Exemplo n.º 1
0
    def merge_cells(self, label_c1, label_c2, params, segments_manager, image_manager):
        """merges two cells"""
        label_c1 = int(label_c1)
        label_c2 = int(label_c2)
        print len(self.cells[str(label_c2)].outline)
        print len(self.cells[str(label_c2)].lines)
        self.cells[str(label_c2)].stats["Area"] = (
            self.cells[str(label_c2)].stats["Area"] + self.cells[str(label_c1)].stats["Area"]
        )

        self.cells[str(label_c2)].lines.extend(self.cells[str(label_c1)].lines)

        self.cells[str(label_c2)].merged_list.append(label_c1)

        self.cells[str(label_c2)].outline.extend(self.cells[str(label_c1)].outline)

        self.cells[str(label_c2)].stats["Neighbours"] = (
            self.cells[str(label_c2)].stats["Neighbours"] + self.cells[str(label_c1)].stats["Neighbours"] - 2
        )

        del self.cells[str(label_c1)]

        rotations = cp.rotation_matrices(params.axial_step)
        self.cells[str(label_c2)].compute_axes(rotations, image_manager.mask.shape)

        self.cells[str(label_c2)].recompute_outline(segments_manager.labels)

        if len(self.cells[str(label_c2)].merged_list) > 0:
            self.cells[str(label_c2)].merged_with = "Yes"

        print len(self.cells[str(label_c2)].outline)
        print len(self.cells[str(label_c2)].lines)

        print len(self.original_cells[str(label_c2)].outline)
        print len(self.original_cells[str(label_c2)].lines)
Exemplo n.º 2
0
    def merge_cells(self, label_c1, label_c2, params, segments_manager,
                    image_manager):
        """merges two cells"""
        label_c1 = int(label_c1)
        label_c2 = int(label_c2)
        self.cells[str(label_c2)].stats["Area"] = self.cells[str(
            label_c2)].stats["Area"] + self.cells[str(label_c1)].stats["Area"]

        self.cells[str(label_c2)].lines.extend(self.cells[str(label_c1)].lines)

        self.cells[str(label_c2)].merged_list.append(label_c1)

        self.cells[str(label_c2)].outline.extend(
            self.cells[str(label_c1)].outline)

        self.cells[str(label_c2)].stats["Neighbours"] = self.cells[str(
            label_c2)].stats["Neighbours"] + self.cells[str(
                label_c1)].stats["Neighbours"] - 2

        del self.cells[str(label_c1)]

        rotations = cp.rotation_matrices(params.axial_step)
        self.cells[str(label_c2)].compute_axes(rotations,
                                               image_manager.mask.shape)

        self.cells[str(label_c2)].recompute_outline(segments_manager.labels)

        if len(self.cells[str(label_c2)].merged_list) > 0:
            self.cells[str(label_c2)].merged_with = "Yes"
Exemplo n.º 3
0
    def compute_cells(self, params, image_manager, segments_manager):
        """Creates a cell list that is stored on self.cells as a dict, where
        each cell id is a key of the dict.
        Also creates an overlay of the cells edges over both the base and
        fluor image.
        Requires the loading of the images and the computation of the
        segments"""

        self.cell_regions_from_labels(segments_manager.labels)
        rotations = cp.rotation_matrices(params.axial_step)

        self.compute_box_axes(rotations, image_manager.mask.shape)

        self.original_cells = deepcopy(self.cells)

        for k in self.cells.keys():
            try:
                c = self.cells[k]
                if len(c.neighbours) > 0:

                    bestneigh = max(c.neighbours.iterkeys(), key=(lambda key: c.neighbours[key]))
                    bestinterface = c.neighbours[bestneigh]
                    cn = self.cells[str(int(bestneigh))]

                    if cp.check_merge(c, cn, rotations, bestinterface, image_manager.mask, params):
                        self.merge_cells(c.label, cn.label, params, segments_manager, image_manager)
            except KeyError:
                print "Cell was already merged and deleted"

        for k in self.cells.keys():
            cp.assign_cell_color(self.cells[k], self.cells, self.cell_colors)

        self.overlay_cells(image_manager)
Exemplo n.º 4
0
    def split_cells(self, label_c1, params, segments_manager, image_manager):
        """Splits a previously merged cell."""
        merged_cells = self.cells[str(label_c1)].merged_list
        merged_cells.append(label_c1)
        del self.cells[str(label_c1)]

        rotations = cp.rotation_matrices(params.axial_step)
        for id in merged_cells:
            id = int(id)
            self.cells[str(id)] = deepcopy(self.original_cells[str(id)])
            self.cells[str(id)].compute_axes(rotations, image_manager.mask.shape)
            self.cells[str(id)].recompute_outline(segments_manager.labels)
            if len(self.cells[str(id)].merged_list) == 0:
                self.cells[str(id)].merged_with = "No"

        for k in self.cells.keys():
            cp.assign_cell_color(self.cells[k], self.cells, self.cell_colors)
Exemplo n.º 5
0
    def split_cells(self, label_c1, params, segments_manager, image_manager):
        """Splits a previously merged cell."""
        merged_cells = self.cells[str(label_c1)].merged_list
        merged_cells.append(label_c1)
        del self.cells[str(label_c1)]

        rotations = cp.rotation_matrices(params.axial_step)
        for id in merged_cells:
            id = int(id)
            self.cells[str(id)] = deepcopy(self.original_cells[str(id)])
            self.cells[str(id)].compute_axes(rotations,
                                             image_manager.mask.shape)
            self.cells[str(id)].recompute_outline(segments_manager.labels)
            if len(self.cells[str(id)].merged_list) == 0:
                self.cells[str(id)].merged_with = "No"

        for k in self.cells.keys():
            cp.assign_cell_color(self.cells[k], self.cells, self.cell_colors)
Exemplo n.º 6
0
    def compute_cells(self, params, image_manager, segments_manager):
        """Creates a cell list that is stored on self.cells as a dict, where
        each cell id is a key of the dict.
        Also creates an overlay of the cells edges over both the base and
        fluor image.
        Requires the loading of the images and the computation of the
        segments"""

        self.cell_regions_from_labels(segments_manager.labels,
                                      params.imageloaderparams.pixel_size)
        rotations = cp.rotation_matrices(
            params.cellprocessingparams.axial_step)

        self.compute_box_axes(rotations, image_manager.mask.shape,
                              params.imageloaderparams.pixel_size)

        self.original_cells = deepcopy(self.cells)

        for k in list(self.cells.keys()):
            try:
                c = self.cells[k]
                if len(c.neighbours) > 0:

                    bestneigh = max(list(iter(c.neighbours.keys())),
                                    key=(lambda key: c.neighbours[key]))
                    bestinterface = c.neighbours[bestneigh]
                    cn = self.cells[str(int(bestneigh))]

                    if cp.check_merge(c, cn, rotations, bestinterface,
                                      image_manager.mask,
                                      params.cellprocessingparams):
                        self.merge_cells(c.label, cn.label, params,
                                         segments_manager, image_manager)
            except KeyError:
                print("Cell was already merged and deleted")

        for k in self.cells.keys():
            cp.assign_cell_color(self.cells[k], self.cells, self.cell_colors,
                                 params.imageloaderparams.pixel_size)
        self.overlay_cells(image_manager)
Exemplo n.º 7
0
    def remove_sept_from_membrane(self, maskshape):
        """Method used to remove the pixels of the septum that were still in
        the membrane"""

        # get outline points of septum mask
        septum_outline = []
        septum_mask = self.sept_mask
        septum_outline = self.get_outline_points(septum_mask)

        # compute box of the septum
        septum_box = self.compute_sept_box_fix(septum_outline, maskshape)

        # compute axis of the septum
        rotations = cp.rotation_matrices(5)
        points = np.asarray(septum_outline)  # in two columns, x, y
        width = len(points) + 1

        # no need to do more rotations, due to symmetry
        for rix in range(len(rotations) / 2 + 1):
            r = rotations[rix]
            nx0, ny0, nx1, ny1, nwidth = cp.bound_rectangle(
                np.asarray(np.dot(points, r)))

            if nwidth < width:
                width = nwidth
                x0 = nx0
                x1 = nx1
                y0 = ny0
                y1 = ny1
                angle = rix

        rotation = rotations[angle]

        # midpoints
        mx = (x1 + x0) / 2
        my = (y1 + y0) / 2

        # assumes long is X. This duplicates rotations but simplifies
        # using different algorithms such as brightness
        long = [[x0, my], [x1, my]]
        short = [[mx, y0], [mx, y1]]
        short = np.asarray(np.dot(short, rotation.T), dtype=np.int32)
        long = np.asarray(np.dot(long, rotation.T), dtype=np.int32)

        # check if axis fall outside area due to rounding errors
        bx0, by0, bx1, by1 = septum_box
        short[0] = cp.bounded_point(bx0, bx1, by0, by1, short[0])
        short[1] = cp.bounded_point(bx0, bx1, by0, by1, short[1])
        long[0] = cp.bounded_point(bx0, bx1, by0, by1, long[0])
        long[1] = cp.bounded_point(bx0, bx1, by0, by1, long[1])

        length = np.linalg.norm(long[1] - long[0])
        width = np.linalg.norm(short[1] - short[0])

        if length < width:
            dum = length
            length = width
            width = dum
            dum = short
            short = long
            long = dum

        # expand long axis to create a linmask
        bx0, by0 = long[0]
        bx1, by1 = long[1]

        h, w = self.sept_mask.shape
        linmask = np.zeros((h, w))

        h, w = self.sept_mask.shape[0] - 2, self.sept_mask.shape[1] - 2
        bin_factor = int(width)

        if bx1 - bx0 == 0:
            x, y = line(bx0, 0, bx0, w)
            linmask[x, y] = 1
            try:
                linmask = morphology.binary_dilation(
                    linmask, np.ones((bin_factor, bin_factor))).astype(float)
            except RuntimeError:
                bin_factor = 4
                linmask = morphology.binary_dilation(
                    linmask, np.ones((bin_factor, bin_factor))).astype(float)

        else:
            m = ((by1 - by0) / (bx1 - bx0))
            b = by0 - m * bx0

            if b < 0:
                l_y0 = 0
                l_x0 = int(-b / m)

                if h * m + b > w:
                    l_y1 = w
                    l_x1 = int((w - b) / m)

                else:
                    l_x1 = h
                    l_y1 = int(h * m + b)

            elif b > w:
                l_y0 = w
                l_x0 = int((w - b) / m)

                if h * m + b < 0:
                    l_y1 = 0
                    l_x1 = int(-b / m)

                else:
                    l_x1 = h
                    l_y1 = int((h - b) / m)

            else:
                l_x0 = 0
                l_y0 = int(b)

                if m > 0:
                    if h * m + b > w:
                        l_y1 = w
                        l_x1 = int((w - b) / m)
                    else:
                        l_x1 = h
                        l_y1 = int(h * m + b)

                elif m < 0:
                    if h * m + b < 0:
                        l_y1 = 0
                        l_x1 = int(-b / m)
                    else:
                        l_x1 = h
                        l_y1 = int(h * m + b)

                else:
                    l_x1 = h
                    l_y1 = int(b)

            x, y = line(l_x0, l_y0, l_x1, l_y1)
            linmask[x, y] = 1
            try:
                linmask = morphology.binary_dilation(
                    linmask, np.ones((bin_factor, bin_factor))).astype(float)
            except RuntimeError:
                bin_factor = 4
                linmask = morphology.binary_dilation(
                    linmask, np.ones((bin_factor, bin_factor))).astype(float)
        return img_as_float(linmask)
Exemplo n.º 8
0
    def remove_sept_from_membrane(self, maskshape):
        """Method used to remove the pixels of the septum that were still in
        the membrane"""

        # get outline points of septum mask
        septum_outline = []
        septum_mask = self.sept_mask
        septum_outline = self.get_outline_points(septum_mask)

        # compute box of the septum
        septum_box = self.compute_sept_box_fix(septum_outline, maskshape)

        # compute axis of the septum
        rotations = cp.rotation_matrices(5)
        points = np.asarray(septum_outline)  # in two columns, x, y
        width = len(points) + 1

        # no need to do more rotations, due to symmetry
        for rix in range(len(rotations) / 2 + 1):
            r = rotations[rix]
            nx0, ny0, nx1, ny1, nwidth = cp.bound_rectangle(np.asarray(np.dot(points, r)))

            if nwidth < width:
                width = nwidth
                x0 = nx0
                x1 = nx1
                y0 = ny0
                y1 = ny1
                angle = rix

        rotation = rotations[angle]

        # midpoints
        mx = (x1 + x0) / 2
        my = (y1 + y0) / 2

        # assumes long is X. This duplicates rotations but simplifies
        # using different algorithms such as brightness
        long = [[x0, my], [x1, my]]
        short = [[mx, y0], [mx, y1]]
        short = np.asarray(np.dot(short, rotation.T), dtype=np.int32)
        long = np.asarray(np.dot(long, rotation.T), dtype=np.int32)

        # check if axis fall outside area due to rounding errors
        bx0, by0, bx1, by1 = septum_box
        short[0] = cp.bounded_point(bx0, bx1, by0, by1, short[0])
        short[1] = cp.bounded_point(bx0, bx1, by0, by1, short[1])
        long[0] = cp.bounded_point(bx0, bx1, by0, by1, long[0])
        long[1] = cp.bounded_point(bx0, bx1, by0, by1, long[1])

        length = np.linalg.norm(long[1] - long[0])
        width = np.linalg.norm(short[1] - short[0])

        if length < width:
            dum = length
            length = width
            width = dum
            dum = short
            short = long
            long = dum

        # expand long axis to create a linmask
        bx0, by0 = long[0]
        bx1, by1 = long[1]

        h, w = self.sept_mask.shape
        linmask = np.zeros((h, w))

        h, w = self.sept_mask.shape[0] - 2, self.sept_mask.shape[1] - 2
        bin_factor = int(width)

        if bx1 - bx0 == 0:
            x, y = line(bx0, 0, bx0, w)
            linmask[x, y] = 1
            try:
                linmask = morphology.binary_dilation(linmask, np.ones((bin_factor, bin_factor))).astype(float)
            except RuntimeError:
                bin_factor = 4
                linmask = morphology.binary_dilation(linmask, np.ones((bin_factor, bin_factor))).astype(float)

        else:
            m = (by1 - by0) / (bx1 - bx0)
            b = by0 - m * bx0

            if b < 0:
                l_y0 = 0
                l_x0 = int(-b / m)

                if h * m + b > w:
                    l_y1 = w
                    l_x1 = int((w - b) / m)

                else:
                    l_x1 = h
                    l_y1 = int(h * m + b)

            elif b > w:
                l_y0 = w
                l_x0 = int((w - b) / m)

                if h * m + b < 0:
                    l_y1 = 0
                    l_x1 = int(-b / m)

                else:
                    l_x1 = h
                    l_y1 = int((h - b) / m)

            else:
                l_x0 = 0
                l_y0 = int(b)

                if m > 0:
                    if h * m + b > w:
                        l_y1 = w
                        l_x1 = int((w - b) / m)
                    else:
                        l_x1 = h
                        l_y1 = int(h * m + b)

                elif m < 0:
                    if h * m + b < 0:
                        l_y1 = 0
                        l_x1 = int(-b / m)
                    else:
                        l_x1 = h
                        l_y1 = int(h * m + b)

                else:
                    l_x1 = h
                    l_y1 = int(b)

            x, y = line(l_x0, l_y0, l_x1, l_y1)
            linmask[x, y] = 1
            try:
                linmask = morphology.binary_dilation(linmask, np.ones((bin_factor, bin_factor))).astype(float)
            except RuntimeError:
                bin_factor = 4
                linmask = morphology.binary_dilation(linmask, np.ones((bin_factor, bin_factor))).astype(float)
        return img_as_float(linmask)