Exemplo n.º 1
0
def make_tn(
    c,
    transport_id,
):
    """ Test """
    from cargonet.visualization.gmtplot import GMTTransportPlot
    from cargonet.preprocessing.datalake.retrieval import Retriever
    from cargonet.preprocessing.graphs.tgraph import TransportGraph

    r = Retriever()
    stations = r.retrieve_stations(keep_ids=True)

    # Load the transport
    tg = TransportGraph(r.retrieve_transport(transport_id=transport_id)[0],
                        stations=stations)

    GMTTransportPlot(
        tg.nx_actual_route,
        check=False,
        filename="predictions/compare/%s.pdf" % transport_id,
        node_size=17,
        thickness=4,
        fontsize=25,
        node_border_color="black",
        node_border_width=3,
        node_color="white",
    ).plot(fit_factor=1.9)
Exemplo n.º 2
0
def _receive_tg(transport_id):
    from cargonet.preprocessing.graphs.tgraph import TransportGraph
    from cargonet.preprocessing.datalake.retrieval import Retriever

    r = Retriever()
    t = r.retrieve_transport(transport_id=transport_id)[0]
    s = r.retrieve_stations(keep_ids=True)
    return TransportGraph(t, stations=s)
Exemplo n.º 3
0
    def plot_prediction(self):
        import cargonet.preprocessing.tasks.debug_transport as dt
        from cargonet.preprocessing.datalake.retrieval import Retriever
        from cargonet.preprocessing.graphs.tgraph import TransportGraph
        from cargonet.visualization.delays import DelayProgressPlot

        r = Retriever()
        s = r.retrieve_stations(keep_ids=True)
        t = r.retrieve_transport(transport_id=transport_id)[0]
        tg = TransportGraph(t, stations=s)
        DelayProgressPlot(stations=s, smooth=smooth).plot_route(
            tg, save=True, show_stations=True
        )
Exemplo n.º 4
0
def debug_transport_sections(c, transport_id):
    """Debug transport sections
    """
    import cargonet.preprocessing.tasks.debug_transport as dt
    from cargonet.preprocessing.datalake.retrieval import Retriever

    r = Retriever()
    s = r.retrieve_stations(keep_ids=True)
    t_raw = r.retrieve_transport(transport_id=transport_id, raw_sections=True)
    all_live = []
    for sec in t_raw.get("sections"):
        for l in sec.get("live"):
            all_live.append(l)
    dt.debug_live_sections(t_raw.get("sections"), all_live)
Exemplo n.º 5
0
def plot_predicted_delay(c, transport_id):
    """Debug transport delays
    """
    import cargonet.visualization.delays as d
    from cargonet.preprocessing.graphs.tgraph import TransportGraph
    from cargonet.preprocessing.datalake.retrieval import Retriever

    r = Retriever()
    s = r.retrieve_stations(keep_ids=True)
    t = r.retrieve_transport(transport_id=transport_id)[0]
    tg = TransportGraph(t, stations=s)
    d.DelayProgressPlot(stations=s).plot_predictions(tg,
                                                     save=True,
                                                     show_stations=True)
Exemplo n.º 6
0
def test_models(
    c,
    plot=True,
    limit=32,  # 8 months
    device=None,
    pred_seq_len=10,
    horizons=None,
    linear=False,
):
    """Train activeroutesv1 model
    """
    import torch
    import matplotlib.pyplot as plt
    from datetime import timedelta
    from cargonet.models.model import MLModel
    from cargonet.models.activeroutesv1 import ActiveRoutesModelV1
    from cargonet.models.baselines.fc2 import FCModelV2
    from cargonet.models.baselines.lstm import BaselineLSTMModelV1
    from cargonet.models.baselines.timeshift import BaselineTimeshiftModelV1
    from cargonet.dataset.activeroutesv1 import ActiveRoutesV1
    from cargonet.dataset.simulator import Simulation
    from cargonet.models.normalization import Scaler
    from cargonet.visualization.delays import DelayProgressPlot
    from cargonet.visualization.gmtplot import GMTTransportPlot
    from cargonet.preprocessing.datalake.retrieval import Retriever
    from cargonet.preprocessing.graphs.tgraph import TransportGraph
    from cargonet.models.utils import rec_dd
    import networkx as nx

    base_path = os.path.dirname(os.path.realpath(__file__))
    dataset_base_path = os.path.join(base_path, "datasets")
    models_base_path = os.path.join(base_path, "trained")
    assert os.path.exists(dataset_base_path)
    assert os.path.exists(models_base_path)

    dataset_name = "active-routes-v1"
    dataset_path = os.path.join(dataset_base_path, dataset_name)

    simulation_dataset_name = "simulation-v1"
    simulation_dataset_path = os.path.join(dataset_base_path,
                                           simulation_dataset_name)

    pred_seq_len = 10
    ds_options = dict(seq_len=10, pred_seq_len=pred_seq_len)
    batch_hours = 7 * 24
    horizons = [0, 3, 6, 9]

    use_simulation = False

    if use_simulation:
        dataset = Simulation(root=simulation_dataset_path,
                             name=simulation_dataset_name,
                             limit=32 * 10 * 2,
                             **ds_options)
    else:
        dataset = ActiveRoutesV1(root=dataset_path,
                                 name=dataset_name,
                                 limit=limit,
                                 batch=timedelta(hours=batch_hours),
                                 **ds_options)

    model_options = dict(
        node_input_dim=len(dataset.encoder.seq_route_node_fts),
        edge_input_dim=len(dataset.encoder.route_edge_fts),
        shuffle=False,
        shuffle_after_split=False,
    )

    delay_stddev = None

    def normalize_func(data, means, stds, **kwargs):
        data.x = Scaler.zscore(data.x, mean=means["x"], std=stds["x"])
        nonlocal delay_stddev
        delay_stddev = stds["x"][-1]

        data.temporal_edge_attr = Scaler.zscore(
            data.temporal_edge_attr,
            mean=means["temporal_edge_attr"],
            std=stds["temporal_edge_attr"],
        )

        assert not torch.isnan(data.temporal_edge_attr).any()
        assert not torch.isnan(data.x).any()
        return data

    class MockModel:
        name = "Missing"

    print("Creating models")
    ar_model = sf_ar_model = fc2_model = lstm_model = ts_model = MockModel()
    if True:  # YES
        ar_model = ActiveRoutesModelV1(dataset,
                                       device=device,
                                       use_rnn=False,
                                       **ds_options,
                                       **model_options)
        ar_model.load()
    if False:
        sf_ar_model = ActiveRoutesModelV1(dataset,
                                          device=device,
                                          use_rnn=True,
                                          **ds_options,
                                          **model_options)
        sf_ar_model.load()
    if True:  # YES
        fc2_model = FCModelV2(dataset,
                              device=device,
                              **ds_options,
                              **model_options)
        fc2_model.load()
    if False:
        lstm_model = BaselineLSTMModelV1(dataset,
                                         device=device,
                                         **ds_options,
                                         **model_options)
        lstm_model.load()
    if True:  # YES
        ts_model = BaselineTimeshiftModelV1(dataset,
                                            device=device,
                                            **ds_options,
                                            **model_options)
        ts_model.load()

    models = [
        ar_model,
        sf_ar_model,
        ts_model,
        fc2_model,
        lstm_model,
    ]
    models = [m for m in models if not isinstance(m, MockModel)]
    print("Evaluating %d models for horizons %s" % (len(models), horizons))

    trained_limit = 32
    cache = "%s_norm_%d_%d" % (dataset.name, batch_hours, trained_limit)
    print("fitting normalization", cache)
    z_score_norm = Scaler.fit(models[0].train_data,
                              normalize=normalize_func,
                              attrs=dict(
                                  temporal_edge_attr=1,
                                  x=1,
                                  y=1,
                              ),
                              cache=cache)
    for model in models:
        if isinstance(model, BaselineTimeshiftModelV1):
            continue
        model.dataset.transform = z_score_norm
        model.init_loaders()
    print("done fitting normalization")

    # DEBUG
    if False:
        for data in models[0].val_data:
            print(data.x)
            break
        return

    if False:
        distr = []
        for j, data in enumerate(ts_model.data):
            if data.x is None or torch.isnan(data.x).any():
                distr.append(0)
                continue
            distr.append(data.x.size(0))
        fig, ax = plt.subplots(tight_layout=True)
        ax.fill_between(range(len(distr)), 0, distr)
        # ax.plot(range(len(distr)), distr) # , bins=int(len(distr) * 0.5))
        plt.show()
        return

    long_val = [34877359, 34904458]
    wrong = [34813294, 34834374]
    plot_limit = 100_000

    COLORS = {
        # a2de96 light green
        # 01a9b4 blue
        ts_model.name: "#a2de96",  # light green
        getattr(fc2_model, "name", "FC2"): "#fc7e2f",  # orange
        getattr(lstm_model, "name", "LSTM"): "#fbd46d",  # yellow
        ar_model.name: "#f40552",  # red
        sf_ar_model.name: "#c3edea",  # light blue
    }

    RENAME = {
        ts_model.name: "Timeshift",
        getattr(fc2_model, "name", "FC2"): "FCNN",
        getattr(lstm_model, "name", "LSTM"): "LSTM",
        ar_model.name: "RailSTGCNN",
        sf_ar_model.name: "Stateful RailSTGCNN",
    }

    r = Retriever()
    stations = r.retrieve_stations(keep_ids=True)

    summary = MLModel.test_models(models,
                                  pred_seq_len=pred_seq_len,
                                  debug=long_val)
    lengths = []
    # print(summary)
    for transport, results in summary.items():

        # if not transport in long_val:
        #     continue

        # if not transport in []:
        #     continue

        if plot_limit < 1:
            continue

        # Load the transport
        tg = TransportGraph(r.retrieve_transport(transport_id=transport)[0],
                            stations=stations)

        # Sort the results by time first first
        ts = sorted(results.keys())

        plot_trajs = True
        if plot_trajs and not use_simulation:
            GMTTransportPlot(
                tg.nx_actual_route,
                check=False,
                filename="predictions/compare/%s.pdf" % transport,
                node_size=17,
                thickness=4,
                fontsize=25,
                node_border_color="black",
                node_border_width=3,
                node_color="white",
            ).plot(fit_factor=1.9)

        plot_limit -= 1

        for hor in (horizons if horizons is not None else range(pred_seq_len)):
            try:
                route = list(nx.topological_sort(tg.nx_actual_route))
                transport_preds = defaultdict(lambda: [None] * len(route))
                raw_transport_preds = rec_dd()

                for i, n in enumerate(route):
                    for t in ts:
                        for mdl, predictions in results[t].items():
                            # predictions: p_s_i+1, p_s_i+2, ..., p_s_i+n
                            for j, pred in enumerate(reversed(predictions)):
                                # pred: p_s_i+n
                                s, p = pred
                                if n == s and len(predictions) - j > hor:
                                    # print("Found %d/%d" % (-i-1, len(route)))
                                    # print("Found %d/%d at %d from %s" % (i+1, len(route), len(predictions) - j - 1, t))
                                    transport_preds[mdl][i] = (s, p)
                for t in ts:
                    for mdl, predictions in results[t].items():
                        # Here the prediction values are added
                        if len(predictions) <= hor:
                            continue
                        s, p = predictions[hor]
                        raw_transport_preds[mdl][s] = p

                assert all([
                    len(route) == len(preds)
                    for preds in transport_preds.values()
                ])

                timeseries = []
                for mdl, preds in raw_transport_preds.items():
                    if mdl == "labeled":
                        continue
                    if len(preds) < 20:
                        continue
                    lengths.append(len(preds))

                    # times = [pt for pt, pp in preds]
                    # values = [pp for pt, pp in preds]
                    # print(times)
                    # print(values)

                    times, values = [], []
                    for s, p in preds.items():
                        for n in nx.topological_sort(tg.nx_actual_route):
                            if n == s:
                                position = tg.nx_actual_route.nodes[n].get(
                                    "arrivalTime")
                                times.append(position)
                                values.append(p)

                    assert len(times) == len(values)

                    # Sort items and times
                    pls = zip(times, values)
                    pls = sorted(pls, key=lambda x: x[0])

                    times = [x[0] for x in pls]
                    values = [x[1] for x in pls]

                    timeseries.append(
                        dict(
                            label=RENAME.get(mdl, mdl),
                            # times = np.linspace(0, len(preds), len(preds))
                            times=
                            times,  # if not linear else np.linspace(0, len(preds), len(preds)),
                            values=values,
                            index=0,
                            style="solid",  # "dashed",
                            color=COLORS.get(mdl, "black"),
                            width=2,
                        ), )

                if len(timeseries) < 1:
                    continue

                size, aspect = 10, 1.5
                fig, ax = plt.subplots(nrows=1,
                                       ncols=1,
                                       figsize=(size * aspect, size))

                ds_name = "ELETA" if not use_simulation else "SIM"
                DelayProgressPlot(
                    smooth=False, stations=stations,
                    fontsize=25).plot_predictions(
                        tg=tg,
                        fig=fig,
                        ax=ax,
                        predictions=timeseries,
                        save=True,
                        markers=False,
                        show_stations=True,
                        has_time_axis=not linear,
                        filename="predictions/compare/%s_%s_prediction_%s.pdf"
                        % (ds_name, transport, str(hor)),
                    )
                plt.close()
            except Exception as e:
                print(e)

    if len(lengths) > 0:
        lens = torch.FloatTensor(lengths)
        print("mean: %f min: %f max: %f" %
              (lens.mean(), lens.min(), lens.max()))
    print("Delay stddev is", delay_stddev)