Exemplo n.º 1
0
 def make_mergers_data(cls):
     return pd.DataFrame.from_records([
         {
             'effective_date': str_to_seconds('2016-01-06'),
             'ratio': 0.5,
             'sid': cls.MERGER_ASSET_SID,
         },
         {
             'effective_date': str_to_seconds('2016-01-07'),
             'ratio': 0.6,
             'sid': cls.ILLIQUID_MERGER_ASSET_SID,
         }
     ])
Exemplo n.º 2
0
 def make_splits_data(cls):
     return pd.DataFrame.from_records([
         {
             'effective_date': str_to_seconds("2016-01-06"),
             'ratio': 0.5,
             'sid': cls.SPLIT_ASSET_SID,
         },
         {
             'effective_date': str_to_seconds("2016-01-07"),
             'ratio': 0.5,
             'sid': cls.ILLIQUID_SPLIT_ASSET_SID,
         },
     ])
Exemplo n.º 3
0
 def make_splits_data(cls):
     return pd.DataFrame.from_records([
         {
             'effective_date': str_to_seconds("2016-01-06"),
             'ratio': 0.5,
             'sid': cls.SPLIT_ASSET_SID,
         },
         {
             'effective_date': str_to_seconds("2016-01-07"),
             'ratio': 0.5,
             'sid': cls.ILLIQUID_SPLIT_ASSET_SID,
         },
     ])
Exemplo n.º 4
0
 def make_splits_data(cls):
     return DataFrame.from_records([{
         'effective_date':
         str_to_seconds('2014-06-09'),
         'ratio': (1 / 7.0),
         'sid':
         cls.AAPL,
     }])
Exemplo n.º 5
0
 def make_splits_data(cls):
     return pd.DataFrame([
         {
             'effective_date': str_to_seconds('2016-01-06'),
             'ratio': 0.5,
             'sid': 3,
         }
     ])
Exemplo n.º 6
0
 def make_splits_data(cls):
     return DataFrame.from_records([
         {
             'effective_date': str_to_seconds('2014-06-09'),
             'ratio': (1 / 7.0),
             'sid': cls.AAPL,
         }
     ])
Exemplo n.º 7
0
 def make_splits_data(cls):
     return pd.DataFrame([{
         'effective_date': str_to_seconds('2016-01-06'),
         'ratio': 0.5,
         'sid': 3,
     }])
# upon inspection.
#
# 1s place is the equity
#
# 0.1s place is the action type, with:
#
# splits, 1
# mergers, 2
# dividends, 3
#
# 0.001s is the date
SPLITS = DataFrame(
    [
        # Before query range, should be excluded.
        {
            'effective_date': str_to_seconds('2015-06-03'),
            'ratio': 1.103,
            'sid': 1
        },
        # First day of query range, should be excluded.
        {
            'effective_date': str_to_seconds('2015-06-10'),
            'ratio': 3.110,
            'sid': 3
        },
        # Third day of query range, should have last_row of 2
        {
            'effective_date': str_to_seconds('2015-06-12'),
            'ratio': 3.112,
            'sid': 3
        },
Exemplo n.º 9
0
    def test_ingest(self):
        calendar = get_calendar('NYSE')
        sessions = calendar.sessions_in_range(self.START_DATE, self.END_DATE)
        minutes = calendar.minutes_for_sessions_in_range(
            self.START_DATE,
            self.END_DATE,
        )

        sids = tuple(range(3))
        equities = make_simple_equity_info(
            sids,
            self.START_DATE,
            self.END_DATE,
        )

        daily_bar_data = make_bar_data(equities, sessions)
        minute_bar_data = make_bar_data(equities, minutes)
        first_split_ratio = 0.5
        second_split_ratio = 0.1
        splits = pd.DataFrame.from_records([
            {
                'effective_date': str_to_seconds('2014-01-08'),
                'ratio': first_split_ratio,
                'sid': 0,
            },
            {
                'effective_date': str_to_seconds('2014-01-09'),
                'ratio': second_split_ratio,
                'sid': 1,
            },
        ])

        @self.register(
            'bundle',
            calendar_name='NYSE',
            start_session=self.START_DATE,
            end_session=self.END_DATE,
        )
        def bundle_ingest(environ, asset_db_writer, minute_bar_writer,
                          daily_bar_writer, adjustment_writer, calendar,
                          start_session, end_session, cache, show_progress,
                          output_dir):
            assert_is(environ, self.environ)

            asset_db_writer.write(equities=equities)
            minute_bar_writer.write(minute_bar_data)
            daily_bar_writer.write(daily_bar_data)
            adjustment_writer.write(splits=splits)

            assert_is_instance(calendar, TradingCalendar)
            assert_is_instance(cache, dataframe_cache)
            assert_is_instance(show_progress, bool)

        self.ingest('bundle', environ=self.environ)
        bundle = self.load('bundle', environ=self.environ)

        assert_equal(set(bundle.asset_finder.sids), set(sids))

        columns = 'open', 'high', 'low', 'close', 'volume'

        actual = bundle.equity_minute_bar_reader.load_raw_arrays(
            columns,
            minutes[0],
            minutes[-1],
            sids,
        )

        for actual_column, colname in zip(actual, columns):
            assert_equal(
                actual_column,
                expected_bar_values_2d(minutes, equities, colname),
                msg=colname,
            )

        actual = bundle.equity_daily_bar_reader.load_raw_arrays(
            columns,
            self.START_DATE,
            self.END_DATE,
            sids,
        )
        for actual_column, colname in zip(actual, columns):
            assert_equal(
                actual_column,
                expected_bar_values_2d(sessions, equities, colname),
                msg=colname,
            )
        adjustments_for_cols = bundle.adjustment_reader.load_adjustments(
            columns,
            sessions,
            pd.Index(sids),
        )
        for column, adjustments in zip(columns, adjustments_for_cols[:-1]):
            # iterate over all the adjustments but `volume`
            assert_equal(
                adjustments,
                {
                    2: [
                        Float64Multiply(
                            first_row=0,
                            last_row=2,
                            first_col=0,
                            last_col=0,
                            value=first_split_ratio,
                        )
                    ],
                    3: [
                        Float64Multiply(
                            first_row=0,
                            last_row=3,
                            first_col=1,
                            last_col=1,
                            value=second_split_ratio,
                        )
                    ],
                },
                msg=column,
            )

        # check the volume, the value should be 1/ratio
        assert_equal(
            adjustments_for_cols[-1],
            {
                2: [
                    Float64Multiply(
                        first_row=0,
                        last_row=2,
                        first_col=0,
                        last_col=0,
                        value=1 / first_split_ratio,
                    )
                ],
                3: [
                    Float64Multiply(
                        first_row=0,
                        last_row=3,
                        first_col=1,
                        last_col=1,
                        value=1 / second_split_ratio,
                    )
                ],
            },
            msg='volume',
        )
Exemplo n.º 10
0
    def test_ingest(self):
        calendar = get_calendar('NYSE')
        sessions = calendar.sessions_in_range(self.START_DATE, self.END_DATE)
        minutes = calendar.minutes_for_sessions_in_range(
            self.START_DATE, self.END_DATE,
        )

        sids = tuple(range(3))
        equities = make_simple_equity_info(
            sids,
            self.START_DATE,
            self.END_DATE,
        )

        daily_bar_data = make_bar_data(equities, sessions)
        minute_bar_data = make_bar_data(equities, minutes)
        first_split_ratio = 0.5
        second_split_ratio = 0.1
        splits = pd.DataFrame.from_records([
            {
                'effective_date': str_to_seconds('2014-01-08'),
                'ratio': first_split_ratio,
                'sid': 0,
            },
            {
                'effective_date': str_to_seconds('2014-01-09'),
                'ratio': second_split_ratio,
                'sid': 1,
            },
        ])

        @self.register(
            'bundle',
            calendar_name='NYSE',
            start_session=self.START_DATE,
            end_session=self.END_DATE,
        )
        def bundle_ingest(environ,
                          asset_db_writer,
                          minute_bar_writer,
                          daily_bar_writer,
                          adjustment_writer,
                          calendar,
                          start_session,
                          end_session,
                          cache,
                          show_progress,
                          output_dir):
            assert_is(environ, self.environ)

            asset_db_writer.write(equities=equities)
            minute_bar_writer.write(minute_bar_data)
            daily_bar_writer.write(daily_bar_data)
            adjustment_writer.write(splits=splits)

            assert_is_instance(calendar, TradingCalendar)
            assert_is_instance(cache, dataframe_cache)
            assert_is_instance(show_progress, bool)

        self.ingest('bundle', environ=self.environ)
        bundle = self.load('bundle', environ=self.environ)

        assert_equal(set(bundle.asset_finder.sids), set(sids))

        columns = 'open', 'high', 'low', 'close', 'volume'

        actual = bundle.equity_minute_bar_reader.load_raw_arrays(
            columns,
            minutes[0],
            minutes[-1],
            sids,
        )

        for actual_column, colname in zip(actual, columns):
            assert_equal(
                actual_column,
                expected_bar_values_2d(minutes, equities, colname),
                msg=colname,
            )

        actual = bundle.equity_daily_bar_reader.load_raw_arrays(
            columns,
            self.START_DATE,
            self.END_DATE,
            sids,
        )
        for actual_column, colname in zip(actual, columns):
            assert_equal(
                actual_column,
                expected_bar_values_2d(sessions, equities, colname),
                msg=colname,
            )
        adjustments_for_cols = bundle.adjustment_reader.load_adjustments(
            columns,
            sessions,
            pd.Index(sids),
        )
        for column, adjustments in zip(columns, adjustments_for_cols[:-1]):
            # iterate over all the adjustments but `volume`
            assert_equal(
                adjustments,
                {
                    2: [Float64Multiply(
                        first_row=0,
                        last_row=2,
                        first_col=0,
                        last_col=0,
                        value=first_split_ratio,
                    )],
                    3: [Float64Multiply(
                        first_row=0,
                        last_row=3,
                        first_col=1,
                        last_col=1,
                        value=second_split_ratio,
                    )],
                },
                msg=column,
            )

        # check the volume, the value should be 1/ratio
        assert_equal(
            adjustments_for_cols[-1],
            {
                2: [Float64Multiply(
                    first_row=0,
                    last_row=2,
                    first_col=0,
                    last_col=0,
                    value=1 / first_split_ratio,
                )],
                3: [Float64Multiply(
                    first_row=0,
                    last_row=3,
                    first_col=1,
                    last_col=1,
                    value=1 / second_split_ratio,
                )],
            },
            msg='volume',
        )