Exemplo n.º 1
0
    def __init__(self, urdf_path, root, tip, get_motor_dynamics=True):
        '''Takes the minimum info required to start the dynamics matrix calculations.
        Motor inertias and SEA dampings can be given manually, or will be automatically parsed'''

        # Create a parser
        self.robot_parser = self._load_urdf(urdf_path)

        # Store inputs
        self.root = root
        self.tip = tip

        # Retrieve basic info
        self.num_joints = self.get_joints_n()
        self._define_symbolic_vars()
        self.M, self.Cq, self.G = self._get_motion_equation_matrix()
        self.M_inv = cs.pinv(self.M)
        self.upper_q, self.lower_q, self.max_effort, self.max_velocity = self.get_limits()
        self.ee_pos = self._get_forward_kinematics()

        # Fix boundaries if not given
        self.upper_u, self.lower_u = self._fix_boundaries(self.max_effort)
        self.upper_qd, self.lower_qd = self._fix_boundaries(self.max_velocity)

        # SEA Stuff
        self.sea = self.get_joints_plugin(urdf_path, 'spring_k', 0, diag=True).any()  # True if at least one joint is sea
        if self.sea:
            self.get_seaplugin_values(urdf_path, get_motor_dynamics)
Exemplo n.º 2
0
def pinv(A):
    """
    Returns the Moore-Penrose pseudoinverse of the matrix A.

    See: https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html
    """
    if not is_casadi_type(A):
        return _onp.linalg.pinv(A)

    else:
        return _cas.pinv(A)
Exemplo n.º 3
0
 def pinv(self, J):
     if self.options["pinv_method"] == "standard":
         pJ = cs.pinv(J)
     elif self.options["pinv_method"] == "damped":
         dmpng_fctr = self.options["damping_factor"]
         if J.size2() >= J.size1():
             inner = cs.mtimes(J, J.T)
             inner += dmpng_fctr * cs.DM.eye(J.size1())
             pJ = cs.solve(inner, J).T
         else:
             inner = cs.mtimes(J.T, J)
             inner += dmpng_fctr * cs.DM.eye(J.size2())
             pJ = cs.solve(inner, J.T)
     return pJ
Exemplo n.º 4
0
def get_least_squares_n_vec(parent, variables, parameters, architecture):

    children = architecture.kites_map[parent]

    matrix = []
    rhs = []
    for kite in children:
        qk = variables['xd']['q' + str(kite) + str(parent)]
        newline = cas.horzcat(qk[[1]], qk[[2]], 1)
        matrix = cas.vertcat(matrix, newline)

        rhs = cas.vertcat(rhs, -qk[[0]])

    coords = cas.mtimes(cas.pinv(matrix), rhs)

    n_vec = cas.vertcat(1, coords[[0]], coords[[1]])

    return n_vec
Exemplo n.º 5
0
def get_least_squares_nhat(parent, variables, parameters, architecture):

    children = architecture.kites_map[parent]

    matrix = []
    rhs = []
    for kite in children:
        qk = variables['xd']['q' + str(kite) + str(parent)]
        newline = cas.horzcat(qk[[1]], qk[[2]], 1)
        matrix = cas.vertcat(matrix, newline)
        rhs = cas.vertcat(rhs, qk[[0]])

    coords = cas.mtimes(cas.pinv(matrix), rhs)

    nvec = cas.vertcat(1., coords[[0]], coords[[1]])

    scale = 1.
    factor = scale * get_factor_var(parent, variables, parameters)
    nhat = nvec * factor

    return nhat
Exemplo n.º 6
0
 def nullspace(self, var):
     """Returns I-pinv(J)*J where J is dexpression/dvar."""
     J = self.jacobian(var)
     return cs.MX.eye(var.size()[0]) - cs.mtimes(cs.pinv(J), J)
Exemplo n.º 7
0
    def _get_diff_eq(self, cost_func):
        '''Function that returns the RhS of the differential equations. See the papers for additional info'''
        
        RHS = []

        # RHS that's in common for all cases
        rhs1 = self.q_dot
        rhs2 = self.M_inv @ (-self.Cq - self.G - self.Fd @ self.q_dot - self.Ff @ cs.sign(self.q_dot))
        # Adjusting RHS for SEA with known inertia. Check the paper for more info.
        if self.sea and self.SEAdynamics: 
    
            rhs2 -= self.M_inv @ self.tau_sea
            rhs3 = self.theta_dot
            rhs4 = cs.pinv(self.B) @ (-self.FDsea @ self.theta_dot + self.u + self.tau_sea - self.FMusea @ cs.sign(self.theta_dot))
            RHS = [rhs1, rhs2, rhs3, rhs4]

            # Adjusting the lenght of the variables
            self.x = cs.vertcat(self.q, self.q_dot, self.theta, self.theta_dot)
            self.num_state_var = self.num_joints * 2
            self.lower_q = self.lower_q + self.lower_theta
            self.lower_qd = self.lower_qd + self.lower_thetad
            self.upper_q = self.upper_q + self.upper_theta
            self.upper_qd = self.upper_qd + self.upper_thetad

        # Adjusting RHS for SEA modeling, with motor inertia unknown
        elif self.sea and not self.SEAdynamics: 
            rhs2 += -self.M_inv @ self.K @ (self.q - self.u)
            # self.upper_u, self.lower_u = self.upper_q, self.lower_q
            RHS = [rhs1, rhs2]

            # State  variable
            self.x = cs.vertcat(self.q, self.q_dot)
            self.num_state_var = self.num_joints

        # Adjusting RHS for classic robot modeling, without any SEA
        else:  
            rhs2 += self.M_inv @ self.u
            RHS = [rhs1, rhs2]

            # State  variable
            self.x = cs.vertcat(self.q, self.q_dot)
            self.num_state_var = self.num_joints

        # Evaluating q_ddot, in order to handle it when given as an input of cost function or constraints
        self.q_ddot_val = self._get_joints_accelerations(rhs2)

        # The differentiation of J will be the cost function given by the user, with our symbolic 
        # variables as inputs
        if self.sea and self.SEAdynamics:
            q_ddot_J = self.q_ddot_val(self.q, self.q_dot, self.theta, self.theta_dot, self.u)
        else:
            q_ddot_J = self.q_ddot_val(self.q,self.q_dot, self.u)
        if self.sea and not self.SEAdynamics:
            u_J = self.u - self.q # the instantaneous spent energy is prop to |u-q|
        else:
            u_J = self.u
        J_dot = cost_func(  self.q - self.traj,
                            self.q_dot - self.traj_dot,
                            q_ddot_J,
                            self.ee_pos(self.q),
                            u_J,
                            self.t
        )

        # Setting the relationship
        self.x_dot = cs.vertcat(*RHS)

        # Defining the differential equation
        f = cs.Function('f',    [self.x, self.u, self.t],  # inputs
                                [self.x_dot, J_dot])  # outputs

        return f