Exemplo n.º 1
0
    def test_slippage_and_commission_dispatching(self):
        blotter = Blotter(
            self.sim_params.data_frequency,
            equity_slippage=FixedSlippage(spread=0.0),
            future_slippage=FixedSlippage(spread=2.0),
            equity_commission=PerTrade(cost=1.0),
            future_commission=PerTrade(cost=2.0),
        )
        blotter.order(self.asset_24, 1, MarketOrder())
        blotter.order(self.future_cl, 1, MarketOrder())

        bar_data = self.create_bardata(
            simulation_dt_func=lambda: self.sim_params.sessions[-1],
        )
        txns, commissions, _ = blotter.get_transactions(bar_data)

        # The equity transaction should have the same price as its current
        # price because the slippage spread is zero. Its commission should be
        # $1.00.
        equity_txn = txns[0]
        self.assertEqual(
            equity_txn.price,
            bar_data.current(equity_txn.asset, 'price'),
        )
        self.assertEqual(commissions[0]['cost'], 1.0)

        # The future transaction price should be 1.0 more than its current
        # price because half of the 'future_slippage' spread is added. Its
        # commission should be $2.00.
        future_txn = txns[1]
        self.assertEqual(
            future_txn.price,
            bar_data.current(future_txn.asset, 'price') + 1.0,
        )
        self.assertEqual(commissions[1]['cost'], 2.0)
Exemplo n.º 2
0
    def test_cancel(self):
        blotter = Blotter('daily')

        oid_1 = blotter.order(self.asset_24, 100, MarketOrder())
        oid_2 = blotter.order(self.asset_24, 200, MarketOrder())
        oid_3 = blotter.order(self.asset_24, 300, MarketOrder())

        # Create an order for another asset to verify that we don't remove it
        # when we do cancel_all on 24.
        blotter.order(self.asset_25, 150, MarketOrder())

        self.assertEqual(len(blotter.open_orders), 2)
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 3)
        self.assertEqual(
            [o.amount for o in blotter.open_orders[self.asset_24]],
            [100, 200, 300],
        )

        blotter.cancel(oid_2)
        self.assertEqual(len(blotter.open_orders), 2)
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 2)
        self.assertEqual(
            [o.amount for o in blotter.open_orders[self.asset_24]],
            [100, 300],
        )
        self.assertEqual(
            [o.id for o in blotter.open_orders[self.asset_24]],
            [oid_1, oid_3],
        )

        blotter.cancel_all_orders_for_asset(self.asset_24)
        self.assertEqual(len(blotter.open_orders), 1)
        self.assertEqual(list(blotter.open_orders), [self.asset_25])
Exemplo n.º 3
0
    def test_market_order_prices(self):
        """
        Basic unit tests for the MarketOrder class.
        """
        style = MarketOrder()

        self.assertEqual(style.get_limit_price(True), None)
        self.assertEqual(style.get_limit_price(False), None)

        self.assertEqual(style.get_stop_price(True), None)
        self.assertEqual(style.get_stop_price(False), None)
Exemplo n.º 4
0
    def __convert_order_params_for_blotter(limit_price, stop_price, style):
        """
        Helper method for converting deprecated limit_price and stop_price
        arguments into ExecutionStyle instances.

        This function assumes that either style == None or (limit_price,
        stop_price) == (None, None).
        """
        if stop_price:
            raise OrderTypeNotSupported(order_type='stop')

        if style:
            if limit_price is not None:
                raise ValueError(
                    'An order style and a limit price was included in the '
                    'order. Please pick one to avoid any possible conflict.'
                )

            # Currently limiting order types or limit and market to
            # be in-line with CXXT and many exchanges. We'll consider
            # adding more order types in the future.
            if not isinstance(style, ExchangeLimitOrder) or \
                    not isinstance(style, MarketOrder):
                raise OrderTypeNotSupported(
                    order_type=style.__class__.__name__
                )

            return style

        if limit_price:
            return ExchangeLimitOrder(limit_price)
        else:
            return MarketOrder()
Exemplo n.º 5
0
    def test_batch_order_matches_multiple_orders(self):
        """
        Ensure the effect of order_batch is the same as multiple calls to
        order.
        """
        blotter1 = Blotter(self.sim_params.data_frequency)
        blotter2 = Blotter(self.sim_params.data_frequency)
        for i in range(1, 4):
            order_arg_lists = [
                (self.asset_24, i * 100, MarketOrder()),
                (self.asset_25, i * 100, LimitOrder(i * 100 + 1)),
            ]

            order_batch_ids = blotter1.batch_order(order_arg_lists)
            order_ids = []
            for order_args in order_arg_lists:
                order_ids.append(blotter2.order(*order_args))
            self.assertEqual(len(order_batch_ids), len(order_ids))

            self.assertEqual(len(blotter1.open_orders),
                             len(blotter2.open_orders))

            for (asset, _, _), order_batch_id, order_id in zip(
                    order_arg_lists, order_batch_ids, order_ids
            ):
                self.assertEqual(len(blotter1.open_orders[asset]),
                                 len(blotter2.open_orders[asset]))
                self.assertEqual(order_batch_id,
                                 blotter1.open_orders[asset][i-1].id)
                self.assertEqual(order_id,
                                 blotter2.open_orders[asset][i-1].id)
    def handle_data(self, data):
        from catalyst.api import (
            order_percent,
            order_target,
            order_target_percent,
            order_target_value,
            order_value,
        )

        for style in [MarketOrder(), LimitOrder(10),
                      StopOrder(10), StopLimitOrder(10, 10)]:

            with assert_raises(UnsupportedOrderParameters):
                order(self.asset, 10, limit_price=10, style=style)

            with assert_raises(UnsupportedOrderParameters):
                order(self.asset, 10, stop_price=10, style=style)

            with assert_raises(UnsupportedOrderParameters):
                order_value(self.asset, 300, limit_price=10, style=style)

            with assert_raises(UnsupportedOrderParameters):
                order_value(self.asset, 300, stop_price=10, style=style)

            with assert_raises(UnsupportedOrderParameters):
                order_percent(self.asset, .1, limit_price=10, style=style)

            with assert_raises(UnsupportedOrderParameters):
                order_percent(self.asset, .1, stop_price=10, style=style)

            with assert_raises(UnsupportedOrderParameters):
                order_target(self.asset, 100, limit_price=10, style=style)

            with assert_raises(UnsupportedOrderParameters):
                order_target(self.asset, 100, stop_price=10, style=style)

            with assert_raises(UnsupportedOrderParameters):
                order_target_value(self.asset, 100,
                                   limit_price=10,
                                   style=style)

            with assert_raises(UnsupportedOrderParameters):
                order_target_value(self.asset, 100,
                                   stop_price=10,
                                   style=style)

            with assert_raises(UnsupportedOrderParameters):
                order_target_percent(self.asset, .2,
                                     limit_price=10,
                                     style=style)

            with assert_raises(UnsupportedOrderParameters):
                order_target_percent(self.asset, .2,
                                     stop_price=10,
                                     style=style)
Exemplo n.º 7
0
    def test_blotter_never_cancel(self):
        blotter = Blotter('minute', cancel_policy=NeverCancel())

        blotter.order(self.asset_24, 100, MarketOrder())

        self.assertEqual(len(blotter.new_orders), 1)
        self.assertEqual(blotter.new_orders[0].status, ORDER_STATUS.OPEN)

        blotter.execute_cancel_policy(BAR)
        self.assertEqual(blotter.new_orders[0].status, ORDER_STATUS.OPEN)

        blotter.execute_cancel_policy(SESSION_END)
        self.assertEqual(blotter.new_orders[0].status, ORDER_STATUS.OPEN)
Exemplo n.º 8
0
    def test_blotter_eod_cancellation(self):
        blotter = Blotter('minute', cancel_policy=EODCancel())

        # Make two orders for the same asset, so we can test that we are not
        # mutating the orders list as we are cancelling orders
        blotter.order(self.asset_24, 100, MarketOrder())
        blotter.order(self.asset_24, -100, MarketOrder())

        self.assertEqual(len(blotter.new_orders), 2)
        order_ids = [order.id for order in blotter.open_orders[self.asset_24]]

        self.assertEqual(blotter.new_orders[0].status, ORDER_STATUS.OPEN)
        self.assertEqual(blotter.new_orders[1].status, ORDER_STATUS.OPEN)

        blotter.execute_cancel_policy(BAR)
        self.assertEqual(blotter.new_orders[0].status, ORDER_STATUS.OPEN)
        self.assertEqual(blotter.new_orders[1].status, ORDER_STATUS.OPEN)

        blotter.execute_cancel_policy(SESSION_END)
        for order_id in order_ids:
            order = blotter.orders[order_id]
            self.assertEqual(order.status, ORDER_STATUS.CANCELLED)
    def test_market_order_prices(self):
        """
        Basic unit tests for the MarketOrder class.
        """
        style = MarketOrder()

        self.assertEqual(style.get_limit_price(True), None)
        self.assertEqual(style.get_limit_price(False), None)

        self.assertEqual(style.get_stop_price(True), None)
        self.assertEqual(style.get_stop_price(False), None)
Exemplo n.º 10
0
    def __convert_order_params_for_blotter(limit_price, stop_price, style):
        """
        Helper method for converting deprecated limit_price and stop_price
        arguments into ExecutionStyle instances.

        This function assumes that either style == None or (limit_price,
        stop_price) == (None, None).
        """
        if style:
            assert (limit_price, stop_price) == (None, None)
            return style
        if limit_price and stop_price:
            return ExchangeStopLimitOrder(limit_price, stop_price)
        if limit_price:
            return ExchangeLimitOrder(limit_price)
        if stop_price:
            return ExchangeStopOrder(stop_price)
        else:
            return MarketOrder()
Exemplo n.º 11
0
    def test_prune_orders(self):
        blotter = Blotter(self.sim_params.data_frequency)

        blotter.order(self.asset_24, 100, MarketOrder())
        open_order = blotter.open_orders[self.asset_24][0]

        blotter.prune_orders([])
        self.assertEqual(1, len(blotter.open_orders[self.asset_24]))

        blotter.prune_orders([open_order])
        self.assertEqual(0, len(blotter.open_orders[self.asset_24]))

        # prune an order that isn't in our our open orders list, make sure
        # nothing blows up

        other_order = Order(
            dt=blotter.current_dt,
            asset=self.asset_25,
            amount=1
        )

        blotter.prune_orders([other_order])
Exemplo n.º 12
0
    def transaction_sim(self, **params):
        """This is a utility method that asserts expected
        results for conversion of orders to transactions given a
        trade history
        """
        trade_count = params['trade_count']
        trade_interval = params['trade_interval']
        order_count = params['order_count']
        order_amount = params['order_amount']
        order_interval = params['order_interval']
        expected_txn_count = params['expected_txn_count']
        expected_txn_volume = params['expected_txn_volume']

        # optional parameters
        # ---------------------
        # if present, alternate between long and short sales
        alternate = params.get('alternate')

        # if present, expect transaction amounts to match orders exactly.
        complete_fill = params.get('complete_fill')

        asset1 = self.asset_finder.retrieve_asset(1)
        metadata = make_simple_equity_info([asset1.sid], self.start, self.end)
        with TempDirectory() as tempdir, \
                tmp_trading_env(equities=metadata,
                                load=self.make_load_function()) as env:

            if trade_interval < timedelta(days=1):
                sim_params = factory.create_simulation_parameters(
                    start=self.start,
                    end=self.end,
                    data_frequency="minute"
                )

                minutes = self.trading_calendar.minutes_window(
                    sim_params.first_open,
                    int((trade_interval.total_seconds() / 60) * trade_count)
                    + 100)

                price_data = np.array([10.1] * len(minutes))
                assets = {
                    asset1.sid: pd.DataFrame({
                        "open": price_data,
                        "high": price_data,
                        "low": price_data,
                        "close": price_data,
                        "volume": np.array([100] * len(minutes)),
                        "dt": minutes
                    }).set_index("dt")
                }

                write_bcolz_minute_data(
                    self.trading_calendar,
                    self.trading_calendar.sessions_in_range(
                        self.trading_calendar.minute_to_session_label(
                            minutes[0]
                        ),
                        self.trading_calendar.minute_to_session_label(
                            minutes[-1]
                        )
                    ),
                    tempdir.path,
                    iteritems(assets),
                )

                equity_minute_reader = BcolzMinuteBarReader(tempdir.path)

                data_portal = DataPortal(
                    env.asset_finder, self.trading_calendar,
                    first_trading_day=equity_minute_reader.first_trading_day,
                    minute_reader=equity_minute_reader,
                )
            else:
                sim_params = factory.create_simulation_parameters(
                    data_frequency="daily"
                )

                days = sim_params.sessions

                assets = {
                    1: pd.DataFrame({
                        "open": [10.1] * len(days),
                        "high": [10.1] * len(days),
                        "low": [10.1] * len(days),
                        "close": [10.1] * len(days),
                        "volume": [100] * len(days),
                        "day": [day.value for day in days]
                    }, index=days)
                }

                path = os.path.join(tempdir.path, "testdata.bcolz")
                BcolzDailyBarWriter(path, self.trading_calendar, days[0],
                                    days[-1]).write(
                    assets.items()
                )

                equity_daily_reader = BcolzDailyBarReader(path)

                data_portal = DataPortal(
                    env.asset_finder, self.trading_calendar,
                    first_trading_day=equity_daily_reader.first_trading_day,
                    daily_reader=equity_daily_reader,
                )

            if "default_slippage" not in params or \
               not params["default_slippage"]:
                slippage_func = FixedSlippage()
            else:
                slippage_func = None

            blotter = Blotter(sim_params.data_frequency, slippage_func)

            start_date = sim_params.first_open

            if alternate:
                alternator = -1
            else:
                alternator = 1

            tracker = PerformanceTracker(sim_params, self.trading_calendar,
                                         self.env)

            # replicate what tradesim does by going through every minute or day
            # of the simulation and processing open orders each time
            if sim_params.data_frequency == "minute":
                ticks = minutes
            else:
                ticks = days

            transactions = []

            order_list = []
            order_date = start_date
            for tick in ticks:
                blotter.current_dt = tick
                if tick >= order_date and len(order_list) < order_count:
                    # place an order
                    direction = alternator ** len(order_list)
                    order_id = blotter.order(
                        asset1,
                        order_amount * direction,
                        MarketOrder())
                    order_list.append(blotter.orders[order_id])
                    order_date = order_date + order_interval
                    # move after market orders to just after market next
                    # market open.
                    if order_date.hour >= 21:
                        if order_date.minute >= 00:
                            order_date = order_date + timedelta(days=1)
                            order_date = order_date.replace(hour=14, minute=30)
                else:
                    bar_data = BarData(
                        data_portal=data_portal,
                        simulation_dt_func=lambda: tick,
                        data_frequency=sim_params.data_frequency,
                        trading_calendar=self.trading_calendar,
                        restrictions=NoRestrictions(),
                    )
                    txns, _, closed_orders = blotter.get_transactions(bar_data)
                    for txn in txns:
                        tracker.process_transaction(txn)
                        transactions.append(txn)

                    blotter.prune_orders(closed_orders)

            for i in range(order_count):
                order = order_list[i]
                self.assertEqual(order.asset, asset1)
                self.assertEqual(order.amount, order_amount * alternator ** i)

            if complete_fill:
                self.assertEqual(len(transactions), len(order_list))

            total_volume = 0
            for i in range(len(transactions)):
                txn = transactions[i]
                total_volume += txn.amount
                if complete_fill:
                    order = order_list[i]
                    self.assertEqual(order.amount, txn.amount)

            self.assertEqual(total_volume, expected_txn_volume)

            self.assertEqual(len(transactions), expected_txn_count)

            cumulative_pos = tracker.position_tracker.positions[asset1]
            if total_volume == 0:
                self.assertIsNone(cumulative_pos)
            else:
                self.assertEqual(total_volume, cumulative_pos.amount)

            # the open orders should not contain the asset.
            oo = blotter.open_orders
            self.assertNotIn(
                asset1,
                oo,
                "Entry is removed when no open orders"
            )
Exemplo n.º 13
0
class BlotterTestCase(WithCreateBarData,
                      WithLogger,
                      WithDataPortal,
                      WithSimParams,
                      ZiplineTestCase):
    START_DATE = pd.Timestamp('2006-01-05', tz='utc')
    END_DATE = pd.Timestamp('2006-01-06', tz='utc')
    ASSET_FINDER_EQUITY_SIDS = 24, 25

    @classmethod
    def init_class_fixtures(cls):
        super(BlotterTestCase, cls).init_class_fixtures()
        cls.asset_24 = cls.asset_finder.retrieve_asset(24)
        cls.asset_25 = cls.asset_finder.retrieve_asset(25)
        cls.future_cl = cls.asset_finder.retrieve_asset(1000)

    @classmethod
    def make_equity_daily_bar_data(cls):
        yield 24, pd.DataFrame(
            {
                'open': [50, 50],
                'high': [50, 50],
                'low': [50, 50],
                'close': [50, 50],
                'volume': [100, 400],
            },
            index=cls.sim_params.sessions,
        )
        yield 25, pd.DataFrame(
            {
                'open': [50, 50],
                'high': [50, 50],
                'low': [50, 50],
                'close': [50, 50],
                'volume': [100, 400],
            },
            index=cls.sim_params.sessions,
        )

    @classmethod
    def make_futures_info(cls):
        return pd.DataFrame.from_dict(
            {
                1000: {
                    'symbol': 'CLF06',
                    'root_symbol': 'CL',
                    'start_date': cls.START_DATE,
                    'end_date': cls.END_DATE,
                    'expiration_date': cls.END_DATE,
                    'auto_close_date': cls.END_DATE,
                    'exchange': 'CME',
                },
            },
            orient='index',
        )

    @classproperty
    def CREATE_BARDATA_DATA_FREQUENCY(cls):
        return cls.sim_params.data_frequency

    @parameterized.expand([(MarketOrder(), None, None),
                           (LimitOrder(10), 10, None),
                           (StopOrder(10), None, 10),
                           (StopLimitOrder(10, 20), 10, 20)])
    def test_blotter_order_types(self, style_obj, expected_lmt, expected_stp):

        blotter = Blotter('daily')

        blotter.order(self.asset_24, 100, style_obj)
        result = blotter.open_orders[self.asset_24][0]

        self.assertEqual(result.limit, expected_lmt)
        self.assertEqual(result.stop, expected_stp)

    def test_cancel(self):
        blotter = Blotter('daily')

        oid_1 = blotter.order(self.asset_24, 100, MarketOrder())
        oid_2 = blotter.order(self.asset_24, 200, MarketOrder())
        oid_3 = blotter.order(self.asset_24, 300, MarketOrder())

        # Create an order for another asset to verify that we don't remove it
        # when we do cancel_all on 24.
        blotter.order(self.asset_25, 150, MarketOrder())

        self.assertEqual(len(blotter.open_orders), 2)
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 3)
        self.assertEqual(
            [o.amount for o in blotter.open_orders[self.asset_24]],
            [100, 200, 300],
        )

        blotter.cancel(oid_2)
        self.assertEqual(len(blotter.open_orders), 2)
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 2)
        self.assertEqual(
            [o.amount for o in blotter.open_orders[self.asset_24]],
            [100, 300],
        )
        self.assertEqual(
            [o.id for o in blotter.open_orders[self.asset_24]],
            [oid_1, oid_3],
        )

        blotter.cancel_all_orders_for_asset(self.asset_24)
        self.assertEqual(len(blotter.open_orders), 1)
        self.assertEqual(list(blotter.open_orders), [self.asset_25])

    def test_blotter_eod_cancellation(self):
        blotter = Blotter('minute', cancel_policy=EODCancel())

        # Make two orders for the same asset, so we can test that we are not
        # mutating the orders list as we are cancelling orders
        blotter.order(self.asset_24, 100, MarketOrder())
        blotter.order(self.asset_24, -100, MarketOrder())

        self.assertEqual(len(blotter.new_orders), 2)
        order_ids = [order.id for order in blotter.open_orders[self.asset_24]]

        self.assertEqual(blotter.new_orders[0].status, ORDER_STATUS.OPEN)
        self.assertEqual(blotter.new_orders[1].status, ORDER_STATUS.OPEN)

        blotter.execute_cancel_policy(BAR)
        self.assertEqual(blotter.new_orders[0].status, ORDER_STATUS.OPEN)
        self.assertEqual(blotter.new_orders[1].status, ORDER_STATUS.OPEN)

        blotter.execute_cancel_policy(SESSION_END)
        for order_id in order_ids:
            order = blotter.orders[order_id]
            self.assertEqual(order.status, ORDER_STATUS.CANCELLED)

    def test_blotter_never_cancel(self):
        blotter = Blotter('minute', cancel_policy=NeverCancel())

        blotter.order(self.asset_24, 100, MarketOrder())

        self.assertEqual(len(blotter.new_orders), 1)
        self.assertEqual(blotter.new_orders[0].status, ORDER_STATUS.OPEN)

        blotter.execute_cancel_policy(BAR)
        self.assertEqual(blotter.new_orders[0].status, ORDER_STATUS.OPEN)

        blotter.execute_cancel_policy(SESSION_END)
        self.assertEqual(blotter.new_orders[0].status, ORDER_STATUS.OPEN)

    def test_order_rejection(self):
        blotter = Blotter(self.sim_params.data_frequency)

        # Reject a nonexistent order -> no order appears in new_order,
        # no exceptions raised out
        blotter.reject(56)
        self.assertEqual(blotter.new_orders, [])

        # Basic tests of open order behavior
        open_order_id = blotter.order(self.asset_24, 100, MarketOrder())
        second_order_id = blotter.order(self.asset_24, 50, MarketOrder())
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 2)
        open_order = blotter.open_orders[self.asset_24][0]
        self.assertEqual(open_order.status, ORDER_STATUS.OPEN)
        self.assertEqual(open_order.id, open_order_id)
        self.assertIn(open_order, blotter.new_orders)

        # Reject that order immediately (same bar, i.e. still in new_orders)
        blotter.reject(open_order_id)
        self.assertEqual(len(blotter.new_orders), 2)
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 1)
        still_open_order = blotter.new_orders[0]
        self.assertEqual(still_open_order.id, second_order_id)
        self.assertEqual(still_open_order.status, ORDER_STATUS.OPEN)
        rejected_order = blotter.new_orders[1]
        self.assertEqual(rejected_order.status, ORDER_STATUS.REJECTED)
        self.assertEqual(rejected_order.reason, '')

        # Do it again, but reject it at a later time (after tradesimulation
        # pulls it from new_orders)
        blotter = Blotter(self.sim_params.data_frequency)
        new_open_id = blotter.order(self.asset_24, 10, MarketOrder())
        new_open_order = blotter.open_orders[self.asset_24][0]
        self.assertEqual(new_open_id, new_open_order.id)
        # Pretend that the trade simulation did this.
        blotter.new_orders = []

        rejection_reason = "Not enough cash on hand."
        blotter.reject(new_open_id, reason=rejection_reason)
        rejected_order = blotter.new_orders[0]
        self.assertEqual(rejected_order.id, new_open_id)
        self.assertEqual(rejected_order.status, ORDER_STATUS.REJECTED)
        self.assertEqual(rejected_order.reason, rejection_reason)

        # You can't reject a filled order.
        # Reset for paranoia
        blotter = Blotter(self.sim_params.data_frequency)
        blotter.slippage_models[Equity] = FixedSlippage()
        filled_id = blotter.order(self.asset_24, 100, MarketOrder())
        filled_order = None
        blotter.current_dt = self.sim_params.sessions[-1]
        bar_data = self.create_bardata(
            simulation_dt_func=lambda: self.sim_params.sessions[-1],
        )
        txns, _, closed_orders = blotter.get_transactions(bar_data)
        for txn in txns:
            filled_order = blotter.orders[txn.order_id]
        blotter.prune_orders(closed_orders)

        self.assertEqual(filled_order.id, filled_id)
        self.assertIn(filled_order, blotter.new_orders)
        self.assertEqual(filled_order.status, ORDER_STATUS.FILLED)
        self.assertNotIn(filled_order, blotter.open_orders[self.asset_24])

        blotter.reject(filled_id)
        updated_order = blotter.orders[filled_id]
        self.assertEqual(updated_order.status, ORDER_STATUS.FILLED)

    def test_order_hold(self):
        """
        Held orders act almost identically to open orders, except for the
        status indication. When a fill happens, the order should switch
        status to OPEN/FILLED as necessary
        """
        blotter = Blotter(self.sim_params.data_frequency)
        # Nothing happens on held of a non-existent order
        blotter.hold(56)
        self.assertEqual(blotter.new_orders, [])

        open_id = blotter.order(self.asset_24, 100, MarketOrder())
        open_order = blotter.open_orders[self.asset_24][0]
        self.assertEqual(open_order.id, open_id)

        blotter.hold(open_id)
        self.assertEqual(len(blotter.new_orders), 1)
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 1)
        held_order = blotter.new_orders[0]
        self.assertEqual(held_order.status, ORDER_STATUS.HELD)
        self.assertEqual(held_order.reason, '')

        blotter.cancel(held_order.id)
        self.assertEqual(len(blotter.new_orders), 1)
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 0)
        cancelled_order = blotter.new_orders[0]
        self.assertEqual(cancelled_order.id, held_order.id)
        self.assertEqual(cancelled_order.status, ORDER_STATUS.CANCELLED)

        for data in ([100, self.sim_params.sessions[0]],
                     [400, self.sim_params.sessions[1]]):
            # Verify that incoming fills will change the order status.
            trade_amt = data[0]
            dt = data[1]

            order_size = 100
            expected_filled = int(trade_amt *
                                  DEFAULT_EQUITY_VOLUME_SLIPPAGE_BAR_LIMIT)
            expected_open = order_size - expected_filled
            expected_status = ORDER_STATUS.OPEN if expected_open else \
                ORDER_STATUS.FILLED

            blotter = Blotter(self.sim_params.data_frequency)
            open_id = blotter.order(self.asset_24, order_size, MarketOrder())
            open_order = blotter.open_orders[self.asset_24][0]
            self.assertEqual(open_id, open_order.id)
            blotter.hold(open_id)
            held_order = blotter.new_orders[0]

            filled_order = None
            blotter.current_dt = dt
            bar_data = self.create_bardata(
                simulation_dt_func=lambda: dt,
            )
            txns, _, _ = blotter.get_transactions(bar_data)
            for txn in txns:
                filled_order = blotter.orders[txn.order_id]

            self.assertEqual(filled_order.id, held_order.id)
            self.assertEqual(filled_order.status, expected_status)
            self.assertEqual(filled_order.filled, expected_filled)
            self.assertEqual(filled_order.open_amount, expected_open)

    def test_prune_orders(self):
        blotter = Blotter(self.sim_params.data_frequency)

        blotter.order(self.asset_24, 100, MarketOrder())
        open_order = blotter.open_orders[self.asset_24][0]

        blotter.prune_orders([])
        self.assertEqual(1, len(blotter.open_orders[self.asset_24]))

        blotter.prune_orders([open_order])
        self.assertEqual(0, len(blotter.open_orders[self.asset_24]))

        # prune an order that isn't in our our open orders list, make sure
        # nothing blows up

        other_order = Order(
            dt=blotter.current_dt,
            asset=self.asset_25,
            amount=1
        )

        blotter.prune_orders([other_order])

    def test_batch_order_matches_multiple_orders(self):
        """
        Ensure the effect of order_batch is the same as multiple calls to
        order.
        """
        blotter1 = Blotter(self.sim_params.data_frequency)
        blotter2 = Blotter(self.sim_params.data_frequency)
        for i in range(1, 4):
            order_arg_lists = [
                (self.asset_24, i * 100, MarketOrder()),
                (self.asset_25, i * 100, LimitOrder(i * 100 + 1)),
            ]

            order_batch_ids = blotter1.batch_order(order_arg_lists)
            order_ids = []
            for order_args in order_arg_lists:
                order_ids.append(blotter2.order(*order_args))
            self.assertEqual(len(order_batch_ids), len(order_ids))

            self.assertEqual(len(blotter1.open_orders),
                             len(blotter2.open_orders))

            for (asset, _, _), order_batch_id, order_id in zip(
                    order_arg_lists, order_batch_ids, order_ids
            ):
                self.assertEqual(len(blotter1.open_orders[asset]),
                                 len(blotter2.open_orders[asset]))
                self.assertEqual(order_batch_id,
                                 blotter1.open_orders[asset][i-1].id)
                self.assertEqual(order_id,
                                 blotter2.open_orders[asset][i-1].id)

    def test_slippage_and_commission_dispatching(self):
        blotter = Blotter(
            self.sim_params.data_frequency,
            equity_slippage=FixedSlippage(spread=0.0),
            future_slippage=FixedSlippage(spread=2.0),
            equity_commission=PerTrade(cost=1.0),
            future_commission=PerTrade(cost=2.0),
        )
        blotter.order(self.asset_24, 1, MarketOrder())
        blotter.order(self.future_cl, 1, MarketOrder())

        bar_data = self.create_bardata(
            simulation_dt_func=lambda: self.sim_params.sessions[-1],
        )
        txns, commissions, _ = blotter.get_transactions(bar_data)

        # The equity transaction should have the same price as its current
        # price because the slippage spread is zero. Its commission should be
        # $1.00.
        equity_txn = txns[0]
        self.assertEqual(
            equity_txn.price,
            bar_data.current(equity_txn.asset, 'price'),
        )
        self.assertEqual(commissions[0]['cost'], 1.0)

        # The future transaction price should be 1.0 more than its current
        # price because half of the 'future_slippage' spread is added. Its
        # commission should be $2.00.
        future_txn = txns[1]
        self.assertEqual(
            future_txn.price,
            bar_data.current(future_txn.asset, 'price') + 1.0,
        )
        self.assertEqual(commissions[1]['cost'], 2.0)
Exemplo n.º 14
0
    def test_order_hold(self):
        """
        Held orders act almost identically to open orders, except for the
        status indication. When a fill happens, the order should switch
        status to OPEN/FILLED as necessary
        """
        blotter = Blotter(self.sim_params.data_frequency)
        # Nothing happens on held of a non-existent order
        blotter.hold(56)
        self.assertEqual(blotter.new_orders, [])

        open_id = blotter.order(self.asset_24, 100, MarketOrder())
        open_order = blotter.open_orders[self.asset_24][0]
        self.assertEqual(open_order.id, open_id)

        blotter.hold(open_id)
        self.assertEqual(len(blotter.new_orders), 1)
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 1)
        held_order = blotter.new_orders[0]
        self.assertEqual(held_order.status, ORDER_STATUS.HELD)
        self.assertEqual(held_order.reason, '')

        blotter.cancel(held_order.id)
        self.assertEqual(len(blotter.new_orders), 1)
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 0)
        cancelled_order = blotter.new_orders[0]
        self.assertEqual(cancelled_order.id, held_order.id)
        self.assertEqual(cancelled_order.status, ORDER_STATUS.CANCELLED)

        for data in ([100, self.sim_params.sessions[0]],
                     [400, self.sim_params.sessions[1]]):
            # Verify that incoming fills will change the order status.
            trade_amt = data[0]
            dt = data[1]

            order_size = 100
            expected_filled = int(trade_amt *
                                  DEFAULT_EQUITY_VOLUME_SLIPPAGE_BAR_LIMIT)
            expected_open = order_size - expected_filled
            expected_status = ORDER_STATUS.OPEN if expected_open else \
                ORDER_STATUS.FILLED

            blotter = Blotter(self.sim_params.data_frequency)
            open_id = blotter.order(self.asset_24, order_size, MarketOrder())
            open_order = blotter.open_orders[self.asset_24][0]
            self.assertEqual(open_id, open_order.id)
            blotter.hold(open_id)
            held_order = blotter.new_orders[0]

            filled_order = None
            blotter.current_dt = dt
            bar_data = self.create_bardata(
                simulation_dt_func=lambda: dt,
            )
            txns, _, _ = blotter.get_transactions(bar_data)
            for txn in txns:
                filled_order = blotter.orders[txn.order_id]

            self.assertEqual(filled_order.id, held_order.id)
            self.assertEqual(filled_order.status, expected_status)
            self.assertEqual(filled_order.filled, expected_filled)
            self.assertEqual(filled_order.open_amount, expected_open)
Exemplo n.º 15
0
    def test_order_rejection(self):
        blotter = Blotter(self.sim_params.data_frequency)

        # Reject a nonexistent order -> no order appears in new_order,
        # no exceptions raised out
        blotter.reject(56)
        self.assertEqual(blotter.new_orders, [])

        # Basic tests of open order behavior
        open_order_id = blotter.order(self.asset_24, 100, MarketOrder())
        second_order_id = blotter.order(self.asset_24, 50, MarketOrder())
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 2)
        open_order = blotter.open_orders[self.asset_24][0]
        self.assertEqual(open_order.status, ORDER_STATUS.OPEN)
        self.assertEqual(open_order.id, open_order_id)
        self.assertIn(open_order, blotter.new_orders)

        # Reject that order immediately (same bar, i.e. still in new_orders)
        blotter.reject(open_order_id)
        self.assertEqual(len(blotter.new_orders), 2)
        self.assertEqual(len(blotter.open_orders[self.asset_24]), 1)
        still_open_order = blotter.new_orders[0]
        self.assertEqual(still_open_order.id, second_order_id)
        self.assertEqual(still_open_order.status, ORDER_STATUS.OPEN)
        rejected_order = blotter.new_orders[1]
        self.assertEqual(rejected_order.status, ORDER_STATUS.REJECTED)
        self.assertEqual(rejected_order.reason, '')

        # Do it again, but reject it at a later time (after tradesimulation
        # pulls it from new_orders)
        blotter = Blotter(self.sim_params.data_frequency)
        new_open_id = blotter.order(self.asset_24, 10, MarketOrder())
        new_open_order = blotter.open_orders[self.asset_24][0]
        self.assertEqual(new_open_id, new_open_order.id)
        # Pretend that the trade simulation did this.
        blotter.new_orders = []

        rejection_reason = "Not enough cash on hand."
        blotter.reject(new_open_id, reason=rejection_reason)
        rejected_order = blotter.new_orders[0]
        self.assertEqual(rejected_order.id, new_open_id)
        self.assertEqual(rejected_order.status, ORDER_STATUS.REJECTED)
        self.assertEqual(rejected_order.reason, rejection_reason)

        # You can't reject a filled order.
        # Reset for paranoia
        blotter = Blotter(self.sim_params.data_frequency)
        blotter.slippage_models[Equity] = FixedSlippage()
        filled_id = blotter.order(self.asset_24, 100, MarketOrder())
        filled_order = None
        blotter.current_dt = self.sim_params.sessions[-1]
        bar_data = self.create_bardata(
            simulation_dt_func=lambda: self.sim_params.sessions[-1],
        )
        txns, _, closed_orders = blotter.get_transactions(bar_data)
        for txn in txns:
            filled_order = blotter.orders[txn.order_id]
        blotter.prune_orders(closed_orders)

        self.assertEqual(filled_order.id, filled_id)
        self.assertIn(filled_order, blotter.new_orders)
        self.assertEqual(filled_order.status, ORDER_STATUS.FILLED)
        self.assertNotIn(filled_order, blotter.open_orders[self.asset_24])

        blotter.reject(filled_id)
        updated_order = blotter.orders[filled_id]
        self.assertEqual(updated_order.status, ORDER_STATUS.FILLED)