ce_delta_sum = [1, 1] while max(ce_delta_sum) > 0.001 * sources_number * cases_number: cef_for_each_s = [] observed_cases_changed = [] + observed_cases for observed_case_index in range(cases_number): observed_cases_changed[observed_case_index].update({"life_span": set_of_life_spans[observed_case_index]}) observed_cases_changed = cook_raw_value(observed_cases_changed) time_points = observed_cases_changed[0].get("life_span")[0] for s in observed_keys: life_span_set = [] sources_data = [] time_points = [] for case in raw_cases: sources_data.append(case.get(s)) cef = get_CEF(life_span_set=set_of_life_spans, sources_data=sources_data) cef_measures.update({s: cef}) cef_for_each_s.append(cef) set_of_life_spans = [] for observed_changed in observed_cases_changed: del observed_changed["life_span"] life_span = get_life_span(observed=observed_changed, cef_measures=cef_measures) set_of_life_spans.append(life_span) ce_delta_sum = [0, 0] for old, new in zip(cef_for_each_s_old, cef_for_each_s): diff_for_s = [abs(x - y) for x, y in zip(old[0:2], new[0:2])] for i in range(len(ce_delta_sum)): ce_delta_sum[i] += diff_for_s[i] cef_for_each_s_old = cef_for_each_s
print 'CASE NUMBER: {}'.format(case_number) print 'Ground truth: {}'.format(ground_truth) for key in observed_keys: print '{}: {}'.format(key, observed.get(key)[1]) print 'Initial life span: {}'.format(life_span) life_span_old = [] cef_for_each_s_old = [cef_measures.get(s) for s in observed_keys] ce_delta_sum = [1, 1] while max(ce_delta_sum) > 0.01*sources_number: cef_for_each_s = [] observed_changed = observed.copy() observed_changed.update({'life_span': life_span}) observed_changed = cook_raw_value([observed_changed])[0] for s in observed_keys: cef = get_CEF(life_span=observed_changed.get('life_span'), source_data=observed_changed.get(s)) cef_measures.update({s: cef}) cef_for_each_s.append(cef) life_span_old = life_span life_span = get_life_span(observed=observed, cef_measures=cef_measures) iter_quantity += 1 ce_delta_sum = [0, 0] for old, new in zip(cef_for_each_s_old, cef_for_each_s): diff_for_s = [abs(x-y) for x, y in zip(old[0:2], new[0:2])] for i in range(len(ce_delta_sum)): ce_delta_sum[i] += diff_for_s[i] cef_for_each_s_old = cef_for_each_s majority_voting_result = majority_voting(observed)
print 'CASE NUMBER: {}'.format(case_number) print 'Ground truth: {}'.format(ground_truth) for key in observed_keys: print '{}: {}'.format(key, observed.get(key)[1]) print 'Initial life span: {}'.format(life_span) life_span_old = [] cef_for_each_s_old = [cef_measures.get(s) for s in observed_keys] ce_delta_sum = [1, 1] while max(ce_delta_sum) > 0.01 * sources_number: cef_for_each_s = [] observed_changed = observed.copy() observed_changed.update({'life_span': life_span}) observed_changed = cook_raw_value([observed_changed])[0] for s in observed_keys: cef = get_CEF(life_span=observed_changed.get('life_span'), source_data=observed_changed.get(s)) cef_measures.update({s: cef}) cef_for_each_s.append(cef) life_span_old = life_span life_span = get_life_span(observed=observed, cef_measures=cef_measures) iter_quantity += 1 ce_delta_sum = [0, 0] for old, new in zip(cef_for_each_s_old, cef_for_each_s): diff_for_s = [abs(x - y) for x, y in zip(old[0:2], new[0:2])] for i in range(len(ce_delta_sum)): ce_delta_sum[i] += diff_for_s[i] cef_for_each_s_old = cef_for_each_s majority_voting_result = majority_voting(observed)