Exemplo n.º 1
0
    def test_DSG_create_contiguous(self):
        """Test the creation of a contiguous ragged array."""
        # Define the ragged array values
        ragged_array = numpy.array([1, 3, 4, 3, 6], dtype="float32")
        # Define the count array values
        count_array = [2, 3]

        # Initialise the count variable
        count_variable = cfdm.Count(data=cfdm.Data(count_array))
        count_variable.set_property(
            "long_name", "number of obs for this timeseries"
        )

        # Initialise the contiguous ragged array object
        array = cfdm.RaggedContiguousArray(
            compressed_array=cfdm.Data(ragged_array),
            shape=(2, 3),
            size=6,
            ndim=2,
            count_variable=count_variable,
        )

        # Initialize the auxiliary coordinate construct with the
        # ragged array and set some properties
        z = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(array),
            properties={
                "standard_name": "height",
                "units": "km",
                "positive": "up",
            },
        )

        self.assertTrue(
            (
                z.data.array
                == numpy.ma.masked_array(
                    data=[[1.0, 3.0, 99], [4.0, 3.0, 6.0]],
                    mask=[[False, False, True], [False, False, False]],
                    fill_value=1e20,
                    dtype="float32",
                )
            ).all()
        )

        self.assertEqual(z.data.get_compression_type(), "ragged contiguous")

        self.assertTrue(
            (
                z.data.compressed_array
                == numpy.array([1.0, 3.0, 4.0, 3.0, 6.0], dtype="float32")
            ).all()
        )

        self.assertTrue(
            (z.data.get_count().data.array == numpy.array([2, 3])).all()
        )
Exemplo n.º 2
0
    def test_AuxiliaryCoordinate_interior_ring(self):
        c = cfdm.AuxiliaryCoordinate()

        i = cfdm.InteriorRing(data=cfdm.Data(numpy.arange(10).reshape(5, 2)))

        c.set_interior_ring(i)
        self.assertTrue(c.has_interior_ring())
        self.assertIsInstance(c.get_interior_ring(), cfdm.InteriorRing)
        self.assertIsInstance(c.del_interior_ring(None), cfdm.InteriorRing)
        self.assertFalse(c.has_interior_ring())
        self.assertIsNone(c.del_interior_ring(None))
Exemplo n.º 3
0
    def test_AuxiliaryCoordinate_insert_dimension(self):
        f = cfdm.read(self.filename)[0]
        d = f.dimension_coordinates('grid_longitude').value()
        x = cfdm.AuxiliaryCoordinate(source=d)

        self.assertEqual(x.shape, (9,))
        self.assertEqual(x.bounds.shape, (9, 2))

        y = x.insert_dimension(0)
        self.assertEqual(y.shape, (1, 9))
        self.assertEqual(y.bounds.shape, (1, 9, 2), y.bounds.shape)

        x.insert_dimension(-1, inplace=True)
        self.assertEqual(x.shape, (9, 1))
        self.assertEqual(x.bounds.shape, (9, 1, 2), x.bounds.shape)
Exemplo n.º 4
0
    def test_DSG_create_contiguous(self):
        if self.test_only and inspect.stack()[0][3] not in self.test_only:
            return

        # Define the ragged array values
        ragged_array = numpy.array([1, 3, 4, 3, 6], dtype='float32')
        # Define the count array values
        count_array = [2, 3]

        # Initialise the count variable
        count_variable = cfdm.Count(data=cfdm.Data(count_array))
        count_variable.set_property('long_name',
                                    'number of obs for this timeseries')

        # Initialise the contiguous ragged array object
        array = cfdm.RaggedContiguousArray(
            compressed_array=cfdm.Data(ragged_array),
            shape=(2, 3), size=6, ndim=2,
            count_variable=count_variable)

        # Initialize the auxiliary coordinate construct with the
        # ragged array and set some properties
        z = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(array),
            properties={'standard_name': 'height',
                        'units': 'km',
                        'positive': 'up'})

        self.assertTrue((z.data.array == numpy.ma.masked_array(
            data=[[1.0, 3.0, 99],
                  [4.0, 3.0, 6.0]],
            mask=[[False, False,  True],
                  [False, False, False]],
            fill_value=1e+20,
            dtype='float32')).all())

        self.assertEqual(z.data.get_compression_type(), 'ragged contiguous')

        self.assertTrue((z.data.compressed_array == numpy.array(
            [1., 3., 4., 3., 6.], dtype='float32')).all())

        self.assertTrue((z.data.get_count().data.array == numpy.array(
            [2, 3])).all())
Exemplo n.º 5
0
        "units": "degrees"
    },
    data=cfdm.Data(numpy.arange(9.0)),
    bounds=cfdm.Bounds(data=cfdm.Data(numpy.arange(18).reshape(9, 2))),
)

dim_T = tas.set_construct(dimension_coordinate_T, axes=axis_T)
dim_Z = tas.set_construct(dimension_coordinate_Z, axes=axis_Z)
dim_Y = tas.set_construct(dimension_coordinate_Y, axes=axis_Y)
dim_X = tas.set_construct(dimension_coordinate_X, axes=axis_X)

# Create and set the auxiliary coordinate constructs
auxiliary_coordinate_lat = cfdm.AuxiliaryCoordinate(
    properties={
        "standard_name": "latitude",
        "units": "degrees_north"
    },
    data=cfdm.Data(numpy.arange(90.0).reshape(10, 9)),
)

auxiliary_coordinate_lon = cfdm.AuxiliaryCoordinate(
    properties={
        "standard_name": "longitude",
        "units": "degrees_east"
    },
    data=cfdm.Data(numpy.arange(90.0).reshape(9, 10)),
)

array = numpy.ma.array(list("abcdefghij"))
array[0] = numpy.ma.masked
auxiliary_coordinate_name = cfdm.AuxiliaryCoordinate(
Exemplo n.º 6
0
    def test_create_field_2(self):
        """Test ab initio creation of a second variation of field."""
        # Dimension coordinates
        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.0)))
        dim1.set_property("standard_name", "projection_y_coordinate")
        dim1.set_property("units", "m")

        data = numpy.arange(9.0) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property("standard_name", "projection_x_coordinate")
        dim0.set_property("units", "m")

        array = dim0.data.array

        array = numpy.array([array - 0.5, array + 0.5]).transpose((1, 0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim2 = cfdm.DimensionCoordinate(
            data=cfdm.Data([1.5]),
            bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.0]])),
        )
        dim2.set_property(
            "standard_name", "atmosphere_hybrid_height_coordinate"
        )

        # Auxiliary coordinates
        aux2 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(numpy.arange(-45, 45, dtype="int32").reshape(10, 9))
        )
        aux2.set_property("units", "degree_N")
        aux2.set_property("standard_name", "latitude")

        aux3 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(numpy.arange(60, 150, dtype="int32").reshape(9, 10))
        )
        aux3.set_property("standard_name", "longitude")
        aux3.set_property("units", "degreeE")

        array = numpy.ma.array(
            [
                "alpha",
                "beta",
                "gamma",
                "delta",
                "epsilon",
                "zeta",
                "eta",
                "theta",
                "iota",
                "kappa",
            ],
            dtype="S",
        )
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property("standard_name", "greek_letters")

        # Domain ancillaries
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.0]))
        ak.set_property("units", "m")
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.0]])))

        bk = cfdm.DomainAncillary(data=cfdm.Data([20.0]))
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.0]])))

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1 + numpy.arange(90.0).reshape(9, 10) * 1234)
        )
        msr0.set_measure("area")
        msr0.set_property("units", "km2")

        # Data
        data = cfdm.Data(numpy.arange(90.0).reshape(10, 9))

        properties = {"units": "m s-1"}

        f = cfdm.Field(properties=properties)
        f.set_property("standard_name", "eastward_wind")

        axisX = f.set_construct(cfdm.DomainAxis(9))
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])

        x = f.set_construct(dim0, axes=[axisX])
        y = f.set_construct(dim1, axes=[axisY])
        z = f.set_construct(dim2, axes=[axisZ])

        lat = f.set_construct(aux2, axes=[axisY, axisX])
        lon = f.set_construct(aux3, axes=[axisX, axisY])
        f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=[axisZ])
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                "grid_mapping_name": "transverse_mercator",
                "latitude_of_projection_origin": 49.0,
                "longitude_of_central_meridian": -2.0,
                "scale_factor_at_central_meridian": 0.9996012717,
                "false_easting": 400000.0,
                "false_northing": -100000.0,
                "unit": "metre",
            }
        )

        datum0 = cfdm.Datum(
            parameters={
                "inverse_flattening": 299.3249646,
                "longitude_of_prime_meridian": 0.0,
                "semi_major_axis": 6377563.396,
            }
        )

        ref0 = cfdm.CoordinateReference(
            coordinates=[x, y],
            datum=datum0,
            coordinate_conversion=coordinate_conversion,
        )

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={"grid_mapping_name": "latitude_longitude"}
        )

        datum2 = cfdm.Datum(
            parameters={
                "longitude_of_prime_meridian": 0.0,
                "semi_major_axis": 6378137.0,
                "inverse_flattening": 298.257223563,
            }
        )

        ref2 = cfdm.CoordinateReference(
            coordinates=[lat, lon],
            datum=datum2,
            coordinate_conversion=coordinate_conversion,
        )

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)
        f.set_construct(ref2)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property("standard_name", "surface_altitude")
        orog.set_property("units", "m")
        orog = f.set_construct(orog, axes=[axisY, axisX])

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                "standard_name": "atmosphere_hybrid_height_coordinate"
            },
            domain_ancillaries={"orog": orog, "a": ak, "b": bk},
        )

        ref1 = cfdm.CoordinateReference(
            coordinates=[z],
            datum=datum0,
            coordinate_conversion=coordinate_conversion,
        )

        f.set_construct(ref1)

        # Field ancillary variables
        g = f.copy()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryA"
        f.set_construct(anc, axes=[axisY, axisX])

        g = f[0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryB"
        f.set_construct(anc, axes=[axisX])

        g = f[..., 0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryC"
        f.set_construct(anc, axes=[axisY])

        f.set_property("flag_values", numpy.array([1, 2, 4], "int32"))
        f.set_property("flag_meanings", "a bb ccc")
        f.set_property("flag_masks", [2, 1, 0])

        cm0 = cfdm.CellMethod(
            axes=[axisX],
            method="mean",
            qualifiers={"interval": [cfdm.Data(1, "day")], "comment": "ok"},
        )

        cm1 = cfdm.CellMethod(
            axes=[axisY], method="maximum", qualifiers={"where": "sea"}
        )

        f.set_construct(cm0)
        f.set_construct(cm1)

        self.assertTrue(
            f.equals(f.copy(), verbose=verbose),
            "Field f not equal to a copy of itself",
        )

        for fmt in (
            "NETCDF3_CLASSIC",
            "NETCDF3_64BIT",
            "NETCDF4",
            "NETCDF4_CLASSIC",
        ):
            cfdm.write(f, self.filename, fmt=fmt, verbose=verbose)

            g = cfdm.read(self.filename, verbose=verbose)

            self.assertEqual(len(g), 1, f"{len(g)} != 1")

            g = g[0].squeeze()

            self.assertEqual(
                sorted(f.constructs),
                sorted(g.constructs),
                f"\n\nf (created in memory)"
                f"\n{f.constructs}"
                f"\n\n{f.constructs.items()}"
                f"\n\ng (read from disk)"
                f"\n{g.constructs}"
                f"\n\n{g.constructs.items()}",
            )

            self.assertTrue(
                g.equals(g.copy(), verbose=verbose),
                "Field g not equal to a copy of itself",
            )

            self.assertTrue(
                g.equals(f, verbose=verbose),
                "Field not equal to itself read back in",
            )

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(
            self.filename,
            verbose=verbose,
            extra=["domain_ancillary"],
            warnings=warnings,
        )
Exemplo n.º 7
0
    def test_create_field_3(self):
        """Test ab initio creation of a third variation of field."""
        # Dimension coordinates
        data = numpy.arange(9.0) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property("standard_name", "grid_longitude")
        dim0.set_property("units", "degrees")

        array = dim0.data.array

        array = numpy.array([array - 0.5, array + 0.5]).transpose((1, 0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.0)))
        dim1.set_property("standard_name", "grid_latitude")
        dim1.set_property("units", "degrees")

        dim2 = cfdm.DimensionCoordinate(
            data=cfdm.Data([1.5]),
            bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.0]])),
        )
        dim2.set_property("standard_name",
                          "atmosphere_hybrid_height_coordinate")
        dim2.set_property("computed_standard_name", "altitude")

        dim3 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.array([15.0])))
        dim3.set_property("standard_name", "time")
        dim3.set_property("units", "days since 2004-06-01")

        dim3.set_bounds(cfdm.Bounds(data=cfdm.Data([[0, 30.0]])))

        #        dim3.set_geometry('climatology')

        # Auxiliary coordinates
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.0]))
        ak.set_property("units", "m")
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.0]])))

        bk = cfdm.DomainAncillary(data=cfdm.Data([20.0]))
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.0]])))

        aux2 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(-45, 45, dtype="int32").reshape(10, 9)))
        aux2.set_property("units", "degree_N")
        aux2.set_property("standard_name", "latitude")

        aux3 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(60, 150, dtype="int32").reshape(9, 10)))
        aux3.set_property("standard_name", "longitude")
        aux3.set_property("units", "degreeE")

        array = numpy.ma.array(
            [
                "alpha",
                "beta",
                "gamma",
                "delta",
                "epsilon",
                "zeta",
                "eta",
                "theta",
                "iota",
                "kappa",
            ],
            dtype="S",
        )
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property("standard_name", "greek_letters")

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1 + numpy.arange(90.0).reshape(9, 10) * 1234))
        msr0.set_measure("area")
        msr0.set_property("units", "km2")

        # Data
        data = cfdm.Data(numpy.arange(90.0).reshape(10, 9))

        properties = {"units": "m s-1"}

        f = cfdm.Field(properties=properties)
        f.set_property("standard_name", "eastward_wind")

        axisX = f.set_construct(cfdm.DomainAxis(9))
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))
        axisT = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])

        x = f.set_construct(dim0, axes=[axisX])
        y = f.set_construct(dim1, axes=[axisY])
        z = f.set_construct(dim2, axes=[axisZ])
        f.set_construct(dim3, axes=[axisT])

        lat = f.set_construct(aux2, axes=[axisY, axisX])
        lon = f.set_construct(aux3, axes=[axisX, axisY])
        f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=[axisZ])
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        #       ref0 = cfdm.CoordinateReference(
        #           parameters={'grid_mapping_name': 'rotated_latitude_longitude',
        #                       'grid_north_pole_latitude': 38.0,
        #                       'grid_north_pole_longitude': 190.0,
        #                       'earth_radius': 6371007,},
        #           coordinates=[x, y, lat, lon]
        #       )

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                "grid_mapping_name": "rotated_latitude_longitude",
                "grid_north_pole_latitude": 38.0,
                "grid_north_pole_longitude": 190.0,
            })

        datum = cfdm.Datum(parameters={"earth_radius": 6371007})

        ref0 = cfdm.CoordinateReference(
            coordinate_conversion=coordinate_conversion,
            datum=datum,
            coordinates=[x, y, lat, lon],
        )

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property("standard_name", "surface_altitude")
        orog.set_property("units", "m")
        orog = f.set_construct(orog, axes=[axisY, axisX])

        datum1 = cfdm.Datum({"earth_radius": 6371007})

        coordinate_conversion1 = cfdm.CoordinateConversion(
            parameters={
                "standard_name": "atmosphere_hybrid_height_coordinate",
                "computed_standard_name": "altitude",
            },
            domain_ancillaries={
                "orog": orog,
                "a": ak,
                "b": bk
            },
        )

        ref1 = cfdm.CoordinateReference(
            datum=datum1,
            coordinate_conversion=coordinate_conversion1,
            coordinates=[z],
        )

        ref1 = f.set_construct(ref1)

        # Field ancillary variables
        #        g = f.transpose([1, 0])
        g = f.copy()
        #        g.standard_name = 'ancillary0'
        #        g *= 0.01
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryA"
        f.set_construct(anc, axes=[axisY, axisX])

        g = f[0]
        g = g.squeeze()
        #        g.standard_name = 'ancillary2'
        #        g *= 0.001
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryB"
        f.set_construct(anc, axes=[axisX])

        g = f[..., 0]
        g = g.squeeze()
        #        g.standard_name = 'ancillary3'
        #        g *= 0.001
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = "ancillaryC"
        f.set_construct(anc, axes=[axisY])

        f.set_property("flag_values", numpy.array([1, 2, 4], "int32"))
        f.set_property("flag_meanings", "a bb ccc")
        f.set_property("flag_masks", [2, 1, 0])

        cm0 = cfdm.CellMethod(
            axes=[axisX],
            method="mean",
            qualifiers={
                "interval": [cfdm.Data(1, "day")],
                "comment": "ok"
            },
        )

        cm1 = cfdm.CellMethod(axes=[axisY],
                              method="maximum",
                              qualifiers={"where": "sea"})

        cm2 = cfdm.CellMethod(axes=[axisT],
                              method="maximum",
                              qualifiers={"within": "years"})

        cm3 = cfdm.CellMethod(axes=[axisT],
                              method="minimum",
                              qualifiers={"over": "years"})

        f.set_construct(cm0)
        f.set_construct(cm1)
        f.set_construct(cm2)
        f.set_construct(cm3)

        cfdm.write(f, self.filename, fmt="NETCDF3_CLASSIC", verbose=verbose)

        g = cfdm.read(self.filename, verbose=verbose)

        self.assertEqual(len(g), 1,
                         f"Read produced too many fields: {len(g)} != 1")

        g = g[0].squeeze()

        self.assertEqual(
            sorted(f.constructs),
            sorted(g.constructs),
            f"\n\nf (created in memory)"
            f"\n{f.constructs}"
            f"\n\n{f.constructs.items()}"
            f"\n\ng (read from disk)"
            f"\n{g.constructs}"
            f"\n\n{g.constructs.items()}",
        )

        self.assertTrue(
            f.equals(f.copy(), verbose=verbose),
            "Field f not equal to a copy of itself",
        )

        self.assertTrue(
            g.equals(g.copy(), verbose=verbose),
            "Field g not equal to a copy of itself",
        )

        self.assertTrue(
            g.equals(f, verbose=verbose),
            "Field not equal to itself read back in",
        )

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(
            self.filename,
            verbose=verbose,
            extra=["domain_ancillary"],
            warnings=warnings,
        )
Exemplo n.º 8
0
    def test_create_field(self):
        """TODO DOCS."""
        # Dimension coordinates
        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.0)))
        dim1.set_property("standard_name", "grid_latitude")
        dim1.set_property("units", "degrees")

        data = numpy.arange(9.0) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property("standard_name", "grid_longitude")
        dim0.set_property("units", "degrees")
        dim0.nc_set_variable("x")

        array = dim0.data.array

        array = numpy.array([array - 0.5, array + 0.5]).transpose((1, 0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim2 = cfdm.DimensionCoordinate(
            data=cfdm.Data([1.5]),
            bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.0]])),
        )
        dim2.set_property("standard_name",
                          "atmosphere_hybrid_height_coordinate")
        dim2.set_property("computed_standard_name", "altitude")

        # Auxiliary coordinates
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.0]))
        ak.set_property("units", "m")
        ak.id = "atmosphere_hybrid_height_coordinate_ak"
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.0]])))

        bk = cfdm.DomainAncillary(data=cfdm.Data([20.0]))
        bk.id = "atmosphere_hybrid_height_coordinate_bk"
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.0]])))

        aux2 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(-45, 45, dtype="int32").reshape(10, 9)))
        aux2.set_property("units", "degree_N")
        aux2.set_property("standard_name", "latitude")

        aux3 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(60, 150, dtype="int32").reshape(9, 10)))
        aux3.set_property("standard_name", "longitude")
        aux3.set_property("units", "degreeE")

        array = numpy.ma.array(
            [
                "alpha",
                "beta",
                "gamma",
                "delta",
                "epsilon",
                "zeta",
                "eta",
                "theta",
                "iota",
                "kappa",
            ],
            dtype="S",
        )
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property("long_name", "greek_letters")

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1 + numpy.arange(90.0).reshape(9, 10) * 1234))
        msr0.set_measure("area")
        msr0.set_property("units", "km2")
        msr0.nc_set_variable("areacella")

        # Data
        data = cfdm.Data(numpy.arange(90.0).reshape(10, 9))

        properties = {"units": "m s-1"}

        f = cfdm.Field(properties=properties)
        f.set_property("standard_name", "eastward_wind")

        da = cfdm.DomainAxis(9)
        da.nc_set_dimension("grid_longitude")
        axisX = f.set_construct(da)
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])

        x = f.set_construct(dim0, axes=axisX)
        y = f.set_construct(dim1, axes=axisY)
        z = f.set_construct(dim2, axes=[axisZ])

        lat = f.set_construct(aux2, axes=[axisY, axisX])
        lon = f.set_construct(aux3, axes=[axisX, axisY])
        f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=axisZ)
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                "grid_mapping_name": "rotated_latitude_longitude",
                "grid_north_pole_latitude": 38.0,
                "grid_north_pole_longitude": 190.0,
            })

        datum = cfdm.Datum(parameters={"earth_radius": 6371007})

        ref0 = cfdm.CoordinateReference(
            coordinate_conversion=coordinate_conversion,
            datum=datum,
            coordinates=[x, y, lat, lon],
        )

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property("standard_name", "surface_altitude")
        orog.set_property("units", "m")
        orog = f.set_construct(orog, axes=[axisY, axisX])

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                "standard_name": "atmosphere_hybrid_height_coordinate",
                "computed_standard_name": "altitude",
            },
            domain_ancillaries={
                "orog": orog,
                "a": ak,
                "b": bk
            },
        )

        ref1 = cfdm.CoordinateReference(
            coordinates=[z],
            datum=datum,
            coordinate_conversion=coordinate_conversion,
        )

        ref1 = f.set_construct(ref1)

        # Field ancillary variables
        g = f.copy()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property("standard_name", "ancillaryA")
        f.set_construct(anc, axes=[axisY, axisX])

        g = f[0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property("long_name", "ancillaryB")
        f.set_construct(anc, axes=axisX)

        g = f[..., 0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property("foo", "bar")
        f.set_construct(anc, axes=[axisY])

        f.set_property("flag_values", numpy.array([1, 2, 4], "int32"))
        f.set_property("flag_meanings", "a bb ccc")
        f.set_property("flag_masks", [2, 1, 0])

        cm0 = cfdm.CellMethod(
            axes=axisX,
            method="mean",
            qualifiers={
                "interval": [cfdm.Data(1, "day")],
                "comment": "ok"
            },
        )

        cm1 = cfdm.CellMethod(axes=[axisY],
                              method="maximum",
                              qualifiers={"where": "sea"})

        f.set_construct(cm0)
        f.set_construct(cm1)

        self.assertTrue(f.equals(f, verbose=verbose),
                        "Field f not equal to itself")

        self.assertTrue(
            f.equals(f.copy(), verbose=verbose),
            "Field f not equal to a copy of itself",
        )

        cfdm.write(f, self.filename, fmt="NETCDF3_CLASSIC", verbose=verbose)

        g = cfdm.read(self.filename, verbose=1)

        array = (g[0].constructs.filter_by_identity(
            "long_name=greek_letters").value().data.array)
        self.assertEqual(array[1], b"beta")

        self.assertEqual(len(g), 1)

        g = g[0].squeeze()

        self.assertEqual(
            sorted(f.constructs),
            sorted(g.constructs),
            "\n\nf (created in memory)\n{}\n\n{}\n\ng "
            "(read from disk)\n{}\n\n{}".format(
                sorted(f.constructs),
                sorted(f.constructs.items()),
                sorted(g.constructs),
                sorted(g.constructs.items()),
            ),
        )

        self.assertTrue(
            f.equals(f, verbose=verbose),
            "Field f not equal to itself after having been written to disk",
        )

        self.assertTrue(
            f.equals(f.copy(), verbose=verbose),
            "Field f not equal to a copy of itself after having been "
            "written to disk",
        )

        self.assertTrue(
            g.equals(g.copy(), verbose=verbose),
            "Field g not equal to a copy of itself",
        )

        self.assertTrue(
            g.equals(f, verbose=verbose),
            "Field (f) not equal to itself read back in (g)",
        )

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(
            self.filename,
            verbose=verbose,
            extra="domain_ancillary",
            warnings=warnings,
        )
Exemplo n.º 9
0
    def test_create_field(self):

        # Dimension coordinates
        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.)))
        dim1.set_property('standard_name', 'grid_latitude')
        dim1.set_property('units', 'degrees')

        data = numpy.arange(9.) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property('standard_name', 'grid_longitude')
        dim0.set_property('units', 'degrees')
        dim0.nc_set_variable('x')

        array = dim0.data.array

        array = numpy.array([array - 0.5, array + 0.5]).transpose((1, 0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim2 = cfdm.DimensionCoordinate(
            data=cfdm.Data([1.5]),
            bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.]])))
        dim2.set_property('standard_name',
                          'atmosphere_hybrid_height_coordinate')
        dim2.set_property('computed_standard_name', 'altitude')

        # Auxiliary coordinates
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.]))
        ak.set_property('units', 'm')
        ak.id = 'atmosphere_hybrid_height_coordinate_ak'
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.]])))

        bk = cfdm.DomainAncillary(data=cfdm.Data([20.]))
        bk.id = 'atmosphere_hybrid_height_coordinate_bk'
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.]])))

        aux2 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(-45, 45, dtype='int32').reshape(10, 9)))
        aux2.set_property('units', 'degree_N')
        aux2.set_property('standard_name', 'latitude')

        aux3 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(
            numpy.arange(60, 150, dtype='int32').reshape(9, 10)))
        aux3.set_property('standard_name', 'longitude')
        aux3.set_property('units', 'degreeE')

        array = numpy.ma.array([
            'alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta',
            'theta', 'iota', 'kappa'
        ],
                               dtype='S')
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property('long_name', 'greek_letters')

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1 + numpy.arange(90.).reshape(9, 10) * 1234))
        msr0.set_measure('area')
        msr0.set_property('units', 'km2')
        msr0.nc_set_variable('areacella')

        # Data
        data = cfdm.Data(numpy.arange(90.).reshape(10, 9))

        properties = {'units': 'm s-1'}

        f = cfdm.Field(properties=properties)
        f.set_property('standard_name', 'eastward_wind')

        da = cfdm.DomainAxis(9)
        da.nc_set_dimension('grid_longitude')
        axisX = f.set_construct(da)
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])

        x = f.set_construct(dim0, axes=axisX)
        y = f.set_construct(dim1, axes=axisY)
        z = f.set_construct(dim2, axes=[axisZ])

        lat = f.set_construct(aux2, axes=[axisY, axisX])
        lon = f.set_construct(aux3, axes=[axisX, axisY])
        greek = f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=axisZ)
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                'grid_mapping_name': 'rotated_latitude_longitude',
                'grid_north_pole_latitude': 38.0,
                'grid_north_pole_longitude': 190.0
            })

        datum = cfdm.Datum(parameters={'earth_radius': 6371007})

        ref0 = cfdm.CoordinateReference(
            coordinate_conversion=coordinate_conversion,
            datum=datum,
            coordinates=[x, y, lat, lon])

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property('standard_name', 'surface_altitude')
        orog.set_property('units', 'm')
        orog = f.set_construct(orog, axes=[axisY, axisX])

        coordinate_conversion = cfdm.CoordinateConversion(parameters={
            'standard_name':
            'atmosphere_hybrid_height_coordinate',
            'computed_standard_name':
            'altitude'
        },
                                                          domain_ancillaries={
                                                              'orog': orog,
                                                              'a': ak,
                                                              'b': bk
                                                          })

        ref1 = cfdm.CoordinateReference(
            coordinates=[z],
            datum=datum,
            coordinate_conversion=coordinate_conversion)

        ref1 = f.set_construct(ref1)

        # Field ancillary variables
        g = f.copy()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property('standard_name', 'ancillaryA')
        f.set_construct(anc, axes=[axisY, axisX])

        g = f[0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property('long_name', 'ancillaryB')
        f.set_construct(anc, axes=axisX)

        g = f[..., 0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.set_property('foo', 'bar')
        f.set_construct(anc, axes=[axisY])

        f.set_property('flag_values', numpy.array([1, 2, 4], 'int32'))
        f.set_property('flag_meanings', 'a bb ccc')
        f.set_property('flag_masks', [2, 1, 0])

        cm0 = cfdm.CellMethod(axes=axisX,
                              method='mean',
                              qualifiers={
                                  'interval': [cfdm.Data(1, 'day')],
                                  'comment': 'ok'
                              })

        cm1 = cfdm.CellMethod(axes=[axisY],
                              method='maximum',
                              qualifiers={'where': 'sea'})

        f.set_construct(cm0)
        f.set_construct(cm1)

        self.assertTrue(f.equals(f, verbose=verbose),
                        "Field f not equal to itself")

        self.assertTrue(f.equals(f.copy(), verbose=verbose),
                        "Field f not equal to a copy of itself")

        cfdm.write(f, self.filename, fmt='NETCDF3_CLASSIC', verbose=verbose)

        g = cfdm.read(self.filename, verbose=1)

        array = g[0].constructs.filter_by_identity(
            'long_name=greek_letters').value().data.array
        self.assertEqual(array[1], b'beta',
                         'greek_letters = {!r}'.format(array))

        self.assertEqual(
            len(g), 1,
            'Read produced the wrong number of fields: {} != 1'.format(len(g)))

        g = g[0].squeeze()

        self.assertEqual(
            sorted(f.constructs), sorted(g.constructs),
            '\n\nf (created in memory)\n{}\n\n{}\n\ng '
            '(read from disk)\n{}\n\n{}'.format(sorted(f.constructs),
                                                sorted(f.constructs.items()),
                                                sorted(g.constructs),
                                                sorted(g.constructs.items())))

        self.assertTrue(
            f.equals(f, verbose=verbose),
            "Field f not equal to itself after having been written to disk")

        self.assertTrue(
            f.equals(f.copy(), verbose=verbose),
            "Field f not equal to a copy of itself after having been "
            "written to disk")

        self.assertTrue(g.equals(g.copy(), verbose=verbose),
                        "Field g not equal to a copy of itself")

        self.assertTrue(g.equals(f, verbose=verbose),
                        "Field (f) not equal to itself read back in (g)")

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(self.filename,
                      verbose=verbose,
                      extra='domain_ancillary',
                      warnings=warnings)
Exemplo n.º 10
0
    def test_create_field_3(self):

        # Dimension coordinates
        data = numpy.arange(9.) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property('standard_name', 'grid_longitude')
        dim0.set_property('units', 'degrees')

        array = dim0.data.array

        array = numpy.array([array-0.5, array+0.5]).transpose((1,0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.)))
        dim1.set_property('standard_name', 'grid_latitude')
        dim1.set_property('units', 'degrees')

        dim2 = cfdm.DimensionCoordinate(data=cfdm.Data([1.5]),
                                        bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.]])))
        dim2.set_property('standard_name'         , 'atmosphere_hybrid_height_coordinate')
        dim2.set_property('computed_standard_name', 'altitude')
                      
        dim3 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.array([15.0])))
        dim3.set_property('standard_name', 'time')
        dim3.set_property('units', 'days since 2004-06-01')

        dim3.set_bounds(cfdm.Bounds(data=cfdm.Data([[0, 30.]])))

#        dim3.set_geometry('climatology')
        
        # Auxiliary coordinates
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.]))
        ak.set_property('units', 'm')
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.]])))
        
        bk = cfdm.DomainAncillary(data=cfdm.Data([20.]))
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.]])))
        
        aux2 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(numpy.arange(-45, 45, dtype='int32').reshape(10, 9)))
        aux2.set_property('units', 'degree_N')
        aux2.set_property('standard_name', 'latitude')
        
        aux3 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(numpy.arange(60, 150, dtype='int32').reshape(9, 10)))
        aux3.set_property('standard_name', 'longitude')
        aux3.set_property('units', 'degreeE')

        array = numpy.ma.array(['alpha','beta','gamma','delta','epsilon',
                                'zeta','eta','theta','iota','kappa'], dtype='S')
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property('standard_name', 'greek_letters')

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1+numpy.arange(90.).reshape(9, 10)*1234))
        msr0.set_measure('area')
        msr0.set_property('units', 'km2')
        
        # Data          
        data = cfdm.Data(numpy.arange(90.).reshape(10, 9))

        properties = {'units': 'm s-1'}
        
        f = cfdm.Field(properties=properties)
        f.set_property('standard_name', 'eastward_wind')

        axisX = f.set_construct(cfdm.DomainAxis(9))
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))
        axisT = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])
        
        x = f.set_construct(dim0, axes=[axisX])
        y = f.set_construct(dim1, axes=[axisY])
        z = f.set_construct(dim2, axes=[axisZ])
        t = f.set_construct(dim3, axes=[axisT])

        lat   = f.set_construct(aux2, axes=[axisY, axisX])
        lon   = f.set_construct(aux3, axes=[axisX, axisY])
        greek = f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=[axisZ])
        bk = f.set_construct(bk, axes=[axisZ])

       # Coordinate references
#       ref0 = cfdm.CoordinateReference(
#           parameters={'grid_mapping_name': 'rotated_latitude_longitude',
#                       'grid_north_pole_latitude': 38.0,
#                       'grid_north_pole_longitude': 190.0,
#                       'earth_radius': 6371007,},
#           coordinates=[x, y, lat, lon]
#       )

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={'grid_mapping_name': 'rotated_latitude_longitude',
                        'grid_north_pole_latitude': 38.0,
                        'grid_north_pole_longitude': 190.0})

        datum = cfdm.Datum(parameters={'earth_radius': 6371007})
        
        ref0 = cfdm.CoordinateReference(
            coordinate_conversion=coordinate_conversion,
            datum=datum,
            coordinates=[x, y, lat, lon]
            )

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property('standard_name', 'surface_altitude')
        orog.set_property('units', 'm')
        orog = f.set_construct(orog, axes=[axisY, axisX])

        datum1 = cfdm.Datum({'earth_radius' : 6371007})
        
        coordinate_conversion1 = cfdm.CoordinateConversion(
            parameters={'standard_name': 'atmosphere_hybrid_height_coordinate',
                        'computed_standard_name': 'altitude'},
            domain_ancillaries={'orog': orog,
                                'a'   : ak,
                                'b'   : bk})
        
        ref1 = cfdm.CoordinateReference(
            datum=datum1,
            coordinate_conversion=coordinate_conversion1,
            coordinates=[z]
        )
        
        ref1 = f.set_construct(ref1)

        # Field ancillary variables
#        g = f.transpose([1, 0])
        g = f.copy()
#        g.standard_name = 'ancillary0'
#        g *= 0.01
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryA'
        f.set_construct(anc, axes=[axisY, axisX])
        
        g = f[0]
        g = g.squeeze()
#        g.standard_name = 'ancillary2'
#        g *= 0.001
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryB'
        f.set_construct(anc, axes=[axisX])

        g = f[..., 0]
        g = g.squeeze()
#        g.standard_name = 'ancillary3'
#        g *= 0.001
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryC'
        f.set_construct(anc, axes=[axisY])

        
        f.set_property('flag_values', numpy.array([1, 2, 4], 'int32'))
        f.set_property('flag_meanings', 'a bb ccc')
        f.set_property('flag_masks', [2, 1, 0])

        cm0 =  cfdm.CellMethod(axes=[axisX],
                               method='mean',
                               qualifiers={'interval': [cfdm.Data(1, 'day')],
                                           'comment' : 'ok'})
    
        cm1 =  cfdm.CellMethod(axes=[axisY],
                               method='maximum',
                               qualifiers={'where' : 'sea'})
        
        cm2 =  cfdm.CellMethod(axes=[axisT],
                               method='maximum',
                               qualifiers={'within' : 'years'})
        
        cm3 =  cfdm.CellMethod(axes=[axisT],
                               method='minimum',
                               qualifiers={'over' : 'years'})
        
        f.set_construct(cm0)
        f.set_construct(cm1)
        f.set_construct(cm2)
        f.set_construct(cm3)

        if verbose:
            print(repr(f))
            print(f)
            print(f.constructs)
            print(f.construct_data_axes())
        
            f.dump()
            
#        sys.exit(0)

        cfdm.write(f, self.filename, fmt='NETCDF3_CLASSIC', verbose=verbose)

        g = cfdm.read(self.filename, verbose=verbose) #, squeeze=True)

        if verbose:
#           g[0].dump()
#           sys.exit(0)
            for x in g:
                x.print_read_report()
                
        self.assertTrue(len(g) == 1, 'Read produced too many fields: {} != 1'.format(len(g)))

        g = g[0].squeeze()
        

#        print g
        self.assertTrue(sorted(f.constructs) == sorted(g.constructs),
                        '\n\nf (created in memory)\n{}\n\n{}\n\ng (read from disk)\n{}\n\n{}'.format(
                            sorted(f.constructs),
                            sorted(f.constructs.items()),
                            sorted(g.constructs),
                            sorted(g.constructs.items())))

        self.assertTrue(f.equals(f.copy(), verbose=True),
                        "Field f not equal to a copy of itself")

        self.assertTrue(g.equals(g.copy(), verbose=True),
                        "Field g not equal to a copy of itself")
#        print f.dump()
    
#        print'f'
#        print f
#        print 'g'
#        print g
#        f.dump()
#        g.dump()

        if verbose:
            f.dump()
            g.dump()
#        sys.exit(0)
        
        self.assertTrue(g.equals(f, verbose=True),
                        "Field not equal to itself read back in")
  
#        sys.exit(0)

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(self.filename, verbose=verbose,
                      extra=['domain_ancillary'], warnings=warnings)

        if verbose:
            for x in g:
                x.print_read_report()

            print(g)
            g[0].dump()
Exemplo n.º 11
0
class AuxiliaryCoordinateTest(unittest.TestCase):
    filename = os.path.join(
        os.path.dirname(os.path.abspath(__file__)), 'test_file.nc')

    aux1 = cfdm.AuxiliaryCoordinate()
    aux1.standard_name = 'latitude'
    a = numpy.array(
        [-30, -23.5, -17.8123, -11.3345, -0.7, -0.2, 0, 0.2, 0.7,
         11.30003, 17.8678678, 23.5, 30]
    )
    aux1.set_data(cfdm.Data(a, 'degrees_north'))
    bounds = cfdm.Bounds()
    b = numpy.empty(a.shape + (2,))
    b[:, 0] = a - 0.1
    b[:, 1] = a + 0.1
    bounds.set_data(cfdm.Data(b))
    aux1.set_bounds(bounds)

    def setUp(self):
        # Disable log messages to silence expected warnings
        cfdm.log_level('DISABLE')
        # Note: to enable all messages for given methods, lines or
        # calls (those without a 'verbose' option to do the same)
        # e.g. to debug them, wrap them (for methods, start-to-end
        # internally) as follows:
        #
        # cfdm.LOG_LEVEL('DEBUG')
        # < ... test code ... >
        # cfdm.log_level('DISABLE')

    def test_AuxiliaryCoordinate__repr__str__dump(self):
        f = cfdm.read(self.filename, verbose=1)[0]
        x = f.auxiliary_coordinates('latitude').value()

        _ = repr(x)
        _ = str(x)
        self.assertIsInstance(x.dump(display=False), str)
        self.assertIsInstance(x.dump(display=False, _title=None), str)

    def test_AuxiliaryCoordinate_bounds(self):
        f = cfdm.read(self.filename)[0]

        d = f.dimension_coordinates('grid_longitude').value()
        x = cfdm.AuxiliaryCoordinate(source=d)

    def test_AuxiliaryCoordinate_properties(self):
        f = cfdm.read(self.filename)[0]
        x = f.auxiliary_coordinates('latitude').value()

        x.set_property('long_name', 'qwerty')

        self.assertEqual(x.get_property('long_name'), 'qwerty')
        self.assertEqual(x.del_property('long_name'), 'qwerty')
        self.assertIsNone(x.get_property('long_name', None))
        self.assertIsNone(x.del_property('long_name', None))

    def test_AuxiliaryCoordinate_source(self):
        f = cfdm.read(self.filename)[0]
        d = f.dimension_coordinates('grid_longitude').value()
        x = cfdm.AuxiliaryCoordinate(source=d)

    def test_AuxiliaryCoordinate_insert_dimension(self):
        f = cfdm.read(self.filename)[0]
        d = f.dimension_coordinates('grid_longitude').value()
        x = cfdm.AuxiliaryCoordinate(source=d)

        self.assertEqual(x.shape, (9,))
        self.assertEqual(x.bounds.shape, (9, 2))

        y = x.insert_dimension(0)
        self.assertEqual(y.shape, (1, 9))
        self.assertEqual(y.bounds.shape, (1, 9, 2), y.bounds.shape)

        x.insert_dimension(-1, inplace=True)
        self.assertEqual(x.shape, (9, 1))
        self.assertEqual(x.bounds.shape, (9, 1, 2), x.bounds.shape)

    def test_AuxiliaryCoordinate_transpose(self):
        f = cfdm.read(self.filename)[0]
        x = f.auxiliary_coordinates('longitude').value()

        bounds = cfdm.Bounds(
            data=cfdm.Data(numpy.arange(9*10*4).reshape(9, 10, 4)))
        x.set_bounds(bounds)

        self.assertEqual(x.shape, (9, 10))
        self.assertEqual(x.bounds.shape, (9, 10, 4))

        y = x.transpose()
        self.assertEqual(y.shape, (10, 9))
        self.assertEqual(y.bounds.shape, (10, 9, 4), y.bounds.shape)

        x.transpose([1, 0], inplace=True)
        self.assertEqual(x.shape, (10, 9))
        self.assertEqual(x.bounds.shape, (10, 9, 4), x.bounds.shape)

    def test_AuxiliaryCoordinate_squeeze(self):
        f = cfdm.read(self.filename)[0]
        x = f.auxiliary_coordinates('longitude').value()

        bounds = cfdm.Bounds(
            data=cfdm.Data(numpy.arange(9*10*4).reshape(9, 10, 4)))
        x.set_bounds(bounds)
        x.insert_dimension(1, inplace=True)
        x.insert_dimension(0, inplace=True)

        self.assertEqual(x.shape, (1, 9, 1, 10))
        self.assertEqual(x.bounds.shape, (1, 9, 1, 10, 4))

        y = x.squeeze()
        self.assertEqual(y.shape, (9, 10))
        self.assertEqual(y.bounds.shape, (9, 10, 4), y.bounds.shape)

        x.squeeze(2, inplace=True)
        self.assertEqual(x.shape, (1, 9, 10))
        self.assertEqual(x.bounds.shape, (1, 9, 10, 4), x.bounds.shape)

    def test_AuxiliaryCoordinate_interior_ring(self):
        c = cfdm.AuxiliaryCoordinate()

        i = cfdm.InteriorRing(data=cfdm.Data(numpy.arange(10).reshape(5, 2)))

        c.set_interior_ring(i)
        self.assertTrue(c.has_interior_ring())
        self.assertIsInstance(c.get_interior_ring(), cfdm.InteriorRing)
        self.assertIsInstance(c.del_interior_ring(None), cfdm.InteriorRing)
        self.assertFalse(c.has_interior_ring())
        self.assertIsNone(c.del_interior_ring(None))
Exemplo n.º 12
0
 def test_AuxiliaryCoordinate_source(self):
     f = cfdm.read(self.filename)[0]
     d = f.dimension_coordinates('grid_longitude').value()
     x = cfdm.AuxiliaryCoordinate(source=d)
Exemplo n.º 13
0
    def test_create_field_2(self):

        # Dimension coordinates
        dim1 = cfdm.DimensionCoordinate(data=cfdm.Data(numpy.arange(10.)))
        dim1.set_property('standard_name', 'projection_y_coordinate')
        dim1.set_property('units', 'm')

        data = numpy.arange(9.) + 20
        data[-1] = 34
        dim0 = cfdm.DimensionCoordinate(data=cfdm.Data(data))
        dim0.set_property('standard_name', 'projection_x_coordinate')
        dim0.set_property('units', 'm')

        array = dim0.data.array

        array = numpy.array([array-0.5, array+0.5]).transpose((1, 0))
        array[-2, 1] = 30
        array[-1, :] = [30, 36]
        dim0.set_bounds(cfdm.Bounds(data=cfdm.Data(array)))

        dim2 = cfdm.DimensionCoordinate(
            data=cfdm.Data([1.5]),
            bounds=cfdm.Bounds(data=cfdm.Data([[1, 2.]]))
        )
        dim2.set_property(
            'standard_name', 'atmosphere_hybrid_height_coordinate')

        # Auxiliary coordinates
        aux2 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(
                numpy.arange(-45, 45, dtype='int32').reshape(10, 9)))
        aux2.set_property('units', 'degree_N')
        aux2.set_property('standard_name', 'latitude')

        aux3 = cfdm.AuxiliaryCoordinate(
            data=cfdm.Data(numpy.arange(
                60, 150, dtype='int32').reshape(9, 10))
        )
        aux3.set_property('standard_name', 'longitude')
        aux3.set_property('units', 'degreeE')

        array = numpy.ma.array(
            ['alpha', 'beta', 'gamma', 'delta', 'epsilon',
             'zeta', 'eta', 'theta', 'iota', 'kappa'],
            dtype='S'
        )
        array[0] = numpy.ma.masked
        aux4 = cfdm.AuxiliaryCoordinate(data=cfdm.Data(array))
        aux4.set_property('standard_name', 'greek_letters')

        # Domain ancillaries
        ak = cfdm.DomainAncillary(data=cfdm.Data([10.]))
        ak.set_property('units', 'm')
        ak.set_bounds(cfdm.Bounds(data=cfdm.Data([[5, 15.]])))

        bk = cfdm.DomainAncillary(data=cfdm.Data([20.]))
        bk.set_bounds(cfdm.Bounds(data=cfdm.Data([[14, 26.]])))

        # Cell measures
        msr0 = cfdm.CellMeasure(
            data=cfdm.Data(1+numpy.arange(90.).reshape(9, 10)*1234))
        msr0.set_measure('area')
        msr0.set_property('units', 'km2')

        # Data
        data = cfdm.Data(numpy.arange(90.).reshape(10, 9))

        properties = {'units': 'm s-1'}

        f = cfdm.Field(properties=properties)
        f.set_property('standard_name', 'eastward_wind')

        axisX = f.set_construct(cfdm.DomainAxis(9))
        axisY = f.set_construct(cfdm.DomainAxis(10))
        axisZ = f.set_construct(cfdm.DomainAxis(1))

        f.set_data(data, axes=[axisY, axisX])

        x = f.set_construct(dim0, axes=[axisX])
        y = f.set_construct(dim1, axes=[axisY])
        z = f.set_construct(dim2, axes=[axisZ])

        lat = f.set_construct(aux2, axes=[axisY, axisX])
        lon = f.set_construct(aux3, axes=[axisX, axisY])
        greek = f.set_construct(aux4, axes=[axisY])

        ak = f.set_construct(ak, axes=[axisZ])
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={'grid_mapping_name':  "transverse_mercator",
                        'latitude_of_projection_origin': 49.0,
                        'longitude_of_central_meridian': -2.0,
                        'scale_factor_at_central_meridian':  0.9996012717,
                        'false_easting': 400000.0,
                        'false_northing': -100000.0,
                        'unit': "metre"})

        datum0 = cfdm.Datum(parameters={'inverse_flattening': 299.3249646,
                                        'longitude_of_prime_meridian':  0.0,
                                        'semi_major_axis': 6377563.396})

        ref0 = cfdm.CoordinateReference(
            coordinates=[x, y],
            datum=datum0,
            coordinate_conversion=coordinate_conversion
        )

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={'grid_mapping_name': "latitude_longitude"})

        datum2 = cfdm.Datum(parameters={'longitude_of_prime_meridian': 0.0,
                                        'semi_major_axis': 6378137.0,
                                        'inverse_flattening': 298.257223563})

        ref2 = cfdm.CoordinateReference(
            coordinates=[lat, lon],
            datum=datum2,
            coordinate_conversion=coordinate_conversion)

        f.set_construct(msr0, axes=[axisX, axisY])

        f.set_construct(ref0)
        f.set_construct(ref2)

        orog = cfdm.DomainAncillary(data=f.get_data())
        orog.set_property('standard_name', 'surface_altitude')
        orog.set_property('units', 'm')
        orog = f.set_construct(orog, axes=[axisY, axisX])

        coordinate_conversion = cfdm.CoordinateConversion(
            parameters={
                'standard_name': 'atmosphere_hybrid_height_coordinate'
            },
            domain_ancillaries={
                'orog': orog,
                'a': ak,
                'b': bk
            }
        )

        ref1 = cfdm.CoordinateReference(
            coordinates=[z],
            datum=datum0,
            coordinate_conversion=coordinate_conversion
        )

        f.set_construct(ref1)

        # Field ancillary variables
        g = f.copy()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryA'
        f.set_construct(anc, axes=[axisY, axisX])

        g = f[0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryB'
        f.set_construct(anc, axes=[axisX])

        g = f[..., 0]
        g = g.squeeze()
        anc = cfdm.FieldAncillary(data=g.get_data())
        anc.standard_name = 'ancillaryC'
        f.set_construct(anc, axes=[axisY])

        f.set_property('flag_values', numpy.array([1, 2, 4], 'int32'))
        f.set_property('flag_meanings', 'a bb ccc')
        f.set_property('flag_masks', [2, 1, 0])

        cm0 = cfdm.CellMethod(axes=[axisX],
                              method='mean',
                              qualifiers={'interval': [cfdm.Data(1, 'day')],
                                          'comment': 'ok'})

        cm1 = cfdm.CellMethod(axes=[axisY],
                              method='maximum',
                              qualifiers={'where': 'sea'})

        f.set_construct(cm0)
        f.set_construct(cm1)

        self.assertTrue(f.equals(f.copy(), verbose=verbose),
                        "Field f not equal to a copy of itself")

        for fmt in ('NETCDF3_CLASSIC',
                    'NETCDF3_64BIT',
                    'NETCDF4',
                    'NETCDF4_CLASSIC'):
            cfdm.write(f, self.filename, fmt=fmt, verbose=verbose)

            g = cfdm.read(self.filename, verbose=verbose)

            self.assertEqual(len(g), 1, '{} != 1'.format(len(g)))

            g = g[0].squeeze()

            self.assertEqual(sorted(f.constructs), sorted(g.constructs),
                             '\n\nf\n{}\n\n{}\n\ng\n{}\n\n{}'.format(
                                 sorted(f.constructs),
                                 sorted(f.constructs.items()),
                                 sorted(g.constructs),
                                 sorted(g.constructs.items())))

            self.assertTrue(g.equals(g.copy(), verbose=verbose),
                            "Field g not equal to a copy of itself")

            self.assertTrue(g.equals(f, verbose=verbose),
                            "Field not equal to itself read back in")
        # --- End: for

        x = g.dump(display=False)
        x = f.dump(display=False)

        g = cfdm.read(self.filename, verbose=verbose,
                      extra=['domain_ancillary'], warnings=warnings)
Exemplo n.º 14
0
 def test_AuxiliaryCoordinate_source(self):
     """Test the source keyword argument to AuxiliaryCoordinate."""
     f = cfdm.read(self.filename)[0]
     d = f.dimension_coordinates("grid_longitude").value()
     cfdm.AuxiliaryCoordinate(source=d)
Exemplo n.º 15
0
    def test_STRING(self):
        """Test constructs with underlying string type arrays."""
        for array in (
            numpy.ma.array(list("abcdefghij"), dtype="S"),
            numpy.ma.array(
                ["a", "b1", "c12", "d123", "e1234", "f", "g", "h", "i", "j"],
                dtype="S",
            ),
        ):

            # Initialize the field
            tas = cfdm.Field(
                properties={
                    "project": "research",
                    "standard_name": "air_temperature",
                    "units": "K",
                }
            )

            # Create and set domain axes
            tas.set_construct(cfdm.DomainAxis(1))
            tas.set_construct(cfdm.DomainAxis(1))
            axis_Y = tas.set_construct(cfdm.DomainAxis(10))
            axis_X = tas.set_construct(cfdm.DomainAxis(9))

            # Set the field data
            tas.set_data(
                cfdm.Data(numpy.arange(90.0).reshape(10, 9)),
                axes=[axis_Y, axis_X],
            )

            # Create and set the dimension coordinates
            dimension_coordinate_Y = cfdm.DimensionCoordinate(
                properties={
                    "standard_name": "grid_latitude",
                    "units": "degrees",
                },
                data=cfdm.Data(numpy.arange(10.0)),
                bounds=cfdm.Bounds(
                    data=cfdm.Data(numpy.arange(20).reshape(10, 2))
                ),
            )

            dimension_coordinate_X = cfdm.DimensionCoordinate(
                properties={
                    "standard_name": "grid_longitude",
                    "units": "degrees",
                },
                data=cfdm.Data(numpy.arange(9.0)),
                bounds=cfdm.Bounds(
                    data=cfdm.Data(numpy.arange(18).reshape(9, 2))
                ),
            )

            tas.set_construct(dimension_coordinate_Y, axes=[axis_Y])
            tas.set_construct(dimension_coordinate_X, axes=[axis_X])

            # Create and set the auxiliary coordinates
            array[0] = numpy.ma.masked
            aux0 = cfdm.AuxiliaryCoordinate(
                properties={"long_name": "Grid latitude name"},
                data=cfdm.Data(array),
            )

            tas.set_construct(aux0, axes=[axis_Y])

            cfdm.write(tas, tempfile)

            tas1 = cfdm.read(tempfile)[0]

            aux1 = tas1.constructs.filter_by_identity(
                "long_name=Grid latitude name"
            ).value()
            self.assertEqual(aux0.data.shape, array.shape, aux0.data.shape)
            self.assertEqual(aux1.data.shape, array.shape, aux1.data.shape)
Exemplo n.º 16
0
        bounds=cfdm.Bounds(data=cfdm.Data(numpy.arange(20).reshape(10, 2))))

dimension_coordinate_X = cfdm.DimensionCoordinate(
        properties={'standard_name': 'grid_longitude',
                    'units': 'degrees'},
    data=cfdm.Data(numpy.arange(9.)),
    bounds=cfdm.Bounds(data=cfdm.Data(numpy.arange(18).reshape(9, 2))))

dim_T = tas.set_construct(dimension_coordinate_T, axes=axis_T)
dim_Z = tas.set_construct(dimension_coordinate_Z, axes=axis_Z)
dim_Y = tas.set_construct(dimension_coordinate_Y, axes=axis_Y)
dim_X = tas.set_construct(dimension_coordinate_X, axes=axis_X)

# Create and set the auxiliary coordinate constructs
auxiliary_coordinate_lat = cfdm.AuxiliaryCoordinate(
                      properties={'standard_name': 'latitude',
                                  'units': 'degrees_north'},
                      data=cfdm.Data(numpy.arange(90.).reshape(10, 9)))

auxiliary_coordinate_lon = cfdm.AuxiliaryCoordinate(
                  properties={'standard_name': 'longitude',
                              'units': 'degrees_east'},
                  data=cfdm.Data(numpy.arange(90.).reshape(9, 10)))

array = numpy.ma.array(list('abcdefghij'))
array[0] = numpy.ma.masked
auxiliary_coordinate_name = cfdm.AuxiliaryCoordinate(
                       properties={'long_name': 'Grid latitude name'},
                       data=cfdm.Data(array))

aux_LAT  = tas.set_construct(auxiliary_coordinate_lat, axes=[axis_Y, axis_X])
aux_LON  = tas.set_construct(auxiliary_coordinate_lon, axes=[axis_X, axis_Y])
Exemplo n.º 17
0
    def test_STRING(self):
        if self.test_only and inspect.stack()[0][3] not in self.test_only:
            return

        for array in (numpy.ma.array(list('abcdefghij'), dtype='S'),
                      numpy.ma.array([
                          'a', 'b1', 'c12', 'd123', 'e1234', 'f', 'g', 'h',
                          'i', 'j'
                      ],
                                     dtype='S')):

            # Initialize the field
            tas = cfdm.Field(
                properties={
                    'project': 'research',
                    'standard_name': 'air_temperature',
                    'units': 'K'
                })

            # Create and set domain axes
            axis_T = tas.set_construct(cfdm.DomainAxis(1))
            axis_Z = tas.set_construct(cfdm.DomainAxis(1))
            axis_Y = tas.set_construct(cfdm.DomainAxis(10))
            axis_X = tas.set_construct(cfdm.DomainAxis(9))

            # Set the field data
            tas.set_data(cfdm.Data(numpy.arange(90.).reshape(10, 9)),
                         axes=[axis_Y, axis_X])

            # Create and set the dimension coordinates
            dimension_coordinate_Y = cfdm.DimensionCoordinate(
                properties={
                    'standard_name': 'grid_latitude',
                    'units': 'degrees'
                },
                data=cfdm.Data(numpy.arange(10.)),
                bounds=cfdm.Bounds(
                    data=cfdm.Data(numpy.arange(20).reshape(10, 2))))

            dimension_coordinate_X = cfdm.DimensionCoordinate(
                properties={
                    'standard_name': 'grid_longitude',
                    'units': 'degrees'
                },
                data=cfdm.Data(numpy.arange(9.)),
                bounds=cfdm.Bounds(
                    data=cfdm.Data(numpy.arange(18).reshape(9, 2))))

            dim_Y = tas.set_construct(dimension_coordinate_Y, axes=[axis_Y])
            dim_X = tas.set_construct(dimension_coordinate_X, axes=[axis_X])

            # Create and set the auxiliary coordinates
            array[0] = numpy.ma.masked
            aux0 = cfdm.AuxiliaryCoordinate(
                properties={'long_name': 'Grid latitude name'},
                data=cfdm.Data(array))

            tas.set_construct(aux0, axes=[axis_Y])

            cfdm.write(tas, tempfile)

            tas1 = cfdm.read(tempfile)[0]

            aux1 = tas1.constructs.filter_by_identity(
                'long_name=Grid latitude name').value()
            self.assertEqual(aux0.data.shape, array.shape, aux0.data.shape)
            self.assertEqual(aux1.data.shape, array.shape, aux1.data.shape)