# Setup Astra Projector for the 3D volume
A3D = A3D_chan.A3D

# Regulariser parameter is the same for all channels
alpha = 0.01

# Reconstruct using FISTA algorithm and gpu option
inner_TV_iter = 50
tolerance = 1e-7
methodTV = 0  # (0 for isotropic TV, 1 for anisotropic TV)
nonnegativity_constraint = 1  # (0 is OFF, 1 is ON)
printing = 0  # (0 is OFF, 1 is ON)
device = 'gpu'  # or cpu

g = FGP_TV(alpha, inner_TV_iter, tolerance, methodTV, nonnegativity_constraint,
           printing, device)

x_init = A3D.volume_geometry.allocate()

# Allocate space for the channel-wise reconstruction
fista_sol_TV_channel_wise = A3D_chan.volume_geometry.allocate()

for i in range(ag.channels):

    # Setup L2NormSquarred fidelity term, for each channel
    f = FunctionOperatorComposition(
        0.5 * L2NormSquared(b=data.subset(channel=i)), A3D)

    # Run FISTA
    fista = FISTA(x_init=x_init, f=f, g=g)
    fista.max_iteration = 100
Exemplo n.º 2
0
def main():

    ###########################################################################
    # Parse input files
    ###########################################################################

    if trans_pattern is None:
        raise AssertionError("--trans missing")
    if sino_pattern is None:
        raise AssertionError("--sino missing")
    trans_files = sorted(glob(trans_pattern))
    sino_files = sorted(glob(sino_pattern))
    attn_files = sorted(glob(attn_pattern))
    rand_files = sorted(glob(rand_pattern))

    num_ms = len(sino_files)
    # Check some sinograms found
    if num_ms == 0:
        raise AssertionError("No sinograms found!")
    # Should have as many trans as sinos
    if num_ms != len(trans_files):
        raise AssertionError("#trans should match #sinos. "
                             "#sinos = " + str(num_ms) + ", #trans = " +
                             str(len(trans_files)))
    # If any rand, check num == num_ms
    if len(rand_files) > 0 and len(rand_files) != num_ms:
        raise AssertionError("#rand should match #sinos. "
                             "#sinos = " + str(num_ms) + ", #rand = " +
                             str(len(rand_files)))

    # For attn, there should be 0, 1 or num_ms images
    if len(attn_files) > 1 and len(attn_files) != num_ms:
        raise AssertionError("#attn should be 0, 1 or #sinos")

    ###########################################################################
    # Read input
    ###########################################################################

    if trans_type == "tm":
        trans = [reg.AffineTransformation(file) for file in trans_files]
    elif trans_type == "disp":
        trans = [
            reg.NiftiImageData3DDisplacement(file) for file in trans_files
        ]
    elif trans_type == "def":
        trans = [reg.NiftiImageData3DDeformation(file) for file in trans_files]
    else:
        raise error("Unknown transformation type")

    sinos_raw = [pet.AcquisitionData(file) for file in sino_files]
    attns = [pet.ImageData(file) for file in attn_files]
    rands = [pet.AcquisitionData(file) for file in rand_files]

    # Loop over all sinograms
    sinos = [0] * num_ms
    for ind in range(num_ms):
        # If any sinograms contain negative values
        # (shouldn't be the case), set them to 0
        sino_arr = sinos_raw[ind].as_array()
        if (sino_arr < 0).any():
            print("Input sinogram " + str(ind) +
                  " contains -ve elements. Setting to 0...")
            sinos[ind] = sinos_raw[ind].clone()
            sino_arr[sino_arr < 0] = 0
            sinos[ind].fill(sino_arr)
        else:
            sinos[ind] = sinos_raw[ind]
        # If rebinning is desired
        segs_to_combine = 1
        if args['--numSegsToCombine']:
            segs_to_combine = int(args['--numSegsToCombine'])
        views_to_combine = 1
        if args['--numViewsToCombine']:
            views_to_combine = int(args['--numViewsToCombine'])
        if segs_to_combine * views_to_combine > 1:
            sinos[ind] = sinos[ind].rebin(segs_to_combine, views_to_combine)
            # only print first time
            if ind == 0:
                print(f"Rebinned sino dimensions: {sinos[ind].dimensions()}")

    ###########################################################################
    # Initialise recon image
    ###########################################################################

    if initial_estimate:
        image = pet.ImageData(initial_estimate)
    else:
        # Create image based on ProjData
        image = sinos[0].create_uniform_image(0.0, (nxny, nxny))
        # If using GPU, need to make sure that image is right size.
        if use_gpu:
            dim = (127, 320, 320)
            spacing = (2.03125, 2.08626, 2.08626)
        # elif non-default spacing desired
        elif args['--dxdy']:
            dim = image.dimensions()
            dxdy = float(args['--dxdy'])
            spacing = (image.voxel_sizes()[0], dxdy, dxdy)
        if use_gpu or args['--dxdy']:
            image.initialise(dim=dim, vsize=spacing)
            image.fill(0.0)

    ###########################################################################
    # Set up resamplers
    ###########################################################################

    resamplers = [get_resampler(image, trans=tran) for tran in trans]

    ###########################################################################
    # Resample attenuation images (if necessary)
    ###########################################################################

    resampled_attns = None
    if len(attns) > 0:
        resampled_attns = [0] * num_ms
        # if using GPU, dimensions of attn and recon images have to match
        ref = image if use_gpu else None
        for i in range(len(attns)):
            # if we only have 1 attn image, then we need to resample into
            # space of each gate. However, if we have num_ms attn images, then
            # assume they are already in the correct position, so use None as
            # transformation.
            tran = trans[i] if len(attns) == 1 else None
            # If only 1 attn image, then resample that. If we have num_ms attn
            # images, then use each attn image of each frame.
            attn = attns[0] if len(attns) == 1 else attns[i]
            resam = get_resampler(attn, ref=ref, trans=tran)
            resampled_attns[i] = resam.forward(attn)

    ###########################################################################
    # Set up acquisition models
    ###########################################################################

    print("Setting up acquisition models...")
    if not use_gpu:
        acq_models = num_ms * [pet.AcquisitionModelUsingRayTracingMatrix()]
    else:
        acq_models = num_ms * [pet.AcquisitionModelUsingNiftyPET()]
        for acq_model in acq_models:
            acq_model.set_use_truncation(True)
            acq_model.set_cuda_verbosity(verbosity)

    # If present, create ASM from ECAT8 normalisation data
    asm_norm = None
    if norm_file:
        asm_norm = pet.AcquisitionSensitivityModel(norm_file)

    # Loop over each motion state
    for ind in range(num_ms):
        # Create attn ASM if necessary
        asm_attn = None
        if resampled_attns:
            asm_attn = get_asm_attn(sinos[ind], resampled_attns[i],
                                    acq_models[ind])

        # Get ASM dependent on attn and/or norm
        asm = None
        if asm_norm and asm_attn:
            if ind == 0:
                print("ASM contains norm and attenuation...")
            asm = pet.AcquisitionSensitivityModel(asm_norm, asm_attn)
        elif asm_norm:
            if ind == 0:
                print("ASM contains norm...")
            asm = asm_norm
        elif asm_attn:
            if ind == 0:
                print("ASM contains attenuation...")
            asm = asm_attn
        if asm:
            acq_models[ind].set_acquisition_sensitivity(asm)

        if len(rands) > 0:
            acq_models[ind].set_background_term(rands[ind])

        # Set up
        acq_models[ind].set_up(sinos[ind], image)

    ###########################################################################
    # Set up reconstructor
    ###########################################################################

    print("Setting up reconstructor...")

    # Create composition operators containing acquisition models and resamplers
    C = [
        CompositionOperator(am, res, preallocate=True)
        for am, res in zip(*(acq_models, resamplers))
    ]

    # Configure the PDHG algorithm
    if args['--normK'] and not args['--onlyNormK']:
        normK = float(args['--normK'])
    else:
        kl = [KullbackLeibler(b=sino, eta=(sino * 0 + 1e-5)) for sino in sinos]
        f = BlockFunction(*kl)
        K = BlockOperator(*C)
        # Calculate normK
        print("Calculating norm of the block operator...")
        normK = K.norm(iterations=10)
        print("Norm of the BlockOperator ", normK)
        if args['--onlyNormK']:
            exit(0)

    # Optionally rescale sinograms and BlockOperator using normK
    scale_factor = 1. / normK if args['--normaliseDataAndBlock'] else 1.0
    kl = [
        KullbackLeibler(b=sino * scale_factor, eta=(sino * 0 + 1e-5))
        for sino in sinos
    ]
    f = BlockFunction(*kl)
    K = BlockOperator(*C) * scale_factor

    # If preconditioned
    if precond:

        def get_nonzero_recip(data):
            """Get the reciprocal of a datacontainer. Voxels where input == 0
            will have their reciprocal set to 1 (instead of infinity)"""
            inv_np = data.as_array()
            inv_np[inv_np == 0] = 1
            inv_np = 1. / inv_np
            data.fill(inv_np)

        tau = K.adjoint(K.range_geometry().allocate(1))
        get_nonzero_recip(tau)

        tmp_sigma = K.direct(K.domain_geometry().allocate(1))
        sigma = 0. * tmp_sigma
        get_nonzero_recip(sigma[0])

        def precond_proximal(self, x, tau, out=None):
            """Modify proximal method to work with preconditioned tau"""
            pars = {
                'algorithm':
                FGP_TV,
                'input':
                np.asarray(x.as_array() / tau.as_array(), dtype=np.float32),
                'regularization_parameter':
                self.lambdaReg,
                'number_of_iterations':
                self.iterationsTV,
                'tolerance_constant':
                self.tolerance,
                'methodTV':
                self.methodTV,
                'nonneg':
                self.nonnegativity,
                'printingOut':
                self.printing
            }

            res, info = regularisers.FGP_TV(pars['input'],
                                            pars['regularization_parameter'],
                                            pars['number_of_iterations'],
                                            pars['tolerance_constant'],
                                            pars['methodTV'], pars['nonneg'],
                                            self.device)
            if out is not None:
                out.fill(res)
            else:
                out = x.copy()
                out.fill(res)
            out *= tau
            return out

        FGP_TV.proximal = precond_proximal
        print("Will run proximal with preconditioned tau...")

    # If not preconditioned
    else:
        sigma = float(args['--sigma'])
        # If we need to calculate default tau
        if args['--tau']:
            tau = float(args['--tau'])
        else:
            tau = 1 / (sigma * normK**2)

    if regularisation == 'none':
        G = IndicatorBox(lower=0)
    elif regularisation == 'FGP_TV':
        r_iterations = float(args['--reg_iters'])
        r_tolerance = 1e-7
        r_iso = 0
        r_nonneg = 1
        r_printing = 0
        device = 'gpu' if use_gpu else 'cpu'
        G = FGP_TV(r_alpha, r_iterations, r_tolerance, r_iso, r_nonneg,
                   r_printing, device)
    else:
        raise error("Unknown regularisation")

    if precond:

        def PDHG_new_update(self):
            """Modify the PDHG update to allow preconditioning"""
            # save previous iteration
            self.x_old.fill(self.x)
            self.y_old.fill(self.y)

            # Gradient ascent for the dual variable
            self.operator.direct(self.xbar, out=self.y_tmp)
            self.y_tmp *= self.sigma
            self.y_tmp += self.y_old

            self.f.proximal_conjugate(self.y_tmp, self.sigma, out=self.y)

            # Gradient descent for the primal variable
            self.operator.adjoint(self.y, out=self.x_tmp)
            self.x_tmp *= -1 * self.tau
            self.x_tmp += self.x_old

            self.g.proximal(self.x_tmp, self.tau, out=self.x)

            # Update
            self.x.subtract(self.x_old, out=self.xbar)
            self.xbar *= self.theta
            self.xbar += self.x

        PDHG.update = PDHG_new_update

    # Get filename
    outp_file = outp_prefix
    if descriptive_fname:
        if len(attn_files) > 0:
            outp_file += "_wAC"
        if norm_file:
            outp_file += "_wNorm"
        if use_gpu:
            outp_file += "_wGPU"
        outp_file += "_Reg-" + regularisation
        if regularisation == 'FGP_TV':
            outp_file += "-alpha" + str(r_alpha)
            outp_file += "-riters" + str(r_iterations)
        if args['--normK']:
            outp_file += '_userNormK' + str(normK)
        else:
            outp_file += '_calcNormK' + str(normK)
        if args['--normaliseDataAndBlock']:
            outp_file += '_wDataScale'
        else:
            outp_file += '_noDataScale'
        if not precond:
            outp_file += "_sigma" + str(sigma)
            outp_file += "_tau" + str(tau)
        else:
            outp_file += "_wPrecond"
        outp_file += "_nGates" + str(len(sino_files))
        if resamplers is None:
            outp_file += "_noMotion"

    pdhg = PDHG(f=f,
                g=G,
                operator=K,
                sigma=sigma,
                tau=tau,
                max_iteration=num_iters,
                update_objective_interval=update_obj_fn_interval,
                x_init=image,
                log_file=outp_file + ".log")

    def callback_save(iteration, objective_value, solution):
        """Callback function to save images"""
        if (iteration + 1) % save_interval == 0:
            out = solution if not nifti else reg.NiftiImageData(solution)
            out.write(outp_file + "_iters" + str(iteration + 1))

    pdhg.run(iterations=num_iters,
             callback=callback_save,
             verbose=True,
             very_verbose=True)

    if visualisations:
        # show reconstructed image
        out = pdhg.get_output()
        out_arr = out.as_array()
        z = out_arr.shape[0] // 2
        show_2D_array('Reconstructed image', out.as_array()[z, :, :])
        pylab.show()
Exemplo n.º 3
0
                                     i, :]  # extract a sinogram for i-th channel

    print("Initial guess")
    x_init = ImageData(geometry=ig)

    # Create least squares object instance with projector and data.
    print("Create least squares object instance with projector and data.")
    f = Norm2sq(Aop, DataContainer(sino_channel), c=0.5)

    print("Run FISTA-TV for least squares")
    lamtv = 5
    opt = {'tol': 1e-4, 'iter': 200}
    g_fgp = FGP_TV(lambdaReg=lamtv,
                   iterationsTV=50,
                   tolerance=1e-6,
                   methodTV=0,
                   nonnegativity=0,
                   printing=0,
                   device='gpu')

    x_fista_fgp, it1, timing1, criter_fgp = FISTA(x_init, f, g_fgp, opt)
    REC_chan[i, :, :] = x_fista_fgp.array
    """
    plt.figure()
    plt.subplot(121)
    plt.imshow(x_fista_fgp.array, vmin=0, vmax=0.05)
    plt.title('FISTA FGP TV')
    plt.subplot(122)
    plt.semilogy(criter_fgp)
    plt.show()
    """
Exemplo n.º 4
0
xtv_rof = g_rof.prox(y, 1.0)

# Display denoised image and final criterion value.
print("CCPi-RGL TV ROF:")
plt.figure()
plt.imshow(xtv_rof.as_array())
EnergytotalROF = f_denoise(xtv_rof) + g_rof(xtv_rof)
plt.title('ROF TV prox with objective equal to {:.2f}'.format(EnergytotalROF))
plt.show()
print(EnergytotalROF)

#%% FISTA with FGP-TV regularisation
g_fgp = FGP_TV(lambdaReg=lam_tv,
               iterationsTV=5000,
               tolerance=0,
               methodTV=0,
               nonnegativity=0,
               printing=0,
               device='cpu')

# Evaluating the proximal operator corresponds to denoising.
xtv_fgp = g_fgp.prox(y, 1.0)

# Display denoised image and final criterion value.
print("CCPi-RGL TV FGP:")
plt.figure()
plt.imshow(xtv_fgp.as_array())
EnergytotalFGP = f_denoise(xtv_fgp) + g_fgp(xtv_fgp)
plt.title('FGP TV prox with objective equal to {:.2f}'.format(EnergytotalFGP))
plt.show()
print(EnergytotalFGP)