Exemplo n.º 1
0
def modify_monthly_multiplier(locator, config, measured_building_names):
    ##create building input schedules to set monthly multiplier
    archetypes_mapper.archetypes_mapper(
        locator,
        update_architecture_dbf=False,
        update_air_conditioning_systems_dbf=False,
        update_indoor_comfort_dbf=False,
        update_internal_loads_dbf=False,
        update_supply_systems_dbf=False,
        update_schedule_operation_cea=True,
        buildings=[])

    ##calculate monthly multiplier based on buildings real consumption
    for building_name in measured_building_names:
        monthly_measured_data = pd.read_csv(locator.get_monthly_measurements())
        fields_to_extract = ['Name'] + MONTHS_IN_YEAR_NAMES
        monthly_measured_demand = monthly_measured_data[
            fields_to_extract].set_index('Name')
        monthly_measured_demand = monthly_measured_demand.loc[building_name]
        monthly_measured_demand = pd.DataFrame({
            'Month':
            monthly_measured_demand.index.values,
            'measurements':
            monthly_measured_demand.values
        })
        monthly_measured_load = monthly_measured_demand.measurements / max(
            monthly_measured_demand.measurements)

        path_to_schedule = locator.get_building_weekly_schedules(building_name)
        data_schedule, data_metadata = read_cea_schedule(path_to_schedule)
        data_metadata["MONTHLY_MULTIPLIER"] = list(
            monthly_measured_load.round(2))

        # save cea schedule format
        save_cea_schedule(data_schedule, data_metadata, path_to_schedule)
def calc_mixed_schedule(locator,
                        building_typology_df,
                        buildings,
                        list_var_names=None,
                        list_var_values=None):
    """
    Builds the ``cea.inputlocator.InputLocator#get_building_weekly_schedules`` for each building in the zone,
    combining the occupancy types as indicated in the inputs.


    :param cea.inputlocator.InputLocator locator: the locator to use
    :param building_typology_df: ``occupancy.dbf``, with an added column "mainuse"
    :param buildings: the list of buildings to calculate the schedules for
    :type buildings: list[str]
    :param list_var_names: List of column names in building_typology_df that contain the names of use-types being caculated
    :type list_var_names: list[str]
    :param list_var_values: List of column names in building_typology_df that contain values of use-type ratio in respect to list_var_names
    :type list_var_values: list[str]
    :return:
    """

    if list_var_names is None:
        list_var_names = ["1ST_USE", '2ND_USE', '3RD_USE']
    if list_var_values is None:
        list_var_values = ["1ST_USE_R", '2ND_USE_R', '3RD_USE_R']

    metadata = 'mixed-schedule'
    schedule_data_all_uses = ScheduleData(locator)
    building_typology_df = building_typology_df.loc[
        building_typology_df['Name'].isin(buildings)]

    # get list of uses only with a valid value in building_occupancy_df
    list_uses = get_list_of_uses_in_case_study(building_typology_df)

    internal_loads = pd.read_excel(locator.get_database_use_types_properties(),
                                   'INTERNAL_LOADS')
    building_typology_df.set_index('Name', inplace=True)
    internal_loads = internal_loads.set_index('code')

    occupant_densities = {}
    for use in list_uses:
        if internal_loads.loc[use, 'Occ_m2pax'] > 0.0:
            occupant_densities[use] = 1.0 / internal_loads.loc[use,
                                                               'Occ_m2pax']
        else:
            occupant_densities[use] = 0.0

    for building in buildings:
        schedule_new_data, schedule_complementary_data = calc_single_mixed_schedule(
            list_uses, occupant_densities, building_typology_df,
            internal_loads, building, schedule_data_all_uses, list_var_names,
            list_var_values, metadata)
        # save cea schedule format
        path_to_building_schedule = locator.get_building_weekly_schedules(
            building)
        save_cea_schedule(schedule_new_data, schedule_complementary_data,
                          path_to_building_schedule)
Exemplo n.º 3
0
def schedule_dict_to_file(schedule_dict, schedule_path):
    schedule_data = schedule_dict['SCHEDULES']
    schedule_complementary_data = {
        'MONTHLY_MULTIPLIER': schedule_dict['MONTHLY_MULTIPLIER'],
        'METADATA': schedule_dict['METADATA']
    }

    data = pandas.DataFrame()
    for day in ['WEEKDAY', 'SATURDAY', 'SUNDAY']:
        df = pandas.DataFrame({'HOUR': range(1, 25), 'DAY': [day] * 24})
        for schedule_type, schedule in schedule_data.items():
            df[schedule_type] = schedule[day]
        data = data.append(df, ignore_index=True)
    save_cea_schedule(data.to_dict('list'), schedule_complementary_data,
                      schedule_path)
    print('Schedule file written to {}'.format(schedule_path))
Exemplo n.º 4
0
def dict_to_schedule(locator, building, schedule_dict):
    schedule_path = locator.get_building_weekly_schedules(building)
    schedule_data = schedule_dict['SCHEDULES']
    schedule_complementary_data = {
        'MONTHLY_MULTIPLIER': schedule_dict['MONTHLY_MULTIPLIER'],
        'METADATA': schedule_dict['METADATA']
    }

    data = pandas.DataFrame()
    for day in ['WEEKDAY', 'SATURDAY', 'SUNDAY']:
        df = pandas.DataFrame({'HOUR': range(1, 25), 'DAY': [day] * 24})
        for schedule_type, schedule in schedule_data.items():
            df[schedule_type] = schedule[day]
        data = data.append(df, ignore_index=True)
    save_cea_schedule(data.to_dict('list'), schedule_complementary_data,
                      schedule_path)
Exemplo n.º 5
0
def create_mixed_use_type(locator, internal_loads_df, indoor_comfort_df,
                          use_type_name, use_type_metadata,
                          use_type_ratios_dict):
    """
    Takes a list of use-types and their respective ratios to aggregate and create a new use-type
    with schedules, internal loads and indoor comfort data

    :param schedules_path:
    :param internal_loads_df:
    :param indoor_comfort_df:
    :param use_type_name:
    :param use_type_metadata:
    :param use_type_ratios_dict:
    :return:
    """
    list_uses = use_type_ratios_dict.keys()
    list_var_names = [
        COLUMN_VAR_NAME_TEMPLATE.format(i)
        for i in range(len(use_type_ratios_dict))
    ]
    list_var_values = [
        COLUMN_VAR_VAL_TEMPLATE.format(i)
        for i in range(len(use_type_ratios_dict))
    ]

    # Creating required parameters
    properties_dict = {}
    for i, (k, v) in enumerate(use_type_ratios_dict.items()):
        properties_dict[list_var_names[i]] = k
        properties_dict[list_var_values[i]] = v
    properties_df = pd.DataFrame([properties_dict])
    occupant_densities = calculate_occupant_density(list_uses,
                                                    internal_loads_df)

    print("Calculating internal loads...")
    new_internal_loads_df = calculate_mixed_loads(
        properties_df, internal_loads_df, occupant_densities, list_uses,
        use_type_name, list_var_names, list_var_values)
    print("Calculating indoor comfort...")
    new_indoor_comfort_df = calculate_mixed_loads(
        properties_df, indoor_comfort_df, occupant_densities, list_uses,
        use_type_name, list_var_names, list_var_values)

    prop_df_c = properties_df.copy()
    prop_df_c[
        'Name'] = '0'  # Set a `Name` column as index for function to work
    prop_df_c.set_index('Name', inplace=True)
    schedule_data_all_uses = ScheduleData(locator)
    internal_loads = internal_loads_df.set_index('code')
    print("Calculating schedules...")
    schedule_new_data, schedule_complementary_data = calc_single_mixed_schedule(
        list_uses, occupant_densities, prop_df_c, internal_loads, '0',
        schedule_data_all_uses, list_var_names, list_var_values,
        use_type_metadata)

    print("Writing to disk...")
    use_type_properties_path = locator.get_database_use_types_properties()
    with pd.ExcelWriter(use_type_properties_path) as writer:
        new_internal_loads_df.to_excel(writer,
                                       sheet_name='INTERNAL_LOADS',
                                       index=False)
        new_indoor_comfort_df.to_excel(writer,
                                       sheet_name='INDOOR_COMFORT',
                                       index=False)

    schedule_path = os.path.join(locator.get_database_use_types_folder(),
                                 '{}.csv'.format(use_type_name))
    save_cea_schedule(schedule_new_data, schedule_complementary_data,
                      schedule_path)
Exemplo n.º 6
0
    def put(self):
        form = api.payload
        config = current_app.cea_config
        locator = cea.inputlocator.InputLocator(config.scenario)

        tables = form['tables']
        geojsons = form['geojsons']
        crs = form['crs']
        schedules = form['schedules']

        out = {'tables': {}, 'geojsons': {}}

        # TODO: Maybe save the files to temp location in case something fails
        for db in INPUTS:
            db_info = INPUTS[db]
            location = getattr(locator, db_info['location'])()
            file_type = db_info['file_type']

            if len(tables[db]) != 0:
                if file_type == 'shp':
                    from cea.utilities.standardize_coordinates import get_geographic_coordinate_system
                    table_df = geopandas.GeoDataFrame.from_features(
                        geojsons[db]['features'],
                        crs=get_geographic_coordinate_system())
                    out['geojsons'][db] = json.loads(
                        table_df.to_json(show_bbox=True))
                    table_df = table_df.to_crs(crs[db])
                    table_df.to_file(location,
                                     driver='ESRI Shapefile',
                                     encoding='ISO-8859-1')

                    table_df = pandas.DataFrame(
                        table_df.drop(columns='geometry'))
                    out['tables'][db] = json.loads(
                        table_df.set_index('Name').to_json(orient='index'))
                elif file_type == 'dbf':
                    table_df = pandas.read_json(json.dumps(tables[db]),
                                                orient='index')

                    # Make sure index name is 'Name;
                    table_df.index.name = 'Name'
                    table_df = table_df.reset_index()

                    cea.utilities.dbf.dataframe_to_dbf(table_df, location)
                    out['tables'][db] = json.loads(
                        table_df.set_index('Name').to_json(orient='index'))

            else:  # delete file if empty
                out['tables'][db] = {}
                if os.path.isfile(location):
                    if file_type == 'shp':
                        import glob
                        for filepath in glob.glob(
                                os.path.join(
                                    locator.get_building_geometry_folder(),
                                    '%s.*' % db)):
                            os.remove(filepath)
                    elif file_type == 'dbf':
                        os.remove(location)
                if file_type == 'shp':
                    out['geojsons'][db] = {}

        if schedules:
            for building in schedules:
                schedule_dict = schedules[building]
                schedule_path = locator.get_building_weekly_schedules(building)
                schedule_data = schedule_dict['SCHEDULES']
                schedule_complementary_data = {
                    'MONTHLY_MULTIPLIER': schedule_dict['MONTHLY_MULTIPLIER'],
                    'METADATA': schedule_dict['METADATA']
                }
                data = pandas.DataFrame()
                for day in ['WEEKDAY', 'SATURDAY', 'SUNDAY']:
                    df = pandas.DataFrame({
                        'HOUR': range(1, 25),
                        'DAY': [day] * 24
                    })
                    for schedule_type, schedule in schedule_data.items():
                        df[schedule_type] = schedule[day]
                    data = data.append(df, ignore_index=True)
                save_cea_schedule(data.to_dict('list'),
                                  schedule_complementary_data, schedule_path)
                print('Schedule file written to {}'.format(schedule_path))
        return out
Exemplo n.º 7
0
def calc_mixed_schedule(locator,
                        building_occupancy_df,
                        buildings):

    metadata = 'mixed-schedule'
    schedule_data_all_uses = ScheduleData(locator)
    building_occupancy_df = building_occupancy_df.set_index('Name')
    building_occupancy_df = building_occupancy_df.loc[buildings]

    # get list of uses only with a valid value in building_occupancy_df
    list_uses = get_short_list_of_uses_in_case_study(building_occupancy_df)

    internal_DB = pd.read_excel(locator.get_archetypes_properties(), 'INTERNAL_LOADS')
    internal_DB = internal_DB.set_index('Code')

    occupant_densities = {}
    for use in list_uses:
        if internal_DB.loc[use, 'Occ_m2pax'] > 0.0:
            occupant_densities[use] = 1 / internal_DB.loc[use, 'Occ_m2pax']
        else:
            occupant_densities[use] = 0.0

    for building in buildings:
        schedule_new_data = {}
        main_use_this_building = building_occupancy_df['mainuse'][building]
        monthly_multiplier = np.sum([np.array(
            schedule_data_all_uses.schedule_complementary_data[use]['MONTHLY_MULTIPLIER']) * building_occupancy_df.loc[
                                         building, use] for use in list_uses], axis=0)
        for schedule_type in VARIABLE_CEA_SCHEDULE_RELATION.values():
            current_schedule = np.zeros(len(schedule_data_all_uses.schedule_data['HOTEL'][schedule_type]))
            normalizing_value = 0.0
            if schedule_type in ['HEATING', 'COOLING']:
                schedule_new_data[schedule_type] = schedule_data_all_uses.schedule_data[main_use_this_building][
                    schedule_type]
            else:
                for use in list_uses:
                    if building_occupancy_df[use][building] > 0.0:
                        current_share_of_use = building_occupancy_df[use][building]
                        if schedule_type in ['OCCUPANCY'] and occupant_densities[use] > 0.0:
                            # for variables that depend on the number of people, the schedule needs to be calculated by number
                            # of people for each use at each time step, not the share of the occupancy for each
                            share_time_occupancy_density = current_share_of_use * occupant_densities[use]
                            normalizing_value += share_time_occupancy_density
                            current_schedule = np.vectorize(calc_average)(current_schedule,
                                                                          schedule_data_all_uses.schedule_data[use][
                                                                              schedule_type],
                                                                          share_time_occupancy_density)

                        if schedule_type in ['WATER'] and occupant_densities[use] > 0.0 and (
                                internal_DB.loc[use, 'Vw_lpdpax'] + internal_DB.loc[use, 'Vw_lpdpax']) > 0.0:
                            # for variables that depend on the number of people, the schedule needs to be calculated by number
                            # of people for each use at each time step, not the share of the occupancy for each
                            share_time_occupancy_density = current_share_of_use * occupant_densities[use] * (
                                        internal_DB.loc[use, 'Vw_lpdpax'] + internal_DB.loc[use, 'Vw_lpdpax'])
                            normalizing_value += share_time_occupancy_density
                            current_schedule = np.vectorize(calc_average)(current_schedule,
                                                                          schedule_data_all_uses.schedule_data[use][
                                                                              schedule_type],
                                                                          share_time_occupancy_density)

                        elif schedule_type in ['APPLIANCES'] and internal_DB.loc[use, 'Ea_Wm2'] > 0.0:
                            share_time_occupancy_density = current_share_of_use * internal_DB.loc[use, 'Ea_Wm2']
                            normalizing_value += share_time_occupancy_density
                            current_schedule = np.vectorize(calc_average)(current_schedule,
                                                                          schedule_data_all_uses.schedule_data[use][
                                                                              schedule_type],
                                                                          share_time_occupancy_density)

                        elif schedule_type in ['LIGHTING'] and internal_DB.loc[use, 'El_Wm2'] > 0.0:
                            share_time_occupancy_density = current_share_of_use * internal_DB.loc[use, 'El_Wm2']
                            normalizing_value += share_time_occupancy_density
                            current_schedule = np.vectorize(calc_average)(current_schedule,
                                                                          schedule_data_all_uses.schedule_data[use][
                                                                              schedule_type],
                                                                          share_time_occupancy_density)

                        elif schedule_type in ['PROCESSES'] and internal_DB.loc[use, 'Epro_Wm2'] > 0.0:
                            share_time_occupancy_density = current_share_of_use * internal_DB.loc[use, 'Epro_Wm2']
                            normalizing_value += share_time_occupancy_density
                            current_schedule = np.vectorize(calc_average)(current_schedule,
                                                                          schedule_data_all_uses.schedule_data[use][
                                                                              schedule_type],
                                                                          share_time_occupancy_density)

                        elif schedule_type in ['SERVERS'] and internal_DB.loc[use, 'Ed_Wm2'] > 0.0:
                            share_time_occupancy_density = current_share_of_use * internal_DB.loc[use, 'Ed_Wm2']

                            normalizing_value += share_time_occupancy_density
                            current_schedule = np.vectorize(calc_average)(current_schedule,
                                                                          schedule_data_all_uses.schedule_data[use][
                                                                              schedule_type],
                                                                          share_time_occupancy_density)
                if normalizing_value == 0.0:
                    schedule_new_data[schedule_type] = current_schedule * 0.0
                else:
                    schedule_new_data[schedule_type] = np.round(current_schedule/normalizing_value, 2)

        # add hour and day of the week
        DAY = {'DAY': ['WEEKDAY'] * 24 + ['SATURDAY'] * 24 + ['SUNDAY'] * 24}
        HOUR = {'HOUR': range(1, 25) + range(1, 25) + range(1, 25)}
        schedule_new_data.update(DAY)
        schedule_new_data.update(HOUR)

        # calculate complementary_data
        schedule_complementary_data = {'METADATA': metadata, 'MONTHLY_MULTIPLIER': monthly_multiplier}

        # save cea schedule format
        path_to_building_schedule = locator.get_building_weekly_schedules(building)
        save_cea_schedule(schedule_new_data, schedule_complementary_data, path_to_building_schedule)