Exemplo n.º 1
0
    def set_action_mode(self, action_mode):
        """
        Sets the action mode

        :param action_mode: (str) specifies the action mode of the robot.

        :return: None
        """
        self._action_mode = action_mode
        self._robot_actions = TriFingerAction(action_mode,
                                              self._normalize_actions)
Exemplo n.º 2
0
def as_jp_norm():
    return TriFingerAction(action_mode="joint_positions",
                           normalize_actions=True)
Exemplo n.º 3
0
def as_custom():
    return TriFingerAction(normalize_actions=False)
Exemplo n.º 4
0
def as_default():
    return TriFingerAction()
Exemplo n.º 5
0
def as_jt_full():
    return TriFingerAction(action_mode="joint_torques", normalize_actions=False)
Exemplo n.º 6
0
def as_jt_norm():
    return TriFingerAction(action_mode="joint_torques", normalize_actions=True)
Exemplo n.º 7
0
def as_jp_full():
    return TriFingerAction(action_mode="joint_positions",
                           normalize_actions=False)
Exemplo n.º 8
0
    def __init__(self,
                 action_mode,
                 observation_mode,
                 skip_frame,
                 normalize_actions,
                 normalize_observations,
                 simulation_time,
                 pybullet_client_full_id,
                 pybullet_client_w_goal_id,
                 pybullet_client_w_o_goal_id,
                 revolute_joint_ids,
                 finger_tip_ids,
                 cameras=None,
                 camera_indicies=np.array([0, 1, 2])):
        """
        This class provides the functionalities of the robot itself

        :param action_mode: (str) defines the action mode of the robot whether
                                  its joint_positions, end_effector_positions
                                  or joint_torques.
        :param observation_mode: (str) defines the observation mode of the robot
                                       if cameras or structured.
        :param skip_frame: (int) the low level controller is running @250Hz
                           which corresponds to skip frame of 1, a skip frame
                           of 250 corresponds to frequency of 1Hz
        :param normalize_actions: (bool) this is a boolean which specifies
                                         whether the actions passed to the step
                                         function are normalized or not.
        :param normalize_observations: (bool) this is a boolean which specifies
                                              whether the observations returned
                                              should be normalized or not.
        :param simulation_time: (float) the time for one action step in the pybullet
                                        simulation.
        :param pybullet_client_full_id: (int) pybullet client full mode id
        :param pybullet_client_w_goal_id: (int) pybullet client with goal mode id
        :param pybullet_client_w_o_goal_id: (int) pybullet client without goal mode id
        :param revolute_joint_ids: (list) joint ids in the urdf
        :param finger_tip_ids: (list) finger tip ids in the urdf
        :param cameras: (list) Camera objects list
        :param camera_indicies: (list) maximum of 3 elements where each element
                                       is from 0 to , specifies which cameras
                                       to return in the observations and the
                                       order as well.
        """
        self._pybullet_client_full_id = pybullet_client_full_id
        self._pybullet_client_w_goal_id = pybullet_client_w_goal_id
        self._pybullet_client_w_o_goal_id = pybullet_client_w_o_goal_id
        self._revolute_joint_ids = revolute_joint_ids
        self._finger_tip_ids = finger_tip_ids
        self._normalize_actions = normalize_actions
        self._normalize_observations = normalize_observations
        self._action_mode = action_mode
        self._observation_mode = observation_mode
        self._skip_frame = skip_frame
        self._simulation_time = simulation_time
        self._dt = self._simulation_time * self._skip_frame
        #TODO: for some reason this is needed
        self._control_index = -1
        self._position_gains = np.array([10.0, 10.0, 10.0] * 3)
        self._velocity_gains = np.array([0.1, 0.3, 0.001] * 3)
        self._safety_kd = np.array([0.08, 0.08, 0.04] * 3)
        self._max_motor_torque = 0.36
        self._robot_actions = TriFingerAction(action_mode, normalize_actions)
        if self._pybullet_client_w_goal_id is not None:
            self._set_finger_state_in_goal_image()
        self._tool_cameras = cameras
        self._camera_indicies = camera_indicies
        self._robot_observations = TriFingerObservations(
            observation_mode,
            normalize_observations,
            cameras=self._tool_cameras,
            camera_indicies=self._camera_indicies)
        self._last_action = None
        self._last_clipped_action = None
        if action_mode != "joint_torques":
            self._last_applied_joint_positions = None
        self._latest_full_state = None
        self._state_size = 18
        self._disable_velocity_control()
        return
Exemplo n.º 9
0
class TriFingerRobot(object):
    def __init__(self,
                 action_mode,
                 observation_mode,
                 skip_frame,
                 normalize_actions,
                 normalize_observations,
                 simulation_time,
                 pybullet_client_full_id,
                 pybullet_client_w_goal_id,
                 pybullet_client_w_o_goal_id,
                 revolute_joint_ids,
                 finger_tip_ids,
                 cameras=None,
                 camera_indicies=np.array([0, 1, 2])):
        """
        This class provides the functionalities of the robot itself

        :param action_mode: (str) defines the action mode of the robot whether
                                  its joint_positions, end_effector_positions
                                  or joint_torques.
        :param observation_mode: (str) defines the observation mode of the robot
                                       if cameras or structured.
        :param skip_frame: (int) the low level controller is running @250Hz
                           which corresponds to skip frame of 1, a skip frame
                           of 250 corresponds to frequency of 1Hz
        :param normalize_actions: (bool) this is a boolean which specifies
                                         whether the actions passed to the step
                                         function are normalized or not.
        :param normalize_observations: (bool) this is a boolean which specifies
                                              whether the observations returned
                                              should be normalized or not.
        :param simulation_time: (float) the time for one action step in the pybullet
                                        simulation.
        :param pybullet_client_full_id: (int) pybullet client full mode id
        :param pybullet_client_w_goal_id: (int) pybullet client with goal mode id
        :param pybullet_client_w_o_goal_id: (int) pybullet client without goal mode id
        :param revolute_joint_ids: (list) joint ids in the urdf
        :param finger_tip_ids: (list) finger tip ids in the urdf
        :param cameras: (list) Camera objects list
        :param camera_indicies: (list) maximum of 3 elements where each element
                                       is from 0 to , specifies which cameras
                                       to return in the observations and the
                                       order as well.
        """
        self._pybullet_client_full_id = pybullet_client_full_id
        self._pybullet_client_w_goal_id = pybullet_client_w_goal_id
        self._pybullet_client_w_o_goal_id = pybullet_client_w_o_goal_id
        self._revolute_joint_ids = revolute_joint_ids
        self._finger_tip_ids = finger_tip_ids
        self._normalize_actions = normalize_actions
        self._normalize_observations = normalize_observations
        self._action_mode = action_mode
        self._observation_mode = observation_mode
        self._skip_frame = skip_frame
        self._simulation_time = simulation_time
        self._dt = self._simulation_time * self._skip_frame
        #TODO: for some reason this is needed
        self._control_index = -1
        self._position_gains = np.array([10.0, 10.0, 10.0] * 3)
        self._velocity_gains = np.array([0.1, 0.3, 0.001] * 3)
        self._safety_kd = np.array([0.08, 0.08, 0.04] * 3)
        self._max_motor_torque = 0.36
        self._robot_actions = TriFingerAction(action_mode, normalize_actions)
        if self._pybullet_client_w_goal_id is not None:
            self._set_finger_state_in_goal_image()
        self._tool_cameras = cameras
        self._camera_indicies = camera_indicies
        self._robot_observations = TriFingerObservations(
            observation_mode,
            normalize_observations,
            cameras=self._tool_cameras,
            camera_indicies=self._camera_indicies)
        self._last_action = None
        self._last_clipped_action = None
        if action_mode != "joint_torques":
            self._last_applied_joint_positions = None
        self._latest_full_state = None
        self._state_size = 18
        self._disable_velocity_control()
        return

    def get_link_names(self):
        """
        :return: (list) returns the link names in the urdf
        """
        return WorldConstants.LINK_IDS

    def get_control_index(self):
        """

        :return: (int) returns the current control index
        """
        return self._control_index

    def get_full_env_state(self):
        """

        :return: returns the current state variables and their values in the
                 environment wrt to the robot.
        """
        return self.get_current_variable_values()

    def set_full_env_state(self, env_state):
        """
        This function is used to set the env state through interventions on
        the environment itself

        :param env_state: (dict) specifies the state variables and its values
                                 to intervene on.

        :return: None
        """
        self.apply_interventions(env_state)
        return

    def update_latest_full_state(self):
        """
        Updates the latest full state in terms of joint positions, velocities,
        torques..etc

        :return: None
        """
        if self._pybullet_client_full_id is not None:
            current_joint_states = pybullet.\
                getJointStates(
                WorldConstants.ROBOT_ID, self._revolute_joint_ids,
                 physicsClientId=self._pybullet_client_full_id
            )
        else:
            current_joint_states = pybullet.\
                getJointStates(
                WorldConstants.ROBOT_ID, self._revolute_joint_ids,
                 physicsClientId=self._pybullet_client_w_o_goal_id
            )
        current_position = np.array(
            [joint[0] for joint in current_joint_states])
        current_velocity = np.array(
            [joint[1] for joint in current_joint_states])
        current_torques = np.array(
            [joint[3] for joint in current_joint_states])
        self._latest_full_state = {
            'positions':
            current_position,
            'velocities':
            current_velocity,
            'torques':
            current_torques,
            'end_effector_positions':
            self._compute_end_effector_positions(current_position)
        }

        return

    def compute_pd_control_torques(self, joint_positions):
        """
        Compute torque command to reach given target position using a PD
        controller.

        :param joint_positions: (list) Desired joint positions.

        :return: (list) torques to be sent to the joints of the finger in order to
            reach the specified joint_positions.
        """
        position_error = joint_positions - self._latest_full_state['positions']
        position_feedback = np.asarray(self._position_gains) * \
                            position_error
        velocity_feedback = np.asarray(self._velocity_gains) * \
                            self._latest_full_state['velocities']
        joint_torques = position_feedback - velocity_feedback
        return joint_torques

    def set_action_mode(self, action_mode):
        """
        Sets the action mode

        :param action_mode: (str) specifies the action mode of the robot.

        :return: None
        """
        self._action_mode = action_mode
        self._robot_actions = TriFingerAction(action_mode,
                                              self._normalize_actions)

    def get_joint_positions_raised(self):
        """
        :return: (list) returns the upper joint positions limit.
        """
        return self._robot_actions.joint_positions_raised

    def get_action_mode(self):
        """

        :return: (str) returns the current action mode.
        """
        return self._action_mode

    def set_observation_mode(self, observation_mode):
        """
        Sets the observation mode

        :param observation_mode: (str) sets the observation mode of the robot
                                       itself.

        :return: None
        """
        self._observation_mode = observation_mode
        self._robot_observations = \
            TriFingerObservations(observation_mode,
                                  self._normalize_observations,
                                  cameras=self._tool_cameras,
                                  camera_indicies=self._camera_indicies)
        return

    def get_observation_mode(self):
        """

        :return: (str) returns the observation mode of the robot.
        """
        return self._observation_mode

    def get_skip_frame(self):
        """

        :return: (int) returns the current skip frame.
        """
        return self._skip_frame

    def get_full_state(self):
        """

        :return: (nd.array) return the positions and velocities of the three
                            fingers concatenated.
        """
        return np.append(self._latest_full_state['positions'],
                         self._latest_full_state['velocities'])

    def set_full_state(self, state):
        """

        :param state: (nd.array) sets the positions and velocities, shape (18,).
        :return: None
        """
        self._set_finger_state(state[:9], state[9:])
        # here the previous actions will all be zeros to
        # avoid dealing with different action modes for now
        self._last_action = np.zeros(9, )
        self._last_clipped_action = np.zeros(9, )
        if self._action_mode != "joint_torques":
            self._last_applied_joint_positions = list(state[:9])
        return

    def get_last_action(self):
        """

        :return: (nd.array) returns the last action passed to the robot.
        """
        return self._last_action

    def get_last_clipped_action(self):
        """

        :return: (nd.array) returns the last clipped action passed to the
                            robot, based on the range of the action space.
        """
        return self._last_clipped_action

    def get_last_applied_joint_positions(self):
        """

        :return: (nd.array) returns the last applied joint positions passed to
                            the pd controller. This is not valid if the action
                            mode is "joint_torques".
        """
        return self._last_applied_joint_positions

    def get_observation_spaces(self):
        """

        :return: (gym.Spaces) returns the current observation space of the
                              robot.
        """
        return self._robot_observations.get_observation_spaces()

    def get_action_spaces(self):
        """

        :return: (gym.Spaces) returns the current action space of the
                              robot.
        """
        return self._robot_actions.get_action_space()

    def get_state_size(self):
        """

        :return: (int) returns the state size of the robot, mainly joint
                       positions and joint velocities that defines the state
                       of the robot, ignoring interventions.
        """
        return self._state_size

    def step_simulation(self):
        """
        steps through the simulation function of the pybullet backend.

        :return:
        """
        if self._pybullet_client_full_id is not None:
            pybullet.stepSimulation(
                physicsClientId=self._pybullet_client_full_id)
        if self._pybullet_client_w_o_goal_id is not None:
            pybullet.stepSimulation(
                physicsClientId=self._pybullet_client_w_o_goal_id)
        self.update_latest_full_state()
        return

    def apply_action(self, action):
        """
        Applied the passed action to the robot.

        :param action: (nd.array) the action to be applied. Should adhere to
                                  the action_mode.
        :return: None.
        """
        self._control_index += 1
        clipped_action = self._robot_actions.clip_action(action)
        action_to_apply = clipped_action
        if self._normalize_actions:
            action_to_apply = self._robot_actions.denormalize_action(
                clipped_action)
        if self._action_mode == "joint_positions":
            self._last_applied_joint_positions = action_to_apply
            for _ in range(self._skip_frame):
                desired_torques = \
                    self.compute_pd_control_torques(action_to_apply)
                self.send_torque_commands(
                    desired_torque_commands=desired_torques)
                self.step_simulation()
        elif self._action_mode == "joint_torques":
            for _ in range(self._skip_frame):
                self.send_torque_commands(
                    desired_torque_commands=action_to_apply)
                self.step_simulation()
        elif self._action_mode == "end_effector_positions":
            #TODO: just a hack since IK is not stable
            if np.isclose(self._latest_full_state['end_effector_positions'],
                          action_to_apply).all():
                joint_positions = self._last_applied_joint_positions
            else:
                joint_positions = self.get_joint_positions_from_tip_positions\
                    (action_to_apply, list(self._latest_full_state['positions']))
            self._last_applied_joint_positions = joint_positions
            for _ in range(self._skip_frame):
                desired_torques = \
                    self.compute_pd_control_torques(joint_positions)
                self.send_torque_commands(
                    desired_torque_commands=desired_torques)
                self.step_simulation()
        else:
            raise Exception("The action mode {} is not supported".format(
                self._action_mode))
        self._last_action = action
        self._last_clipped_action = clipped_action
        return

    def get_dt(self):
        """

        :return: (float) returns the current dt of one step. How much time is
                         equivilant to one step function.
        """
        return self._dt

    def get_latest_full_state(self):
        """

        :return: (dict) returns a dict with joint velocities, joint positions and joint torques
                         of the robot.
        """
        return self._latest_full_state

    def send_torque_commands(self, desired_torque_commands):
        """

        :param desired_torque_commands: (nd.array) the desired torque commands to be applied
                                                   to the robot.

        :return: (nd.array) the actual torque commands sent to the robot after applying a safety
                            check.
        """
        torque_commands = self._safety_torque_check(desired_torque_commands)
        if self._pybullet_client_w_o_goal_id is not None:
            pybullet.setJointMotorControlArray(
                bodyUniqueId=WorldConstants.ROBOT_ID,
                jointIndices=self._revolute_joint_ids,
                controlMode=pybullet.TORQUE_CONTROL,
                forces=torque_commands,
                physicsClientId=self._pybullet_client_w_o_goal_id)
        if self._pybullet_client_full_id is not None:
            pybullet.setJointMotorControlArray(
                bodyUniqueId=WorldConstants.ROBOT_ID,
                jointIndices=self._revolute_joint_ids,
                controlMode=pybullet.TORQUE_CONTROL,
                forces=torque_commands,
                physicsClientId=self._pybullet_client_full_id)
        return torque_commands

    def _safety_torque_check(self, desired_torques):
        """

        :param desired_torques: (nd.array) the desired torque commands to be applied
                                            to the robot.

        :return: (nd.array) the modified torque commands after applying a safety check.
        """
        applied_torques = np.clip(
            np.asarray(desired_torques),
            -self._max_motor_torque,
            +self._max_motor_torque,
        )
        applied_torques -= self._safety_kd * self._latest_full_state[
            'velocities']

        applied_torques = list(
            np.clip(
                np.asarray(applied_torques),
                -self._max_motor_torque,
                +self._max_motor_torque,
            ))

        return applied_torques

    def inverse_kinematics(self, desired_tip_positions, rest_pose):
        """

        :param desired_tip_positions: (list) desired tip positions in world frame.
        :param rest_pose: (list) initial inverse kinemetics solution to start from.

        :return:
        """
        desired = np.array(desired_tip_positions)
        desired[2] += WorldConstants.FLOOR_HEIGHT
        desired[5] += WorldConstants.FLOOR_HEIGHT
        desired[8] += WorldConstants.FLOOR_HEIGHT
        if self._pybullet_client_w_o_goal_id is not None:
            client = self._pybullet_client_w_o_goal_id
        else:
            client = self._pybullet_client_full_id
        joint_pos = np.zeros([9])
        finger_tip_ids = self._finger_tip_ids
        final_joint_pose = pybullet.calculateInverseKinematics2(
            WorldConstants.ROBOT_ID,
            [finger_tip_ids[0], finger_tip_ids[1], finger_tip_ids[2]],
            [desired[0:3], desired[3:6], desired[6:]],
            solver=pybullet.IK_DLS,
            currentPositions=rest_pose,
            physicsClientId=client)
        joint_pos[:3] = final_joint_pose[:3]
        final_joint_pose = pybullet.calculateInverseKinematics2(
            WorldConstants.ROBOT_ID,
            [finger_tip_ids[1], finger_tip_ids[0], finger_tip_ids[2]],
            [desired[3:6], desired[0:3], desired[6:]],
            solver=pybullet.IK_DLS,
            currentPositions=rest_pose,
            physicsClientId=client)
        joint_pos[3:6] = final_joint_pose[3:6]
        final_joint_pose = pybullet.calculateInverseKinematics2(
            WorldConstants.ROBOT_ID,
            [finger_tip_ids[2], finger_tip_ids[0], finger_tip_ids[1]],
            [desired[6:], desired[0:3], desired[3:6]],
            solver=pybullet.IK_DLS,
            currentPositions=rest_pose,
            physicsClientId=client)
        joint_pos[6:] = final_joint_pose[6:]
        if np.isnan(joint_pos).any():
            joint_pos = rest_pose
        return joint_pos

    def get_joint_positions_from_tip_positions(self,
                                               tip_positions,
                                               default_pose=None):
        """

        :param tip_positions: (list) desired tip positions in world frame.
        :param default_pose: (list) initial inverse kinemetics solution to start from.

        :return:
        """
        tip_positions[2] += WorldConstants.FLOOR_HEIGHT
        tip_positions[5] += WorldConstants.FLOOR_HEIGHT
        tip_positions[8] += WorldConstants.FLOOR_HEIGHT
        if default_pose is None:
            positions = self.inverse_kinematics(tip_positions,
                                                list(self.get_rest_pose()[0]))
        else:
            positions = self.inverse_kinematics(tip_positions,
                                                list(default_pose))
        return positions

    def get_current_camera_observations(self):
        """

        :return: (nd.array) returns the current camera observations from the cameras selected on the robot
                            in case the observation mode was "pixel"
        """
        return self._robot_observations.get_current_camera_observations()

    def get_rest_pose(self):
        """
        :return: (tuple) returns the rest pose that the robot usually start from, the first in the tuple
                         being the joint positions and the second is the end effector positions.
        """
        deg45 = np.pi / 4
        positions = [0, deg45, -deg45]
        joint_positions = positions * 3
        end_effector_positions = [
            0.05142966, 0.03035857, 0.32112874, 0.00057646, -0.05971867,
            0.32112874, -0.05200612, 0.02936011, 0.32112874
        ]
        return joint_positions, end_effector_positions

    def get_default_state(self):
        """

        :return: (nd.array) returns the default state of the robot, (18,) first 9 positions occupy the
                            joint positions and the second 9 positions occupy the joint velocities which is zero.
        """
        return np.append(self.get_rest_pose()[0], np.zeros(9))

    def get_current_variable_values(self):
        """

        :return: (dict) returns all the exposed variables in the environment along with their
                        corresponding values.
        """
        # TODO: not a complete list yet of what we want to expose
        variable_params = dict()
        variable_params['joint_positions'] = self._latest_full_state[
            'positions']
        variable_params['control_index'] = self._control_index
        variable_params['joint_velocities'] = self._latest_full_state[
            'velocities']
        if self._pybullet_client_w_o_goal_id is not None:
            client = self._pybullet_client_w_o_goal_id
        else:
            client = self._pybullet_client_full_id
        position, _ = pybullet. \
            getBasePositionAndOrientation(WorldConstants.ROBOT_ID,
                                          physicsClientId=
                                          client)
        variable_params[
            'robot_height'] = position[-1] + WorldConstants.ROBOT_HEIGHT
        for robot_finger_link in WorldConstants.LINK_IDS:
            variable_params[robot_finger_link] = dict()
            variable_params[robot_finger_link]['color'] = \
                pybullet.getVisualShapeData(WorldConstants.ROBOT_ID,
                                            physicsClientId=client)\
                       [WorldConstants.VISUAL_SHAPE_IDS[robot_finger_link]][7][:3]
            variable_params[robot_finger_link]['mass'] = \
                pybullet.getDynamicsInfo(WorldConstants.ROBOT_ID,
                                         WorldConstants.LINK_IDS[robot_finger_link],
                                         physicsClientId=client)[0]
        return variable_params

    def get_current_observations(self, helper_keys):
        """

        :param helper_keys: (list) list of observation keys not part of the default observation space but needed
                                    to compute part of a reward function or to compute custom observations.

        :return: (dict) returns the full observations of the robot itself with the values of the helper keys
                        as well.
        """
        return self._robot_observations.get_current_observations(
            self._latest_full_state, helper_keys)

    def _compute_end_effector_positions(self, joint_positions):
        """

        :param joint_positions: (nd.array) the current joint positions of the robot (not used for now, might be used
                                            for pinnochio)

        :return: (nd.array) the current end effector positions of the robot.
        """
        result = np.array([])
        if self._pybullet_client_full_id is not None:
            position_1 = pybullet.getLinkState(
                WorldConstants.ROBOT_ID,
                linkIndex=5,
                computeForwardKinematics=True,
                physicsClientId=self._pybullet_client_full_id)
            position_2 = pybullet.getLinkState(
                WorldConstants.ROBOT_ID,
                linkIndex=10,
                computeForwardKinematics=True,
                physicsClientId=self._pybullet_client_full_id)
            position_3 = pybullet.getLinkState(
                WorldConstants.ROBOT_ID,
                linkIndex=15,
                computeForwardKinematics=True,
                physicsClientId=self._pybullet_client_full_id)
        else:
            position_1 = pybullet.getLinkState(
                WorldConstants.ROBOT_ID,
                linkIndex=5,
                computeForwardKinematics=True,
                physicsClientId=self._pybullet_client_w_o_goal_id)
            position_2 = pybullet.getLinkState(
                WorldConstants.ROBOT_ID,
                linkIndex=10,
                computeForwardKinematics=True,
                physicsClientId=self._pybullet_client_w_o_goal_id)
            position_3 = pybullet.getLinkState(
                WorldConstants.ROBOT_ID,
                linkIndex=15,
                computeForwardKinematics=True,
                physicsClientId=self._pybullet_client_w_o_goal_id)
        result = np.append(result, position_1[0])
        result = np.append(result, position_2[0])
        result = np.append(result, position_3[0])
        result[2] -= WorldConstants.FLOOR_HEIGHT
        result[5] -= WorldConstants.FLOOR_HEIGHT
        result[-1] -= WorldConstants.FLOOR_HEIGHT
        return result

    def _process_action_joint_positions(self, robot_state):
        """
        This returns the absolute joint positions command sent in position control mode
        (end effector and joint positions), this observation shouldnt be used in torque control

        :param robot_state: (dict) the current robot state.

        :return: (nd.array) returns te last joint actions applied to be sued as part
                            of the observations.
        """
        last_joints_action_applied = self.get_last_applied_joint_positions()
        if self._normalize_observations:
            last_joints_action_applied = self.normalize_observation_for_key(
                observation=last_joints_action_applied,
                key='action_joint_positions')
        return last_joints_action_applied

    def clear(self):
        """
        clears the robot for a reset for instance.

        :return: None.
        """
        self._last_action = np.zeros(9, )
        self._last_clipped_action = np.zeros(9, )
        self._last_applied_joint_positions = \
            self._latest_full_state['positions']
        self._control_index = -1
        return

    def reset_state(self,
                    joint_positions=None,
                    joint_velocities=None,
                    end_effector_positions=None):
        """

        :param joint_positions: (nd.array) the joint positions for the root to be reset in.
        :param joint_velocities: (nd.array) the joint velocities for the root to be reset in.
        :param end_effector_positions: (nd.array) the end effector positions for the root to be reset in,
                                                  this shouldn't be used in combination with the other args.

        :return:
        """
        self._latest_full_state = None
        self._control_index = -1
        if end_effector_positions is not None:
            joint_positions = self.get_joint_positions_from_tip_positions(
                end_effector_positions, list(self.get_rest_pose()[0]))
        if joint_positions is None:
            joint_positions = list(self.get_rest_pose()[0])
        if joint_velocities is None:
            joint_velocities = np.zeros(9)
        self._set_finger_state(joint_positions, joint_velocities)
        #here the previous actions will all be zeros to avoid dealing with different action modes for now
        self._last_action = np.zeros(9, )
        self._last_clipped_action = np.zeros(9, )
        if self._action_mode != "joint_torques":
            self._last_applied_joint_positions = list(joint_positions)
        return

    def sample_joint_positions(self, sampling_strategy="uniform"):
        """

        :param sampling_strategy: (str) this only supports "uniform" strategy for now.

        :return: (nd.array) returns the sampled joint positions.
        """
        if sampling_strategy == "uniform":
            positions = np.random.uniform(
                self._robot_actions.joint_positions_lower_bounds,
                self._robot_actions.joint_positions_upper_bounds)
        else:
            raise Exception("not yet implemented")
        return positions

    def sample_end_effector_positions(self, sampling_strategy="middle_stage"):
        """

        :param sampling_strategy: (str) this only supports "middle_stage" strategy for now.

        :return: (nd.array) returns the sampled end effector positions.
        """
        if sampling_strategy == "middle_stage":
            tip_positions = np.random.uniform(
                [0.1, 0.1, 0.15, 0.1, -0.15, 0.15, -0.15, -0.15, 0.15],
                [0.15, 0.15, 0.15, 0.15, -0.1, 0.15, -0.1, -0.1, 0.15])
        else:
            raise Exception("not yet implemented")
        return tip_positions

    def forward_simulation(self, time=1):
        """

        :param time: (float) forwards the simulation by the time specified.

        :return:
        """
        old_action_mode = self.get_action_mode()
        self.set_action_mode('joint_positions')
        n_steps = int(time / self._simulation_time)
        action_to_apply = self._latest_full_state['positions']
        for _ in range(n_steps):
            desired_torques = self.compute_pd_control_torques(action_to_apply)
            self.send_torque_commands(desired_torque_commands=desired_torques)
            self.step_simulation()
        self.set_action_mode(old_action_mode)
        return

    def select_observations(self, observation_keys):
        """

        :param observation_keys: (list) the observations keys for the robot to be added
                                        in the observation space itself.

        :return: None.
        """
        self._robot_observations.reset_observation_keys()
        for key in observation_keys:
            if key == "action_joint_positions":
                self._robot_observations.add_observation(
                    "action_joint_positions",
                    observation_fn=self._process_action_joint_positions)
            else:
                self._robot_observations.add_observation(key)
        return

    def close(self):
        """
        closes the pybullet clients connected.

        :return: None.
        """
        if self._pybullet_client_full_id is not None:
            pybullet.disconnect(physicsClientId=self._pybullet_client_full_id)
        if self._pybullet_client_w_o_goal_id is not None:
            pybullet.disconnect(
                physicsClientId=self._pybullet_client_w_o_goal_id)
        if self._pybullet_client_w_goal_id is not None:
            pybullet.disconnect(
                physicsClientId=self._pybullet_client_w_goal_id)
        return

    def add_observation(self,
                        observation_key,
                        lower_bound=None,
                        upper_bound=None,
                        observation_fn=None):
        """

        :param observation_key: (str) observation name to be added.
        :param lower_bound: (nd.array) the lower bound of this observation when added to the space unnormalized.
        :param upper_bound: (nd.array) the upper bound of this observation when added to the space unnormalized.
        :param observation_fn: (function) a callable function that when passed the robot stat, it calculates
                                          this custom observation.

        :return: None.
        """
        self._robot_observations.add_observation(observation_key, lower_bound,
                                                 upper_bound, observation_fn)
        return

    def normalize_observation_for_key(self, observation, key):
        """

        :param observation: (nd.array) the observation to be normalized.
        :param key: (str) the key corresponding to this observation.

        :return: (nd.array) observation after normalization.
        """
        return self._robot_observations.normalize_observation_for_key(
            observation, key)

    def denormalize_observation_for_key(self, observation, key):
        """

        :param observation: (nd.array) the observation to be denormalized.
        :param key: (str) the key corresponding to this observation.

        :return: (nd.array) observation after de-normalization.
        """
        return self._robot_observations.denormalize_observation_for_key(
            observation, key)

    def apply_interventions(self, interventions_dict):
        """

        :param interventions_dict: (dict) a dictionary specifying which variables and values for a do intervention
                                          on variables that belong to the robot only.

        :return: None.
        """
        #TODO: add friction of each link
        old_state = self.get_full_state()
        if "joint_positions" in interventions_dict:
            new_joint_positions = interventions_dict["joint_positions"]
        else:
            new_joint_positions = old_state[:9]
        if "joint_velocities" in interventions_dict:
            new_joint_velcoities = interventions_dict["joint_velocities"]
        else:
            new_joint_velcoities = old_state[9:]

        if "joint_positions" in interventions_dict or \
                "joint_velocities" in interventions_dict:
            self._set_finger_state(new_joint_positions, new_joint_velcoities)
            self._last_action = np.zeros(9, )
            self._last_clipped_action = np.zeros(9, )
            if self._action_mode != "joint_torques":
                self._last_applied_joint_positions = list(new_joint_positions)
        for intervention in interventions_dict:
            if intervention == "joint_velocities" or \
                    intervention == "joint_positions":
                continue
            if intervention == 'robot_height':
                if self._pybullet_client_w_goal_id is not None:
                    pybullet.resetBasePositionAndOrientation(
                        WorldConstants.ROBOT_ID, [
                            0, 0, interventions_dict[intervention] -
                            WorldConstants.ROBOT_HEIGHT
                        ], [0, 0, 0, 1],
                        physicsClientId=self._pybullet_client_w_goal_id)
                if self._pybullet_client_w_o_goal_id is not None:
                    pybullet.resetBasePositionAndOrientation(
                        WorldConstants.ROBOT_ID, [
                            0, 0, interventions_dict[intervention] -
                            WorldConstants.ROBOT_HEIGHT
                        ], [0, 0, 0, 1],
                        physicsClientId=self._pybullet_client_w_o_goal_id)
                if self._pybullet_client_full_id is not None:
                    pybullet.resetBasePositionAndOrientation(
                        WorldConstants.ROBOT_ID, [
                            0, 0, interventions_dict[intervention] -
                            WorldConstants.ROBOT_HEIGHT
                        ], [0, 0, 0, 1],
                        physicsClientId=self._pybullet_client_full_id)
                self.update_latest_full_state()
                continue
            if "robot_finger" in intervention:
                for sub_intervention_variable in \
                        interventions_dict[intervention]:
                    if sub_intervention_variable == 'color':
                        if self._pybullet_client_w_goal_id is not None:
                            pybullet.changeVisualShape(
                                WorldConstants.ROBOT_ID,
                                WorldConstants.LINK_IDS[intervention],
                                rgbaColor=np.append(
                                    interventions_dict[intervention]
                                    [sub_intervention_variable], 1),
                                physicsClientId=self._pybullet_client_w_goal_id
                            )
                        if self._pybullet_client_w_o_goal_id is not None:
                            pybullet.changeVisualShape(
                                WorldConstants.ROBOT_ID,
                                WorldConstants.LINK_IDS[intervention],
                                rgbaColor=np.append(
                                    interventions_dict[intervention]
                                    [sub_intervention_variable], 1),
                                physicsClientId=self.
                                _pybullet_client_w_o_goal_id)
                        if self._pybullet_client_full_id is not None:
                            pybullet.changeVisualShape(
                                WorldConstants.ROBOT_ID,
                                WorldConstants.LINK_IDS[intervention],
                                rgbaColor=np.append(
                                    interventions_dict[intervention]
                                    [sub_intervention_variable], 1),
                                physicsClientId=self._pybullet_client_full_id)
                    elif sub_intervention_variable == 'mass':
                        if self._pybullet_client_w_o_goal_id is not None:
                            pybullet.changeDynamics \
                                (WorldConstants.ROBOT_ID,
                                 WorldConstants.LINK_IDS[intervention], mass=
                                 interventions_dict[intervention]
                                 [sub_intervention_variable],
                                 physicsClientId=self._pybullet_client_w_o_goal_id)
                        if self._pybullet_client_full_id is not None:
                            pybullet.changeDynamics \
                                (WorldConstants.ROBOT_ID,
                                 WorldConstants.LINK_IDS[intervention], mass=
                                 interventions_dict[intervention]
                                 [sub_intervention_variable],
                                 physicsClientId=self._pybullet_client_full_id)
                    else:
                        raise Exception(
                            "The intervention state variable specified is "
                            "not allowed")
            elif intervention == "control_index":
                self._control_index = interventions_dict["control_index"]
            else:
                raise Exception(
                    "The intervention state variable specified is "
                    "not allowed", intervention)
        return

    def check_feasibility_of_robot_state(self):
        """
        This function checks the feasibility of the current state of the robot
        (i.e checks if its in penetration with anything now

        :return: (bool) A boolean indicating whether the robot is in a collision state
                        or not.
        """
        if self._pybullet_client_full_id is not None:
            client = self._pybullet_client_full_id
        else:
            client = self._pybullet_client_w_o_goal_id
        for contact in pybullet.getContactPoints(physicsClientId=client):
            if (contact[1] == WorldConstants.ROBOT_ID or
                contact[2] == WorldConstants.ROBOT_ID) and \
                    contact[8] < -0.0095:
                return False
        return True

    def is_self_colliding(self):
        """

        :return: (bool) A boolean indicating whether the robot is self colliding with itself.
        """
        if self._pybullet_client_full_id is not None:
            client = self._pybullet_client_full_id
        else:
            client = self._pybullet_client_w_o_goal_id
        for contact in pybullet.getContactPoints(physicsClientId=client):
            if contact[1] == WorldConstants.ROBOT_ID and \
                    contact[2] == WorldConstants.ROBOT_ID:
                return True
        return False

    def is_colliding_with_stage(self):
        """

        :return: (bool) A boolean indicating whether the robot is colliding with the stage.
        """
        if self._pybullet_client_full_id is not None:
            client = self._pybullet_client_full_id
        else:
            client = self._pybullet_client_w_o_goal_id
        for contact in pybullet.getContactPoints(physicsClientId=client):
            if (contact[1] == WorldConstants.ROBOT_ID and contact[2]
                == WorldConstants.STAGE_ID) or \
                    (contact[2] == WorldConstants.ROBOT_ID and contact[1]
                     == WorldConstants.STAGE_ID):
                return True
        return False

    def is_in_contact_with_block(self, block):
        """

        :param block: (causal_world.envs.RigidObject) rigid object to query collision with the robot.

        :return: (bool) A boolean indicating whether the robot is colliding with block passed.
        """
        if self._pybullet_client_full_id is not None:
            client = self._pybullet_client_full_id
        else:
            client = self._pybullet_client_w_o_goal_id
        for contact in pybullet.getContactPoints(physicsClientId=client):
            if (contact[1] == WorldConstants.ROBOT_ID and
                contact[2] == block._block_ids[0]) or \
                    (contact[2] == WorldConstants.ROBOT_ID and
                     contact[1] == block._block_ids[0]):
                return True
        return False

    def get_normal_interaction_force_with_block(self, block,
                                                finger_tip_number):
        """

        :param block: (causal_world.envs.RigidObject) rigid object to query collision with the robot.
        :param finger_tip_number: (int) should be 60, 120 or 300.

        :return: (float) returns the normal interaction force between the block and the finger tip or None
                         if no interaction exists.
        """
        # TODO: doesnt account for several contacts per body
        if self._pybullet_client_full_id is not None:
            client = self._pybullet_client_full_id
        else:
            client = self._pybullet_client_w_o_goal_id
        if finger_tip_number == 60:
            idx = WorldConstants.LINK_IDS['robot_finger_60_link_3']
        elif finger_tip_number == 120:
            idx = WorldConstants.LINK_IDS['robot_finger_120_link_3']
        elif finger_tip_number == 300:
            idx = WorldConstants.LINK_IDS['robot_finger_300_link_3']
        else:
            raise Exception("finger tip number doesnt exist")

        for contact in pybullet.getContactPoints(physicsClientId=client):
            if (contact[1] == WorldConstants.ROBOT_ID and
                contact[2] == block._block_ids[0]) or \
                    (contact[2] == WorldConstants.ROBOT_ID
                     and contact[1] == block._block_ids[0]):
                return contact[9] * np.array(contact[7])
            for contact in pybullet.getContactPoints(physicsClientId=client):
                if (contact[1] == WorldConstants.ROBOT_ID
                    and contact[2] == block._block_ids[0]
                    and contact[3] == idx) or  \
                        (contact[2] == WorldConstants.ROBOT_ID
                         and contact[1] == block._block_ids[0]
                     and contact[4] == idx):
                    return contact[9] * np.array(contact[7])
        return None

    def get_tip_contact_states(self):
        """

        :return: (list) returns a list of 3, 0 if open and 1 is closed (i.e 0 when the correpsonding finger tip
                        is not in contact with anything and 1 otherwise).
        """
        #TODO: only support open and closed states (should support slipping too)
        if self._pybullet_client_w_o_goal_id is not None:
            client = self._pybullet_client_w_o_goal_id is not None
        else:
            client = self._pybullet_client_full_id
        contact_tips = [0, 0, 0]  #all are open
        for contact in pybullet.getContactPoints(physicsClientId=client):
            if contact[1] == WorldConstants.ROBOT_ID:
                if contact[3] == WorldConstants.LINK_IDS[
                        'robot_finger_60_link_3']:
                    contact_tips[0] = 1
                elif contact[3] == WorldConstants.LINK_IDS[
                        'robot_finger_120_link_3']:
                    contact_tips[1] = 1
                elif contact[3] == WorldConstants.LINK_IDS[
                        'robot_finger_300_link_3']:
                    contact_tips[2] = 1
            elif contact[2] == WorldConstants.ROBOT_ID:
                if contact[4] == WorldConstants.LINK_IDS[
                        'robot_finger_60_link_3']:
                    contact_tips[0] = 1
                elif contact[4] == WorldConstants.LINK_IDS[
                        'robot_finger_180_link_3']:
                    contact_tips[1] = 1
                elif contact[4] == WorldConstants.LINK_IDS[
                        'robot_finger_300_link_3']:
                    contact_tips[2] = 1
        return contact_tips

    def _disable_velocity_control(self):
        """
        To disable the high friction velocity motors created by
        default at all revolute and prismatic joints while loading them from
        the urdf.

        :return: None
        """
        if self._pybullet_client_full_id is not None:
            pybullet.setJointMotorControlArray(
                bodyUniqueId=WorldConstants.ROBOT_ID,
                jointIndices=self._revolute_joint_ids,
                controlMode=pybullet.VELOCITY_CONTROL,
                targetVelocities=[0] * len(self._revolute_joint_ids),
                forces=[0] * len(self._revolute_joint_ids),
                physicsClientId=self._pybullet_client_full_id)
        if self._pybullet_client_w_o_goal_id is not None:
            pybullet.setJointMotorControlArray(
                bodyUniqueId=WorldConstants.ROBOT_ID,
                jointIndices=self._revolute_joint_ids,
                controlMode=pybullet.VELOCITY_CONTROL,
                targetVelocities=[0] * len(self._revolute_joint_ids),
                forces=[0] * len(self._revolute_joint_ids),
                physicsClientId=self._pybullet_client_w_o_goal_id)
        return

    def _set_finger_state(self, joint_positions, joint_velocities=None):
        """

        :param joint_positions: (nd.array) joint positions for setting the finger state.
        :param joint_velocities: (nd.array) joint velocities for setting the finger state.

        :return: None.
        """
        if self._pybullet_client_full_id is not None:
            if joint_velocities is None:
                for i, joint_id in enumerate(self._revolute_joint_ids):
                    pybullet.resetJointState(
                        WorldConstants.ROBOT_ID,
                        joint_id,
                        joint_positions[i],
                        physicsClientId=self._pybullet_client_full_id)
            else:
                for i, joint_id in enumerate(self._revolute_joint_ids):
                    pybullet.resetJointState(
                        WorldConstants.ROBOT_ID,
                        joint_id,
                        joint_positions[i],
                        joint_velocities[i],
                        physicsClientId=self._pybullet_client_full_id)

        if self._pybullet_client_w_o_goal_id is not None:
            if joint_velocities is None:
                for i, joint_id in enumerate(self._revolute_joint_ids):
                    pybullet.resetJointState(
                        WorldConstants.ROBOT_ID,
                        joint_id,
                        joint_positions[i],
                        physicsClientId=self._pybullet_client_w_o_goal_id)
            else:
                for i, joint_id in enumerate(self._revolute_joint_ids):
                    pybullet.resetJointState(
                        WorldConstants.ROBOT_ID,
                        joint_id,
                        joint_positions[i],
                        joint_velocities[i],
                        physicsClientId=self._pybullet_client_w_o_goal_id)
        self.update_latest_full_state()
        return

    def _set_finger_state_in_goal_image(self):
        """
        raises the fingers in the goal image.

        :return:
        """
        joint_positions = \
            self._robot_actions.joint_positions_lower_bounds
        for i, joint_id in enumerate(self._revolute_joint_ids):
            pybullet.resetJointState(
                WorldConstants.ROBOT_ID,
                joint_id,
                joint_positions[i],
                physicsClientId=self._pybullet_client_w_goal_id)
        return