Exemplo n.º 1
0
    print str(x[0]) + "\t" + str(x[1])
    f.write(str(x[0]) + "\t" + str(x[1]) + "\n")

f.write(
    "\n==========================================================================================="
)
print "==========================================================================================="

f.write("\n Dominio y numero de visitas de del historial conocido:\n")
print "\n Dominio y numero de visitas de del historial conocido:"
dm_to_id1 = list()
for domain, count in domain_to_id_counts1:
    neigh1 = extract_id_knowledge.build_hop_neighborhood(
        domain, 1, domain_to_id_map1, id_to_domain_map1_pruned)
    depth1 = len(neigh1)
    num_doms1 = len(census_util.get_values_from_keys(neigh1,
                                                     domain_to_fp_map1))

    neigh2 = extract_id_knowledge.build_hop_neighborhood(
        domain, 2, domain_to_id_map1, id_to_domain_map1_pruned)
    depth2 = len(neigh2)
    num_doms2 = len(census_util.get_values_from_keys(neigh2,
                                                     domain_to_fp_map1))

    dm_to_id1.append(count)
    print str(domain) + "\t" + str(count) + "\t" + str(depth1) + "\t" + str(
        num_doms1)
    print "\t" + str(depth2) + "\t" + str(num_doms2)
    f.write(
        str(domain) + "\t" + str(count) + "\t" + str(depth1) + "\t" +
        str(num_doms1) + "\t" + str(depth2) + "\t" + str(num_doms2) + "\n")
def output_sync_measurements(db1, db2, db_to_analyze=1):

    print "Extracting persistent identifiers from each crawl..."
    # extract the cookie ids on a per-database basis
    cookies_db1 = extract_cookie_ids.extract_persistent_ids_from_dbs([db1])
    cookies_db2 = extract_cookie_ids.extract_persistent_ids_from_dbs([db2])

    print "Grabbing cookies..."

    # get the cookies that appear to be consistent ids and extract their values from db1
    id_cookies = extract_cookie_ids.extract_common_id_cookies(
        [cookies_db1, cookies_db2])

    if db_to_analyze == 1:
        domain_to_fp_map = census_util.build_domain_map(db1)
        known_ids = extract_cookie_ids.extract_known_cookies_from_db(
            db1, id_cookies)
    else:
        domain_to_fp_map = census_util.build_domain_map(db2)
        known_ids = extract_cookie_ids.extract_known_cookies_from_db(
            db2, id_cookies)

    # remove known opt-out cookie strings
    for key in known_ids.keys():
        if (known_ids[key] == '0' \
            or known_ids[key] == '00000000-0000-0000-0000-000000000000' \
            or known_ids[key] == '0000000000000000' \
            or known_ids[key] == 'AAAAAAAAAAAAAAAAAAAAAA'):
            del known_ids[key]

    print "Build mapping between cookies, domains, and first parties..."

    # build the three maps that are most fundamental to the analysis
    id_to_cookie_map = extract_cookie_ids.map_ids_to_cookies(known_ids)
    id_to_cookie_map_pruned = census_util.prune_list_dict(id_to_cookie_map)

    if db_to_analyze == 1:
        id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(
            id_to_cookie_map, db1)
    else:
        id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(
            id_to_cookie_map, db2)
    id_to_domain_map = census_util.prune_list_dict(id_to_domain_map)

    domain_to_id_map = extract_id_knowledge.map_domains_to_known_ids(
        id_to_domain_map)
    domain_to_id_map_pruned = census_util.prune_list_dict(domain_to_id_map)

    print "Dumping results..."
    print "==========================================================================================="
    print "\nID and # of domains with knowledge of it:"

    id_to_domain_counts = census_util.sort_tuples([
        (key, len(id_to_domain_map[key])) for key in id_to_domain_map
    ])
    print id_to_domain_counts
    id_to_dm = list()
    for x in id_to_domain_counts:
        id_to_dm.append(x[1])
        print str(x[0]) + "\t" + str(x[1])

    print "==========================================================================================="
    print "\nDomain and IDs that it has knowledge of:"

    domain_to_id_counts = census_util.sort_tuples([
        (key, len(domain_to_id_map[key])) for key in domain_to_id_map
    ])
    print domain_to_id_counts

    print "==========================================================================================="
    print "\nDomain and number of visits from history known:"

    dm_to_id = list()
    for domain, count in domain_to_id_counts:
        neigh1 = build_hop_neighborhood(domain, 1, domain_to_id_map,
                                        id_to_domain_map)
        depth1 = len(neigh1)
        num_doms1 = len(
            census_util.get_values_from_keys(neigh1, domain_to_fp_map))

        neigh2 = build_hop_neighborhood(domain, 2, domain_to_id_map,
                                        id_to_domain_map)
        depth2 = len(neigh2)
        num_doms2 = len(
            census_util.get_values_from_keys(neigh2, domain_to_fp_map))

        dm_to_id.append(count)
        print str(domain) + "\t" + str(count) + "\t" + str(
            depth1) + "\t" + str(num_doms1) + "\t" + str(depth2) + "\t" + str(
                num_doms2)

    # BASIC STATS
    print "==========================================================================================="
    print "\n Summary statistics:"
    print "NUMBER OF IDS: " + str(len(id_to_cookie_map))
    print "NUMBER OF ID COOKIES: " + str(len(known_ids))
    print "NUMBER OF IDS IN SYNCS: " + str(len(id_to_domain_map))
    print "NUMBER OF ID COOKIES IN SYNC: " + str(
        sum([len(id_to_cookie_map[key]) for key in id_to_domain_map]))
    print "NUMBER OF DOMAINS IN SYNC " + str(len(domain_to_id_map))
    print "ID TO DOMAIN " + str(min(id_to_dm)) + " | " + str(
        numpy.mean(id_to_dm)) + ' | ' + str(
            numpy.median(id_to_dm)) + " | " + str(max(id_to_dm))
    print "DOMAIN TO ID " + str(min(dm_to_id)) + " | " + str(
        numpy.mean(dm_to_id)) + ' | ' + str(
            numpy.median(dm_to_id)) + " | " + str(max(dm_to_id))
def connect_graph_through_sync(baseline_db, pre_sync_db, post_sync_db):
    print "Extracting initial set of ID cookies"
    cookies_baseline = extract_cookie_ids.extract_persistent_ids_from_dbs(
        [baseline_db])
    cookies_pre_sync = extract_cookie_ids.extract_persistent_ids_from_dbs(
        [pre_sync_db])
    cookies_post_sync = extract_cookie_ids.extract_persistent_ids_from_dbs(
        [post_sync_db])

    print "Extracting the domain to first-party mappings"
    fp_map_pre_sync = census_util.build_domain_map(pre_sync_db)
    fp_map_post_sync = census_util.build_domain_map(post_sync_db)

    print "Building the sync graphs"
    mappings = [
    ]  # first mapping is ID to domain - second is domain to ID; 0 is pre_sync 1 is post_sync
    for cookie_database, cookies in [(pre_sync_db, cookies_pre_sync),
                                     (post_sync_db, cookies_post_sync)]:
        print "Building the graph for " + cookie_database
        id_cookies = extract_cookie_ids.extract_common_id_cookies(
            [cookies_baseline, cookies])
        id_cookies_with_val = extract_cookie_ids.extract_known_cookies_from_db(
            cookie_database, id_cookies)

        print "Building id to cookie mapping"
        id_to_cookie_map = extract_cookie_ids.map_ids_to_cookies(
            id_cookies_with_val)

        print "Building id to domain mappings"
        id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(
            id_to_cookie_map, cookie_database)
        id_to_domain_map = census_util.prune_list_dict(id_to_domain_map)

        print "Building domain to id mappings"
        domain_to_id_map = extract_id_knowledge.map_domains_to_known_ids(
            id_to_domain_map)
        #domain_to_id_map = census_util.prune_list_dict(domain_to_id_map)

        mappings.append((id_to_cookie_map, id_to_domain_map, domain_to_id_map))

    print "Pull out respawned and resynced IDs"
    respawned_id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(
        mappings[0][0], post_sync_db)
    respawned_id_to_domain_map = census_util.prune_list_dict(
        respawned_id_to_domain_map)

    respawned_domain_to_id_map = extract_id_knowledge.map_domains_to_known_ids(
        respawned_id_to_domain_map)
    respawned_domain_to_id_map = census_util.prune_list_dict(
        respawned_domain_to_id_map)

    print "Printing all possible ids"
    old_ids = mappings[0][1].keys()
    old_domains = mappings[0][2].keys()
    new_ids = mappings[1][1].keys()
    new_domains = mappings[1][2].keys()
    all_ids = set(old_ids).union(set(new_ids))
    all_domains = set(old_domains).union(set(new_domains))
    print "IDS:\t" + str(len(old_ids)) + "\t" + str(len(new_ids)) + "\t" + str(
        len(all_ids))
    print "DOMAINS:\t" + str(len(old_domains)) + "\t" + str(
        len(new_domains)) + "\t" + str(len(all_domains))

    print "Examining graph linkage"
    for respawned_id in respawned_id_to_domain_map:
        old_neighborhood = build_hop_neighborhood(respawned_id, float("inf"),
                                                  mappings[0][1],
                                                  mappings[0][2])
        old_neighborhood_domains = census_util.get_values_from_keys(
            old_neighborhood, mappings[0][1])
        old_fp_domains = census_util.get_values_from_keys(
            old_neighborhood_domains, fp_map_pre_sync)

        new_neighborhood = build_hop_neighborhood(respawned_id, float("inf"),
                                                  mappings[1][1],
                                                  mappings[1][2])
        new_neighborhood_domains = census_util.get_values_from_keys(
            new_neighborhood, mappings[1][1])
        new_fp_domains = census_util.get_values_from_keys(
            new_neighborhood_domains, fp_map_post_sync)

        full_neighborhood = set(old_neighborhood).union(set(new_neighborhood))
        full_neighborhood_domains = set(old_neighborhood_domains).union(
            set(new_neighborhood_domains))
        full_fp_domains = set(old_fp_domains).union(set(new_fp_domains))

        print respawned_id + "\t" + str(len(old_neighborhood)) + "\t" + str(
            len(new_neighborhood)) + "\t" + str(len(full_neighborhood))
        print respawned_id + "\t" + str(
            len(old_neighborhood_domains)) + "\t" + str(
                len(new_neighborhood_domains)) + "\t" + str(
                    len(full_neighborhood_domains))
        print respawned_id + "\t" + str(len(old_fp_domains)) + "\t" + str(
            len(new_fp_domains)) + "\t" + str(len(full_fp_domains))
def output_sync_measurements(db1, visit_id1, db2, visit_id2, db_to_analyze=1):

    global global_known_ids
    global global_id_to_domain_map
    global global_id_to_cookie_map
    
    print("Extracting persistent identifiers from each crawl...")
    # extract the cookie ids on a per-database basis
    cookies_db1 = extract_cookie_ids.extract_persistent_ids_from_dbs([db1], visit_id1)
    cookies_db2 = extract_cookie_ids.extract_persistent_ids_from_dbs([db2], visit_id2)
    
    print("Grabbing cookies...")

    # get the cookies that appear to be consistent ids and extract their values from db1
    id_cookies = extract_cookie_ids.extract_common_id_cookies([cookies_db1, cookies_db2])
    
    if db_to_analyze == 1:
        domain_to_fp_map = census_util.build_domain_map(db1, visit_id1)
        known_ids = extract_cookie_ids.extract_known_cookies_from_db(db1, id_cookies, visit_id1)
    else:
        domain_to_fp_map = census_util.build_domain_map(db2, visit_id2)
        known_ids = extract_cookie_ids.extract_known_cookies_from_db(db2, id_cookies, visit_id2)

    # remove known opt-out cookie strings
    for key in known_ids.keys():
        if (known_ids[key] == '0' \
            or known_ids[key] == '00000000-0000-0000-0000-000000000000' \
            or known_ids[key] == '0000000000000000' \
            or known_ids[key] == 'AAAAAAAAAAAAAAAAAAAAAA'):
            del known_ids[key]

    # Creating Global version for known_ids
    for key in known_ids.keys():
        if key not in global_known_ids.keys():
            global_known_ids[key] = []
            global_known_ids[key].append(known_ids[key])
        else:
            if known_ids[key] not in global_known_ids[key]:
                global_known_ids[key].append(known_ids[key])
        
    global_id_to_cookie_map = extract_cookie_ids.map_list_of_ids_to_cookies(global_known_ids)

    print("Build mapping between cookies, domains, and first parties...")

    # build the three maps that are most fundamental to the analysis
    id_to_cookie_map = extract_cookie_ids.map_ids_to_cookies(known_ids)
    id_to_cookie_map_pruned = census_util.prune_list_dict(id_to_cookie_map)

    if db_to_analyze == 1:
        id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(defaultdict(list), id_to_cookie_map, db1, visit_id1)
        global_id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(global_id_to_domain_map, global_id_to_cookie_map, db1, visit_id1)
    else:
        id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(defaultdict(list), id_to_cookie_map, db2, visit_id2)
        global_id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(global_id_to_domain_map, global_id_to_cookie_map, db2, visit_id2)
    id_to_domain_map = census_util.prune_list_dict(id_to_domain_map)
    
    domain_to_id_map = extract_id_knowledge.map_domains_to_known_ids(id_to_domain_map)
    domain_to_id_map_pruned = census_util.prune_list_dict(domain_to_id_map)

    print("Dumping results...")
    # ID and # of domains with knowledge of it
    
    id_to_domain_counts = census_util.sort_tuples([(key, len(id_to_domain_map[key])) for key in id_to_domain_map])
    # print(id_to_domain_counts)
    id_to_dm = list()
    for x in id_to_domain_counts:
        id_to_dm.append(x[1])
        # print(str(x[0]) + "\t" + str(x[1]))

    # Domain and IDs that it has knowledge of:")
    domain_to_id_counts = census_util.sort_tuples([(key, len(domain_to_id_map[key])) for key in domain_to_id_map])
    # print(domain_to_id_counts)

    dm_to_id = list()
    for domain, count in domain_to_id_counts:
        neigh1 = build_hop_neighborhood(domain, 1, domain_to_id_map, id_to_domain_map)
        depth1 = len(neigh1)
        num_doms1 = len(census_util.get_values_from_keys(neigh1, domain_to_fp_map))

        neigh2 = build_hop_neighborhood(domain, 2, domain_to_id_map, id_to_domain_map)
        depth2 = len(neigh2)
        num_doms2 = len(census_util.get_values_from_keys(neigh2, domain_to_fp_map))

        dm_to_id.append(count)
        # print(str(domain) + "\t" + str(count) + "\t" + str(depth1) + "\t" + str(num_doms1) + "\t" + str(depth2) + "\t" + str(num_doms2))

    a = str(len(id_to_cookie_map))
    b = str(len(known_ids))
    c = str(len(id_to_domain_map))
    id_cookies_in_sync = [cookie for key in id_to_domain_map for cookie in id_to_cookie_map[key]]
    d = str(len(list(set(id_cookies_in_sync))))
    e = str(len(domain_to_id_map))
    if len(dm_to_id) == 0:
        f = "0 | 0 | 0 | 0 "
    else:
        f = str(min(dm_to_id)) + " | "  + str(round(numpy.mean(dm_to_id), 2)) + ' | ' + str(round(numpy.median(dm_to_id), 2)) + " | " + str(max(dm_to_id))
    if len(id_to_dm) == 0:
        g = "0 | 0 | 0 | 0 "
    else:
    	g = str(min(id_to_dm)) + " | "  + str(round(numpy.mean(id_to_dm), 2)) + ' | ' + str(round(numpy.median(id_to_dm), 2)) + " | " + str(max(id_to_dm))

    return a, b, c, d, e, f, g
def output_sync_measurements(db1, db2, db_to_analyze=1):
    
    print "Extracting persistent identifiers from each crawl..."
    # extract the cookie ids on a per-database basis
    cookies_db1 = extract_cookie_ids.extract_persistent_ids_from_dbs([db1])
    cookies_db2 = extract_cookie_ids.extract_persistent_ids_from_dbs([db2])
    
    print "Grabbing cookies..."

    # get the cookies that appear to be consistent ids and extract their values from db1
    id_cookies = extract_cookie_ids.extract_common_id_cookies([cookies_db1, cookies_db2])
    
    if db_to_analyze == 1:
        domain_to_fp_map = census_util.build_domain_map(db1)
        known_ids = extract_cookie_ids.extract_known_cookies_from_db(db1, id_cookies)
    else:
        domain_to_fp_map = census_util.build_domain_map(db2)
        known_ids = extract_cookie_ids.extract_known_cookies_from_db(db2, id_cookies)

    # remove known opt-out cookie strings
    for key in known_ids.keys():
        if (known_ids[key] == '0' \
            or known_ids[key] == '00000000-0000-0000-0000-000000000000' \
            or known_ids[key] == '0000000000000000' \
            or known_ids[key] == 'AAAAAAAAAAAAAAAAAAAAAA'):
            del known_ids[key]

    print "Build mapping between cookies, domains, and first parties..."

    # build the three maps that are most fundamental to the analysis
    id_to_cookie_map = extract_cookie_ids.map_ids_to_cookies(known_ids)
    id_to_cookie_map_pruned = census_util.prune_list_dict(id_to_cookie_map)

    if db_to_analyze == 1:
        id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(id_to_cookie_map, db1)
    else:
        id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(id_to_cookie_map, db2)
    id_to_domain_map = census_util.prune_list_dict(id_to_domain_map)

    domain_to_id_map = extract_id_knowledge.map_domains_to_known_ids(id_to_domain_map)
    domain_to_id_map_pruned = census_util.prune_list_dict(domain_to_id_map)

    print "Dumping results..."
    print "==========================================================================================="
    print "\nID and # of domains with knowledge of it:"

    id_to_domain_counts = census_util.sort_tuples([(key, len(id_to_domain_map[key])) for key in id_to_domain_map])
    print id_to_domain_counts
    id_to_dm = list()
    for x in id_to_domain_counts:
        id_to_dm.append(x[1])
        print str(x[0]) + "\t" + str(x[1])
    
    print "==========================================================================================="
    print "\nDomain and IDs that it has knowledge of:"

    domain_to_id_counts = census_util.sort_tuples([(key, len(domain_to_id_map[key])) for key in domain_to_id_map])
    print domain_to_id_counts

    print "==========================================================================================="
    print "\nDomain and number of visits from history known:"

    dm_to_id = list()
    for domain, count in domain_to_id_counts:
        neigh1 = build_hop_neighborhood(domain, 1, domain_to_id_map, id_to_domain_map)
        depth1 = len(neigh1)
        num_doms1 = len(census_util.get_values_from_keys(neigh1, domain_to_fp_map))

        neigh2 = build_hop_neighborhood(domain, 2, domain_to_id_map, id_to_domain_map)
        depth2 = len(neigh2)
        num_doms2 = len(census_util.get_values_from_keys(neigh2, domain_to_fp_map))

        dm_to_id.append(count)
        print str(domain) + "\t" + str(count) + "\t" + str(depth1) + "\t" + str(num_doms1) + "\t" + str(depth2) + "\t" + str(num_doms2)
    
    # BASIC STATS
    print "==========================================================================================="
    print "\n Summary statistics:"
    print "NUMBER OF IDS: " + str(len(id_to_cookie_map))
    print "NUMBER OF ID COOKIES: " + str(len(known_ids))
    print "NUMBER OF IDS IN SYNCS: " + str(len(id_to_domain_map))
    print "NUMBER OF ID COOKIES IN SYNC: " + str(sum([len(id_to_cookie_map[key]) for key in id_to_domain_map]))
    print "NUMBER OF DOMAINS IN SYNC " + str(len(domain_to_id_map))
    print "ID TO DOMAIN " + str(min(id_to_dm)) + " | "  + str(numpy.mean(id_to_dm)) + ' | ' + str(numpy.median(id_to_dm)) + " | " + str(max(id_to_dm))
    print "DOMAIN TO ID " + str(min(dm_to_id)) + " | "  + str(numpy.mean(dm_to_id)) + ' | ' + str(numpy.median(dm_to_id)) + " | " + str(max(dm_to_id))
def connect_graph_through_sync(baseline_db, pre_sync_db, post_sync_db):
    print "Extracting initial set of ID cookies"
    cookies_baseline = extract_cookie_ids.extract_persistent_ids_from_dbs([baseline_db])
    cookies_pre_sync = extract_cookie_ids.extract_persistent_ids_from_dbs([pre_sync_db])
    cookies_post_sync = extract_cookie_ids.extract_persistent_ids_from_dbs([post_sync_db])

    print "Extracting the domain to first-party mappings"
    fp_map_pre_sync = census_util.build_domain_map(pre_sync_db)
    fp_map_post_sync = census_util.build_domain_map(post_sync_db)

    print "Building the sync graphs"
    mappings = [] # first mapping is ID to domain - second is domain to ID; 0 is pre_sync 1 is post_sync
    for cookie_database, cookies in [(pre_sync_db, cookies_pre_sync), (post_sync_db, cookies_post_sync)]:
        print "Building the graph for " + cookie_database
        id_cookies = extract_cookie_ids.extract_common_id_cookies([cookies_baseline, cookies])
        id_cookies_with_val = extract_cookie_ids.extract_known_cookies_from_db(cookie_database, id_cookies)
        
        print "Building id to cookie mapping"
        id_to_cookie_map = extract_cookie_ids.map_ids_to_cookies(id_cookies_with_val)

        print "Building id to domain mappings"
        id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(id_to_cookie_map, cookie_database)
        id_to_domain_map = census_util.prune_list_dict(id_to_domain_map)

        print "Building domain to id mappings"
        domain_to_id_map = extract_id_knowledge.map_domains_to_known_ids(id_to_domain_map)
        #domain_to_id_map = census_util.prune_list_dict(domain_to_id_map)

        mappings.append((id_to_cookie_map, id_to_domain_map, domain_to_id_map))

    print "Pull out respawned and resynced IDs"
    respawned_id_to_domain_map = extract_id_knowledge.build_id_knowledge_dictionary(mappings[0][0], post_sync_db)
    respawned_id_to_domain_map = census_util.prune_list_dict(respawned_id_to_domain_map)
    
    respawned_domain_to_id_map = extract_id_knowledge.map_domains_to_known_ids(respawned_id_to_domain_map)  
    respawned_domain_to_id_map = census_util.prune_list_dict(respawned_domain_to_id_map)

    print "Printing all possible ids"
    old_ids = mappings[0][1].keys()
    old_domains = mappings[0][2].keys()
    new_ids = mappings[1][1].keys()
    new_domains = mappings[1][2].keys()
    all_ids = set(old_ids).union(set(new_ids))
    all_domains = set(old_domains).union(set(new_domains))
    print "IDS:\t" + str(len(old_ids)) + "\t" + str(len(new_ids)) + "\t" + str(len(all_ids))
    print "DOMAINS:\t" + str(len(old_domains)) + "\t" + str(len(new_domains)) + "\t" + str(len(all_domains))
    
    print "Examining graph linkage"
    for respawned_id in respawned_id_to_domain_map:
        old_neighborhood = build_hop_neighborhood(respawned_id, float("inf"), mappings[0][1], mappings[0][2])
        old_neighborhood_domains = census_util.get_values_from_keys(old_neighborhood, mappings[0][1])
        old_fp_domains = census_util.get_values_from_keys(old_neighborhood_domains, fp_map_pre_sync)

        new_neighborhood = build_hop_neighborhood(respawned_id, float("inf"), mappings[1][1], mappings[1][2])
        new_neighborhood_domains = census_util.get_values_from_keys(new_neighborhood, mappings[1][1])   
        new_fp_domains = census_util.get_values_from_keys(new_neighborhood_domains, fp_map_post_sync)

        full_neighborhood = set(old_neighborhood).union(set(new_neighborhood))
        full_neighborhood_domains = set(old_neighborhood_domains).union(set(new_neighborhood_domains))
        full_fp_domains = set(old_fp_domains).union(set(new_fp_domains))

        print respawned_id + "\t" + str(len(old_neighborhood)) + "\t" + str(len(new_neighborhood)) + "\t" + str(len(full_neighborhood))
        print respawned_id + "\t" + str(len(old_neighborhood_domains)) + "\t" + str(len(new_neighborhood_domains)) + "\t" + str(len(full_neighborhood_domains))
        print respawned_id + "\t" + str(len(old_fp_domains)) + "\t" + str(len(new_fp_domains)) + "\t" + str(len(full_fp_domains))