmoid(logit)

        return (pose, log_var, log_activation)
Exemplo n.º 7
0
def M_step(log_R, log_activation, vote, lambda_val=0.01):
    R_shape = tf.shape(log_R)
    log_R = log_R + log_activation

    R_sum_i = cl.reduce_sum(tf.exp(log_R), axis=-3, keepdims=True)
    log_normalized_R = log_R - tf.reduce_logsumexp(log_R, axis=-3, keepdims=True)

    pose = cl.reduce_sum(vote * tf.exp(log_normalized_R), axis=-3, keepdims=True)
    log_var = tf.reduce_logsumexp(log_normalized_R + cl.log(tf.square(vote - pose)), axis=-3, keepdims=True)

    beta_v = tf.get_variable('beta_v',
                             shape=[1 for i in range(len(pose.shape) - 2)] + [pose.shape[-2], 1],
                             initializer=tf.truncated_normal_initializer(mean=15., stddev=3.))
    cost = R_sum_i * (beta_v + 0.5 * log_var)

    beta_a = tf.get_variable('beta_a',
                             shape=[1 for i in range(len(pose.shape) - 2)] + [pose.shape[-2], 1],
                             initializer=tf.truncated_normal_initializer(mean=100.0, stddev=10))
    cost_sum_h = cl.reduce_sum(cost, axis=-1, keepdims=True)
    logit = lambda_val * (beta_a - cost_sum_h)
    log_activation = tf.log_sigmoid(logit)

    return(pose, log_var, log_activation)
Exemplo n.º 8
0
def spread_loss(labels, logits, margin, regularizer=None):
    """
    Args:
        labels: [batch_size, num_label].
        logits: [batch_size, num_label].
        margin: Integer or 1-D Tensor.
        regularizer: use regularization.

    Returns:
        loss: Spread loss.
    """
    a_target = cl.reduce_sum(labels * logits, axis=1, keepdims=True)
    dist = (1 - labels) * margin - (a_target - logits)
    dist = tf.pow(tf.maximum(0., dist), 2)
    loss = tf.reduce_mean(tf.reduce_sum(dist, axis=-1))
    if regularizer is not None:
        loss += tf.reduce_mean(regularizer)
    return (loss)