def make_workspace(self, images):
        """Make a workspace """
        module = S.StackImages()
        pipeline = cpp.Pipeline()
        object_set = cpo.ObjectSet()
        image_set_list = cpi.ImageSetList()
        image_set = image_set_list.get_image_set(0)
        workspace = cpw.Workspace(
            pipeline,
            module,
            image_set,
            object_set,
            cpmeas.Measurements(),
            image_set_list,
        )

        # setup the input images
        names = [INPUT_IMAGE_BASENAME + str(i) for i, img in enumerate(images)]
        for img, nam in zip(images, names):
            image_set.add(nam, cpi.Image(img))

        # setup the input images settings
        module.stack_image_name.value = OUTPUT_IMAGE_NAME
        nimgs = len(images)
        while len(module.stack_channels) < nimgs:
            module.add_stack_channel_cb()
        for sc, imname in zip(module.stack_channels, names):
            sc.image_name.value = imname

        return workspace, module
Exemplo n.º 2
0
 def test_02_00_no_measurements(self):
     m = cpmeas.Measurements()
     m.add_measurement(OBJECT_NAME, M_FEATURES[0], np.array([], float))
     rules = R.Rules()
     rules.rules += [
         R.Rules.Rule(
             OBJECT_NAME, M_FEATURES[0], ">", 0, np.array([[1.0, -1.0], [-1.0, 1.0]])
         )
     ]
     score = rules.score(m)
     self.assertEqual(score.shape[0], 0)
     self.assertEqual(score.shape[1], 2)
Exemplo n.º 3
0
    def save_pipeline(self, workspace, outf=None):
        """Save the pipeline in Batch_data.mat

        Save the pickled image_set_list state in a setting and put this
        module in batch mode.

        if outf is not None, it is used as a file object destination.
        """
        if outf is None:
            if self.wants_default_output_directory.value:
                path = cpprefs.get_default_output_directory()
            else:
                path = cpprefs.get_absolute_path(
                    self.custom_output_directory.value)
            h5_path = os.path.join(path, F_BATCH_DATA_H5)
        else:
            h5_path = outf

        image_set_list = workspace.image_set_list
        pipeline = workspace.pipeline
        m = cpmeas.Measurements(copy=workspace.measurements, filename=h5_path)
        try:
            assert isinstance(pipeline, cpp.Pipeline)
            assert isinstance(m, cpmeas.Measurements)

            orig_pipeline = pipeline
            pipeline = pipeline.copy()
            # this use of workspace.frame is okay, since we're called from
            # prepare_run which happens in the main wx thread.
            target_workspace = cpw.Workspace(pipeline, None, None, None, m,
                                             image_set_list, workspace.frame)
            pipeline.prepare_to_create_batch(target_workspace, self.alter_path)
            bizarro_self = pipeline.module(self.module_num)
            bizarro_self.revision.value = int(
                re.sub(r"\.|rc\d{1}", "", cellprofiler.__version__))
            if self.wants_default_output_directory:
                bizarro_self.custom_output_directory.value = self.alter_path(
                    cpprefs.get_default_output_directory())
            bizarro_self.default_image_directory.value = self.alter_path(
                cpprefs.get_default_image_directory())
            bizarro_self.batch_mode.value = True
            pipeline.write_pipeline_measurement(m)
            orig_pipeline.write_pipeline_measurement(m, user_pipeline=True)
            #
            # Write the path mappings to the batch measurements
            #
            m.write_path_mappings([(mapping.local_directory.value,
                                    mapping.remote_directory.value)
                                   for mapping in self.mappings])
            return h5_path
        finally:
            m.close()
Exemplo n.º 4
0
def make_workspace(image, mask):
    """Make a workspace for testing FilterByObjectMeasurement"""
    module = S.SmoothMultichannel()
    pipeline = cpp.Pipeline()
    object_set = cpo.ObjectSet()
    image_set_list = cpi.ImageSetList()
    image_set = image_set_list.get_image_set(0)
    workspace = cpw.Workspace(pipeline, module, image_set, object_set,
                              cpmeas.Measurements(), image_set_list)
    image_set.add(INPUT_IMAGE_NAME, cpi.Image(image, mask, scale=1))
    module.image_name.value = INPUT_IMAGE_NAME
    module.filtered_image_name.value = OUTPUT_IMAGE_NAME
    return workspace, module
Exemplo n.º 5
0
 def test_02_01_score_one_positive(self):
     m = cpmeas.Measurements()
     m.add_measurement(OBJECT_NAME, M_FEATURES[0], np.array([1.5], float))
     rules = R.Rules()
     rules.rules += [
         R.Rules.Rule(
             OBJECT_NAME, M_FEATURES[0], ">", 0, np.array([[1.0, -0.5], [-2.0, 0.6]])
         )
     ]
     score = rules.score(m)
     self.assertEqual(score.shape[0], 1)
     self.assertEqual(score.shape[1], 2)
     self.assertAlmostEqual(score[0, 0], 1.0)
     self.assertAlmostEqual(score[0, 1], -0.5)
Exemplo n.º 6
0
 def test_03_01_score_two_rules(self):
     m = cpmeas.Measurements()
     m.add_measurement(OBJECT_NAME, M_FEATURES[0], np.array([1.5], float))
     m.add_measurement(OBJECT_NAME, M_FEATURES[1], np.array([-1.5], float))
     rules = R.Rules()
     rules.rules += [
         R.Rules.Rule(
             OBJECT_NAME, M_FEATURES[0], ">", 0, np.array([[1.0, -0.5], [-2.0, 0.6]])
         ),
         R.Rules.Rule(
             OBJECT_NAME, M_FEATURES[1], ">", 0, np.array([[1.5, -0.7], [-2.3, 0.9]])
         ),
     ]
     score = rules.score(m)
     self.assertEqual(score.shape[0], 1)
     self.assertEqual(score.shape[1], 2)
     self.assertAlmostEqual(score[0, 0], 1.0 - 2.3)
     self.assertAlmostEqual(score[0, 1], -0.5 + 0.9)
Exemplo n.º 7
0
 def test_02_03_score_one_nan(self):
     m = cpmeas.Measurements()
     m.add_measurement(OBJECT_NAME, M_FEATURES[0], np.array([np.NaN], float))
     rules = R.Rules()
     rules.rules += [
         R.Rules.Rule(
             OBJECT_NAME,
             M_FEATURES[0],
             ">",
             2.0,
             np.array([[1.0, -0.5], [-2.0, 0.6]]),
         )
     ]
     score = rules.score(m)
     self.assertEqual(score.shape[0], 1)
     self.assertEqual(score.shape[1], 2)
     self.assertTrue(score[0, 0], -2)
     self.assertTrue(score[0, 1], 0.6)
Exemplo n.º 8
0
def make_workspace(image, outlier_percentile):
    """Make a workspace """
    module = C.ClipRange()
    pipeline = cpp.Pipeline()
    object_set = cpo.ObjectSet()
    image_set_list = cpi.ImageSetList()
    image_set = image_set_list.get_image_set(0)
    workspace = cpw.Workspace(pipeline, module, image_set, object_set,
                              cpmeas.Measurements(), image_set_list)

    # setup the input images
    image_set.add(INPUT_IMAGE_NAME, cpi.Image(image))

    # setup the input images settings
    module.x_name.value = INPUT_IMAGE_NAME
    module.y_name.value = OUTPUT_IMAGE_NAME
    module.outlier_percentile.value = outlier_percentile

    return workspace, module
Exemplo n.º 9
0
 def test_03_02_score_two_objects(self):
     m = cpmeas.Measurements()
     m.add_measurement(OBJECT_NAME, M_FEATURES[0], np.array([1.5, 2.5], float))
     rules = R.Rules()
     rules.rules += [
         R.Rules.Rule(
             OBJECT_NAME,
             M_FEATURES[0],
             "<",
             2.0,
             np.array([[1.0, -0.5], [-2.0, 0.6]]),
         )
     ]
     score = rules.score(m)
     self.assertEqual(score.shape[0], 2)
     self.assertEqual(score.shape[1], 2)
     self.assertAlmostEqual(score[0, 0], 1.0)
     self.assertAlmostEqual(score[0, 1], -0.5)
     self.assertAlmostEqual(score[1, 0], -2.0)
     self.assertAlmostEqual(score[1, 1], 0.6)
Exemplo n.º 10
0
    def merge_files(destination, sources, force_headless=False):
        is_headless = force_headless or get_headless()
        if not is_headless:
            import wx
        if len(sources) == 0:
            return
        if not is_headless:
            progress = wx.ProgressDialog(
                "Writing " + destination,
                "Loading " + sources[0],
                maximum=len(sources) * 4 + 1,
                style=wx.PD_CAN_ABORT
                | wx.PD_APP_MODAL
                | wx.PD_ELAPSED_TIME
                | wx.PD_REMAINING_TIME,
            )
        count = 0
        try:
            pipeline = cpp.Pipeline()
            has_error = [False]

            def callback(caller, event):
                if isinstance(event, cpp.event.LoadException):
                    has_error = True
                    wx.MessageBox(
                        message="Could not load %s: %s" %
                        (sources[0], event.error),
                        caption="Failed to load %s" % sources[0],
                    )
                    has_error[0] = True

            pipeline.add_listener(callback)

            pipeline.load(sources[0])
            if has_error[0]:
                return
            if destination.lower().endswith(".h5"):
                mdest = cpmeas.Measurements(filename=destination,
                                            multithread=False)
                h5_dest = True
            else:
                mdest = cpmeas.Measurements(multithread=False)
                h5_dest = False
            for source in sources:
                if not is_headless:
                    count += 1
                    keep_going, skip = progress.Update(count,
                                                       "Loading " + source)
                    if not keep_going:
                        return
                if h5py.is_hdf5(source):
                    msource = cpmeas.Measurements(filename=source,
                                                  mode="r",
                                                  multithread=False)
                else:
                    msource = cpmeas.load_measurements(source)
                dest_image_numbers = mdest.get_image_numbers()
                source_image_numbers = msource.get_image_numbers()
                if len(dest_image_numbers) == 0 or len(
                        source_image_numbers) == 0:
                    offset_source_image_numbers = source_image_numbers
                else:
                    offset_source_image_numbers = (
                        np.max(dest_image_numbers) -
                        np.min(source_image_numbers) + source_image_numbers +
                        1)
                for object_name in msource.get_object_names():
                    if object_name in mdest.get_object_names():
                        destfeatures = mdest.get_feature_names(object_name)
                    else:
                        destfeatures = []
                    for feature in msource.get_feature_names(object_name):
                        if object_name == cpmeas.EXPERIMENT:
                            if not mdest.has_feature(object_name, feature):
                                src_value = msource.get_experiment_measurement(
                                    feature)
                                mdest.add_experiment_measurement(
                                    feature, src_value)
                            continue
                        src_values = msource.get_measurement(
                            object_name,
                            feature,
                            image_set_number=source_image_numbers)
                        mdest[object_name, feature,
                              offset_source_image_numbers] = src_values
                    destset = set(destfeatures)
            if not is_headless:
                keep_going, skip = progress.Update(count + 1,
                                                   "Saving to " + destination)
                if not keep_going:
                    return
            if not h5_dest:
                pipeline.save_measurements(destination, mdest)
        finally:
            if not is_headless:
                progress.Destroy()