Exemplo n.º 1
0
    def test_path(self):
        n_images = 8
        images = [initial_structure]
        for i in range(1, n_images - 1):
            image = initial_structure.copy()
            image.set_calculator(copy.deepcopy(ase_calculator))
            images.append(image)
        images.append(final_structure)

        neb = NEB(images, climb=True)
        neb.interpolate(method='linear')

        neb_catlearn = MLNEB(start=initial_structure,
                             end=final_structure,
                             interpolation=images,
                             ase_calc=ase_calculator,
                             restart=False)

        neb_catlearn.run(fmax=0.05, trajectory='ML-NEB.traj')

        atoms_catlearn = read('evaluated_structures.traj', ':')
        n_eval_catlearn = len(atoms_catlearn) - 2

        self.assertEqual(n_eval_catlearn, 12)
        print('Checking number of function calls using 8 images...')
        np.testing.assert_array_equal(n_eval_catlearn, 12)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.022412729039317382
        print('Checking uncertainty on the path (8 images):')
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)
Exemplo n.º 2
0
    def test_restart(self):
        """ Here we test the restart flag, the mic, and the internal
            interpolation."""

        # Checking internal interpolation.

        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=9,
                             ase_calc=ase_calculator,
                             interpolation='linear',
                             restart=False)
        neb_catlearn.run(fmax=0.05, trajectory='ML-NEB.traj', max_step=0.2)
        print('Checking number of iterations using 9 images...')
        self.assertEqual(neb_catlearn.iter, 12)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.0377
        print('Checking uncertainty on the path (9 images):')
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)

        # Reducing the uncertainty and fmax, varying num. images (restart):
        print("Checking restart flag...")
        print('Using tighter convergence criteria.')

        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=11,
                             ase_calc=ase_calculator,
                             restart=True)
        neb_catlearn.run(fmax=0.01,
                         max_step=0.20,
                         unc_convergence=0.010,
                         trajectory='ML-NEB.traj')
        print('Checking number of iterations restarting with 11 images...')
        self.assertEqual(neb_catlearn.iter, 5)
        print('Checking uncertainty on the path (11 images).')
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.0062
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)
Exemplo n.º 3
0
    image = initial_ase.copy()
    image.set_calculator(copy.deepcopy(ase_calculator))
    images_ase.append(image)
images_ase.append(final_ase)

neb_ase = NEB(images_ase, climb=True, method='aseneb')
neb_ase.interpolate(method='idpp')

qn_ase = MDMin(neb_ase, trajectory='neb_ase.traj')
qn_ase.run(fmax=0.05)

# 2.B. NEB using CatLearn ####################################################

neb_catlearn = MLNEB(start='initial_opt.traj',
                     end='final_opt.traj',
                     ase_calc=copy.deepcopy(ase_calculator),
                     n_images=n_images,
                     interpolation='idpp',
                     restart=False)

neb_catlearn.run(fmax=0.05, trajectory='ML-NEB.traj')

# 3. Summary of the results #################################################

# NEB ASE:
print('\nSummary of the results: \n')

atoms_ase = read('neb_ase.traj', ':')
n_eval_ase = int(len(atoms_ase) - 2 * (len(atoms_ase) / n_images))

print('Number of function evaluations CI-NEB implemented in ASE:', n_eval_ase)
Exemplo n.º 4
0
images_ase.append(final_ase)

neb_ase = NEB(images_ase, parallel=True, climb=True)
neb_ase.interpolate(method='idpp')

qn_ase = MDMin(neb_ase, logfile='neb_ase.log', trajectory='neb_ase.traj')
itime = time.default_timer()
qn_ase.run(fmax=0.05)
logging.warning('ase =   %s', time.default_timer() - itime)

# 2.B. NEB using CatLearn

neb_catlearn = MLNEB(start=slab_initial,
                     end=slab_final,
                     ase_calc=calc,
                     n_images=n_images + 2,
                     interpolation='idpp',
                     restart=False)

itime = time.default_timer()
neb_catlearn.run(fmax=0.05, trajectory='ML-NEB.traj')
logging.warning('mlneb =   %s', time.default_timer() - itime)

# 3. Summary of the results

# NEB ASE:
logging.warning('Summary of the results: ')

atoms_ase = read('neb_ase.traj', ':')
n_eval_ase = len(atoms_ase) - 2 * (len(atoms_ase) / n_images)
Exemplo n.º 5
0
    def test_acquisition(self):
        """ Here we test the acquisition functions"""

        print('Checking acquisition function 1 using 6 images...')
        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=6,
                             ase_calc=ase_calculator,
                             restart=False)

        neb_catlearn.run(fmax=0.05,
                         trajectory='ML-NEB.traj',
                         acquisition='acq_1')
        self.assertEqual(neb_catlearn.iter, 12)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.016837502479194518
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)

        print('Checking acquisition function 2 using 6 images...')
        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=6,
                             ase_calc=ase_calculator,
                             restart=False)
        neb_catlearn.run(fmax=0.05,
                         trajectory='ML-NEB.traj',
                         acquisition='acq_2')

        self.assertEqual(neb_catlearn.iter, 10)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.019377964708766612
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)

        print('Checking acquisition function 3 using 6 images...')
        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=6,
                             ase_calc=ase_calculator,
                             restart=False)
        neb_catlearn.run(fmax=0.05,
                         trajectory='ML-NEB.traj',
                         acquisition='acq_3')

        self.assertEqual(neb_catlearn.iter, 10)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.02956129325684482
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)

        print('Checking acquisition function 4 using 6 images...')
        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=6,
                             ase_calc=ase_calculator,
                             restart=False)
        neb_catlearn.run(fmax=0.05,
                         trajectory='ML-NEB.traj',
                         acquisition='acq_4')

        self.assertEqual(neb_catlearn.iter, 12)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.016837502479194518
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)

        print('Checking acquisition function 5 using 6 images...')
        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=6,
                             ase_calc=ase_calculator,
                             restart=False)
        neb_catlearn.run(fmax=0.05,
                         trajectory='ML-NEB.traj',
                         acquisition='acq_5')

        self.assertEqual(neb_catlearn.iter, 10)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.019377964708766612
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)
Exemplo n.º 6
0
# Fix second and third layers:
mask = [atom.tag > 1 for atom in slab]
slab.set_constraint(FixAtoms(mask=mask))

# 1.2. Optimize initial and final end-points.
# Initial end-point:
qn = BFGS(slab, trajectory='initial.traj')
qn.run(fmax=0.01)

# Final end-point:
slab[-1].x += slab.get_cell()[0, 0] / 2
qn = BFGS(slab, trajectory='final.traj')
qn.run(fmax=0.01)

# # Define number of images:
n_images = 15

# 2.B. NEB using CatLearn
neb_catlearn = MLNEB(start='initial.traj',
                     end='final.traj',
                     ase_calc=GPAW(**calc_args),
                     n_images=n_images,
                     interpolation='idpp', restart=False)
neb_catlearn.run(fmax=0.05, trajectory='ML-NEB.traj', full_output=True)

# 3. Summary of the results #################################################
# ML-NEB:
atoms_catlearn = ase.io.read('evaluated_structures.traj', ':')
n_eval_catlearn = len(atoms_catlearn) - 2
parprint('Number of function evaluations CatLearn:', n_eval_catlearn)
Exemplo n.º 7
0

def my_calc():
    return Aims(xc='pbesol',
                spin='none',
                relativistic=('atomic_zora', 'scalar'),
                vdw_correction_hirshfeld='true',
                k_grid=(
                    2,
                    2,
                    2,
                ),
                compute_forces=True,
                final_forces_cleaned=True)


initial = read('initial.traj')
final = read('final.traj')

n = 7

calculator = my_calc()

neb_catlearn = MLNEB(start=initial,
                     end=final,
                     ase_calc=calculator,
                     n_images=n,
                     interpolation='idpp',
                     restart=False)
neb_catlearn.run(fmax=0.01, trajectory='ML-NEB.traj', full_output=False)
Exemplo n.º 8
0
    ibrion=-1,
    ediffg=-0.01,  # forces
    ediff=1e-5,  #energy conv.
    prec='Accurate',  # Slab 
    nsw=0,  # don't use the VASP internal relaxation, only use ASE
    ispin=1,
    nelm=300)

# Optimize initial state:
slab = read('./optimized_structures/initial.traj')
slab.set_calculator(copy.deepcopy(ase_calculator))
qn = BFGS(slab, trajectory='initial.traj')
qn.run(fmax=0.01)
shutil.copy('./initial.traj', './optimized_structures/initial.traj')

# Optimize final state:
slab = read('./optimized_structures/final.traj')
slab.set_calculator(copy.deepcopy(ase_calculator))
qn = BFGS(slab, trajectory='final.traj')
qn.run(fmax=0.01)
shutil.copy('./final.traj', './optimized_structures/final.traj')

####### CatLearn NEB:

neb_catlearn = MLNEB(start='initial.traj',
                     end='final.traj',
                     ase_calc=copy.deepcopy(ase_calculator),
                     n_images=11)

neb_catlearn.run(fmax=0.05)
Exemplo n.º 9
0
                spinpol=False)

# Optimize the initial and final states using a minimizer (MLMin, BFGS, FIRE ...)

# Optimize the initial state using MLMin:
slab = read('./structures/initial.traj')
slab.set_calculator(copy.deepcopy(calc))
qn = MLMin(slab, trajectory='initial.traj')
qn.run(fmax=0.03)
shutil.copy('./initial.traj', './structures/initial.traj')

# Optimize final state using MLMin:
slab = read('./structures/final.traj')
slab.set_calculator(copy.deepcopy(calc))
qn = MLMin(slab, trajectory='final.traj')
qn.run(fmax=0.03)
shutil.copy('./final.traj', './structures/final.traj')

# Perform a Minimum Energy Path (MEP) search using ML-NEB:
neb_catlearn = MLNEB(
    start='./structures/initial.traj',  # Initial end-point.
    end='./structures/final.traj',  # Final end-point.
    ase_calc=copy.deepcopy(
        calc
    ),  # Calculator, it must be the same as the one used for the optimizations.
    n_images=15,  # Number of images (interger or float, see above).
    interpolation=
    'idpp',  # Choose between linear or idpp interpolation (as implemented in ASE). You can also feed a list of Atoms with your own interpolation.
    restart=True)
neb_catlearn.run(fmax=0.05, trajectory='ML-NEB.traj')
Exemplo n.º 10
0
    def test_acquisition(self):
        """ Here we test the acquisition functions"""

        print('Checking acquisition function 1 using 6 images...')
        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=6,
                             ase_calc=ase_calculator,
                             restart=False)

        neb_catlearn.run(fmax=0.05,
                         trajectory='ML-NEB.traj',
                         max_step=0.2,
                         acquisition='acq_1')
        self.assertEqual(neb_catlearn.iter, 16)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.0028
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)

        print('Checking acquisition function 2 using 6 images...')
        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=6,
                             ase_calc=ase_calculator,
                             restart=False)
        neb_catlearn.run(fmax=0.05,
                         trajectory='ML-NEB.traj',
                         max_step=0.2,
                         acquisition='acq_2')

        self.assertEqual(neb_catlearn.iter, 13)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.0128
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)

        print('Checking acquisition function 3 using 6 images...')
        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=6,
                             ase_calc=ase_calculator,
                             restart=False)
        neb_catlearn.run(fmax=0.05,
                         trajectory='ML-NEB.traj',
                         max_step=0.2,
                         acquisition='acq_3')

        self.assertEqual(neb_catlearn.iter, 14)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.0036
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)

        print('Checking acquisition function 4 using 6 images...')
        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=6,
                             ase_calc=ase_calculator,
                             restart=False)
        neb_catlearn.run(fmax=0.05,
                         trajectory='ML-NEB.traj',
                         max_step=0.2,
                         acquisition='acq_4')

        self.assertEqual(neb_catlearn.iter, 16)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.0028
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)

        print('Checking acquisition function 5 using 6 images...')
        neb_catlearn = MLNEB(start='initial_optimized.traj',
                             end='final_optimized.traj',
                             n_images=6,
                             ase_calc=ase_calculator,
                             restart=False)
        neb_catlearn.run(fmax=0.05,
                         trajectory='ML-NEB.traj',
                         max_step=0.2,
                         acquisition='acq_5')

        self.assertEqual(neb_catlearn.iter, 13)
        max_unc = np.max(neb_catlearn.uncertainty_path)
        unc_test = 0.0128
        np.testing.assert_array_almost_equal(max_unc, unc_test, decimal=4)
Exemplo n.º 11
0
def pre_neb_aims(initial,
                 final,
                 hpc="hawk",
                 basis_set ='light',
                 filename="last_predicted_path.traj"):


    '''
    This function performs a preliminary NEB calculation on user-provided
    structures using ML-NEB. If the calculation does not converge within
    75 steps, it is terminated. Minimum Energy Path energy landscape is
    examined for occurence of multiple local maxima and if detected - geometry
    optimisations on local minima are performed.

    The optimised structures can be used as alternative start/end points for
    further calculations making the NEB calculation easier to converge.

    Parameters:
    hpc: string
        'hawk', 'isambard', 'archer' see carmm.run.aims_path.set_aims_command
    basis_set: string
        'light', 'tight' etc., see carmm.run.aims_path.set_aims_command
    filename: string
        Name of a file containing an unconverged NEB Minimum Energy Path.
        Default is 'last_predicted_path.traj' for CatLearn MLNEB.
    initial: Atoms object
        Starting geometry of a NEB calculation.
    final: Atoms object
        End geometry of a NEB calculation.
    '''
    import os

    if not os.path.exists(filename):
        from ase.io import read
        from catlearn.optimize.mlneb import MLNEB

        # Set the environment parameters
        from carmm.run.aims_path import set_aims_command
        set_aims_command(hpc=hpc, basis_set=basis_set)

        # your settings go here
        def my_calc():
            # New method that gives a default calculator
            from carmm.run.aims_calculator import get_aims_calculator
            return get_aims_calculator(dimensions=2)

        from carmm.build.neb.ilm import neb_identify_local_minima
        from carmm.build.neb.ilm import multiple_local_extrema

        # Desired number of images including start and end point
        # Enough to show energy landscape of Minimum Energy Path
        n = 15

        calculator = my_calc()

        # Setup the Catlearn object for MLNEB
        neb_catlearn = MLNEB(start=initial,
                             end=final,
                             ase_calc=calculator,
                             n_images=n,
                             interpolation='idpp', restart=False)

        # Run the NEB optimisation. Adjust fmax to desired convergence criteria,
        # usually 0.01 ev/A. Max steps set to 75 for preliminary study.
        # MLNEB serial part is quick below 100 structures

        neb_catlearn.run(fmax=0.01,
                         trajectory='ML-NEB.traj',
                         full_output=False,
                         steps=75)

    if multiple_local_extrema(filename=filename) is True:
        print("Multiple extrema detected in the predicted Minimum Energy Path.")
        print("Local minima will be identified and optimised")
        atoms_list, indices = neb_identify_local_minima(filename=filename)

        print(len(atoms_list), "minima detected. Performing geometry optimisations.")

        from ase.optimize import BFGS
        from carmm.run.aims_path import set_aims_command
        from carmm.run.aims_calculator import get_aims_calculator
        set_aims_command(hpc=hpc, basis_set=basis_set)

        x = 0
        for atoms in atoms_list:
            id = indices[x]
            atoms.calc = get_aims_calculator(2, k_grid=(3, 3, 1))
            opt = BFGS(atoms,
                       restart="min_"+str(id)+".pckl",
                       trajectory="min_"+str(id)+".traj")
            opt.run(fmax=0.01)
            x = x+1

        print("Geometry optimisations completed.")
        print("Please consider the structures as alternative start/end points.")

    else:
        print("No multiple extrema detected in the predicted Minimum Energy Path.")
Exemplo n.º 12
0
    def search_ts(self,
                  initial,
                  final,
                  fmax,
                  unc,
                  interpolation="idpp",
                  n=0.25,
                  restart=True,
                  prev_calcs=None,
                  input_check=0.01,
                  verbose=True):
        '''
        This function allows calculation of the transition state using the CatLearn software package in an
        ASE/sockets/FHI-aims setup. The resulting converged band will be located in the MLNEB.traj file.

        Args:
            initial: Atoms object
                Initial structure in the NEB band
            final: Atoms object
                Final structure in the NEB band
            fmax: float
                Convergence criterion of forces in eV/A
            unc: float
                Uncertainty in the fit of the NEB according to the Gaussian Progress Regression model, a secondary
                convergence criterion.
            n: int
                number of middle images, the following is recommended: n * npi = total_no_CPUs
            interpolation: str or []
                The "idpp" or "linear" interpolation types are supported in ASE. alternatively user can provide a custom
                interpolation as a list of Atoms objects.
            n: int or flot
                Desired number of middle images excluding start and end point. If float the number of images is based on
                displacement of atoms. Dense sampling aids convergence but does not increase complexity as significantly
                as for classic NEB.
            restart: bool
                Use previous calculations contained in folders if True, start from scratch if False
            prev_calcs: list of Atoms objects
                Manually provide the training set
           input_check: float or None
                If float the calculators of the input structures will be checked if the structures are below
                the requested fmax and an optimisation will be performed if not.
            verbose: bool
                Flag for turning off printouts in the code

        Returns: Atoms object
            Transition state geometry structure
        '''

        from catlearn.optimize.mlneb import MLNEB
        '''Retrieve common properties'''
        basis_set = self.basis_set
        hpc = self.hpc
        dimensions = sum(initial.pbc)
        params = self.params
        parent_dir = os.getcwd()
        '''Set the environment parameters'''
        set_aims_command(hpc=hpc,
                         basis_set=basis_set,
                         defaults=2020,
                         nodes_per_instance=self.nodes_per_instance)

        if not interpolation:
            interpolation = "idpp"
        '''Read the geometry'''
        if self.filename:
            filename = self.filename
        else:
            filename = initial.get_chemical_formula()
            self.filename = filename

        counter, subdirectory_name = self._restart_setup("TS",
                                                         filename,
                                                         restart=restart,
                                                         verbose=verbose)
        if os.path.exists(
                os.path.join(subdirectory_name[:-1] + str(counter - 1),
                             "ML-NEB.traj")):
            previously_converged_ts_search = os.path.join(
                subdirectory_name[:-1] + str(counter - 1), "ML-NEB.traj")
            print("TS search already converged at",
                  previously_converged_ts_search)

            neb = read(previously_converged_ts_search + "@:")
            self.ts = sorted(neb,
                             key=lambda k: k.get_potential_energy(),
                             reverse=True)[0]
            os.chdir(parent_dir)

            return self.ts

        elif input_check:
            '''Ensure input is converged'''
            if not is_converged(initial, input_check):
                self.filename += "_initial"
                initial = self.aims_optimise(initial,
                                             input_check,
                                             restart=True,
                                             verbose=False)[0]
            if not is_converged(final, input_check):
                self.filename = filename + "_final"
                final = self.aims_optimise(final,
                                           input_check,
                                           restart=True,
                                           verbose=False)[0]
            '''Set original name after input check is complete'''
            self.filename = filename

        out = str(counter) + "_" + str(filename) + ".out"
        '''Let the user restart from alternative file or Atoms object'''
        if prev_calcs:
            self.prev_calcs = prev_calcs

        os.makedirs(subdirectory_name, exist_ok=True)
        os.chdir(subdirectory_name)
        '''Create the sockets calculator - using a with statement means the object is closed at the end.'''
        with _calc_generator(params, out_fn=out,
                             dimensions=dimensions)[0] as calculator:
            if self.dry_run:
                calculator = EMT()
            iterations = 0
            while not os.path.exists('ML-NEB.traj'):
                if iterations > 0:
                    self.prev_calcs = read("last_predicted_path.traj@:")
                    interpolation = self.prev_calcs
                '''Setup the Catlearn object for MLNEB'''
                neb_catlearn = MLNEB(start=initial,
                                     end=final,
                                     ase_calc=calculator,
                                     n_images=n,
                                     interpolation=interpolation,
                                     neb_method="improvedtangent",
                                     prev_calculations=self.prev_calcs,
                                     mic=True,
                                     restart=restart)
                if not self.dry_run:
                    '''Run the NEB optimisation. Adjust fmax to desired convergence criteria, usually 0.05 eV/A'''
                    neb_catlearn.run(fmax=fmax,
                                     unc_convergence=unc,
                                     trajectory='ML-NEB.traj',
                                     ml_steps=75,
                                     sequential=False,
                                     steps=40)

                    iterations += 1
                else:
                    os.chdir(parent_dir)
                    return None
        '''Find maximum energy, i.e. transition state to return it'''
        neb = read("ML-NEB.traj@:")
        self.ts = sorted(neb,
                         key=lambda k: k.get_potential_energy(),
                         reverse=True)[0]
        os.chdir(parent_dir)

        return self.ts
Exemplo n.º 13
0
    image.set_constraint(constraint)
    images_ase.append(image)

images_ase.append(final_ase)

neb_ase = NEB(images_ase, climb=True)
neb_ase.interpolate(method='idpp')

qn_ase = BFGS(neb_ase, trajectory='neb_ase.traj')
qn_ase.run(fmax=0.05)

# 2.B. NEB using CatLearn

neb_catlearn = MLNEB(start='initial.traj',
                     end='final.traj',
                     ase_calc=EMT(),
                     n_images=n_images,
                     interpolation='idpp',
                     restart=False)

neb_catlearn.run(fmax=0.05, trajectory='ML-NEB.traj')

# 3. Summary of the results #################################################

# NEB ASE:
print('\nSummary of the results: \n')

atoms_ase = read('neb_ase.traj', ':')
n_eval_ase = int(len(atoms_ase) - 2 * (len(atoms_ase) / n_images))

print('Number of function evaluations CI-NEB implemented in ASE:', n_eval_ase)