Exemplo n.º 1
0
# headings = np.arange(0, 360, step=DDEG) # AK12 only
hxyz = dem.horizon(eop['xyz'], headings)

# --- Format and save GeoJSON ---- #

geo = geojson.FeatureCollection([
    geojson.Feature(geometry=geojson.LineString(xyz.tolist())) for xyz in hxyz
])
geo = glimpse.helpers.ordered_geojson(geo)
glimpse.helpers.write_geojson(geo,
                              'geojson/horizons/' + STATION + '.geojson',
                              crs=32606,
                              decimals=(5, 5, 0))

# --- Check result ---- #

svg_path = glob.glob('svg/' + STATION + '_*.svg')[-1]
img_path = cg.find_image(svg_path)
cam_args = cg.load_calibrations(path=img_path,
                                station_estimate=True,
                                merge=True)
img = glimpse.Image(img_path, cam=cam_args)
geo = glimpse.helpers.read_geojson('geojson/horizons/' + STATION + '.geojson',
                                   crs=32606)
lxyz = [coords for coords in glimpse.helpers.geojson_itercoords(geo)]
luv = [img.cam.project(xyz, correction=True) for xyz in lxyz]
img.plot()
for uv in luv:
    matplotlib.pyplot.plot(uv[:, 0], uv[:, 1], color='red')
img.set_plot_limits()
Exemplo n.º 2
0
dem_padding = 200 # m

# ---- Track points ----

for i_obs in range(0, len(observer_json)):
    # ---- Load observers ----
    # observers
    observers = []
    for station, basenames in observer_json[i_obs].items():
        meta = cg.parse_image_path(basenames[0], sequence=True)
        service_calibration = cg.load_calibrations(
            station_estimate=meta['station'], station=meta['station'],
            camera=meta['camera'], merge=True, file_errors=False)
        datetimes = cg.paths_to_datetimes(basenames)
        # Use dummy Exif for speed
        service_exif = glimpse.Exif(cg.find_image(basenames[0]))
        images = []
        for basename, t in zip(basenames, datetimes):
            calibration = glimpse.helpers.merge_dicts(service_calibration,
                cg.load_calibrations(image=basename, viewdir=basename, merge=True,
                file_errors=False))
            path = cg.find_image(basename)
            image = glimpse.Image(path, cam=calibration, datetime=t, exif=service_exif)
            images.append(image)
        # NOTE: Determine sigma programmatically?
        observer = glimpse.Observer(images, cache=True, correction=True, sigma=0.3)
        observers.append(observer)
    # ---- Load track points ----
    t = min([observer.datetimes[0] for observer in observers])
    datestr = t.strftime('%Y%m%d')
    basename = str(i_obs)
Exemplo n.º 3
0
# Prepare orthophotos
ortho_paths = glob.glob(os.path.join(root, 'ortho', '*.tif'))
ortho_paths += glob.glob(os.path.join(root, 'ortho-ifsar', 'data', '*.tif'))
ortho_dates = [datetime.datetime.strptime(re.findall(r'([0-9]{8})', path)[0], '%Y%m%d')
    for path in ortho_paths]

# ---- Control synths (ideal camera) ----

for image in images:
    print(image)
    start = timeit.default_timer()
    basename = os.path.join('svg-synth', image)
    if os.path.isfile(basename + '-synth.JPG'):
        continue
    # Load image
    img_path = cg.find_image(image)
    cam_args = cg.load_calibrations(image,
        station_estimate=True, station=True, merge=True, file_errors=False)
    img = glimpse.Image(img_path, cam=cam_args)
    img.cam.resize(img_size)
    # Select nearest dem and ortho
    img_date = datetime.datetime.strptime(cg.parse_image_path(image)['date_str'], '%Y%m%d')
    i_dem = np.argmin(np.abs(np.asarray(dem_dates) - img_date))
    i_ortho = np.argmin(np.abs(np.asarray(ortho_dates) - img_date))
    dem_path = dem_paths[i_dem]
    ortho_path = ortho_paths[i_ortho]
    # Load raster metadata
    dem_grid = glimpse.Grid.read(dem_path, d=grid_size)
    ortho_grid = glimpse.Grid.read(ortho_path, d=grid_size)
    # Intersect bounding boxes
    cam_box = img.cam.viewbox(50e3)[[0, 1, 3, 4]]
Exemplo n.º 4
0
    matplotlib.pyplot.imshow(I, alpha=0.5)
    m.plot(scale=20, width=1, selected='yellow')
    errors = (1 / scale) * np.linalg.norm(m.observed() - m.predicted(), axis=1)
    matplotlib.pyplot.title(
        glimpse.helpers.strip_path(img.path) + ' - ' +
        glimpse.helpers.strip_path(imgB.path) + '\n' +
        str(round(errors.mean(), 2)) + ', ' + str(round(errors.std(), 2)))
    img.set_plot_limits()
    img.cam.resize(1)
    imgB.cam.resize(1)
    m.resize(1)

# ---- Check single image (svg) ---- #

basename = 'AK10b_20120605_203759'
img = glimpse.Image(path=cg.find_image(basename),
                    cam=cg.load_calibrations(basename,
                                             station_estimate=True,
                                             merge=True))
controls = cg.svg_controls(img)
svg_model = glimpse.optimize.Cameras(img.cam,
                                     controls,
                                     cam_params=dict(viewdir=True),
                                     group_params=group_params[-1])
svg_fit = svg_model.fit(full=True, group_params=group_params[:-1])
matplotlib.pyplot.figure()
img.plot()
svg_model.plot(svg_fit.params)
img.set_plot_limits()

# ---- Check undistorted image ---- #
Exemplo n.º 5
0
for path in paths:
    meta = cg.parse_image_path(path, sequence=True)
    svg_keys = camera_keys.get(meta['camera'], keys)
    for suffix in suffixes:
        if not os.path.isfile(os.path.join(
            'cameras', meta['camera'] + suffix + '.json')):
            continue
        basename = os.path.join('images', meta['basename'] + suffix)
        if os.path.isfile(basename + '.json'):
            continue
        print(meta['basename'] + suffix)
        # TODO: Use station xyz estimated for calib for non-fixed stations
        calibration = cg.load_calibrations(path,
            station_estimate=meta['station'], station=meta['station'],
            camera=meta['camera'] + suffix, merge=True, file_errors=False)
        img_path = cg.find_image(path)
        img = glimpse.Image(img_path, cam=calibration)
        controls = cg.svg_controls(img, keys=svg_keys, step=step)
        controls += cg.synth_controls(img, step=step)
        if not controls:
            print("No controls found")
            continue
        model = glimpse.optimize.Cameras(
            cams=img.cam, controls=controls, cam_params=dict(viewdir=True))
        fit = model.fit(full=True)
        model.set_cameras(fit.params)
        img.cam.write(basename + '.json',
            attributes=('xyz', 'viewdir', 'fmm', 'cmm', 'k', 'p', 'sensorsz'),
            indent=4, flat_arrays=True)
        # Plot image with markup
        fig = matplotlib.pyplot.figure(
Exemplo n.º 6
0
# ---- Load first image from each observer station ----
# images

json = glimpse.helpers.read_json('observers.json',
    object_pairs_hook=collections.OrderedDict)
start_images = []
progress = glimpse.helpers._progress_bar(max=len(json))
for observers in json:
    starts = []
    for station, basenames in observers.items():
        ids = cg.parse_image_path(basenames[0], sequence=True)
        cam_args = cg.load_calibrations(station=station, camera=ids['camera'],
            image=basenames[0], viewdir=basenames[0], merge=True,
            file_errors=False)
        path = cg.find_image(basenames[0])
        starts.append(glimpse.Image(path, cam=cam_args))
    start_images.append(tuple(starts))
    progress.next()

# ---- Load DEM interpolant ----

dem_interpolant = glimpse.helpers.read_pickle(dem_interpolant_path)

# ---- Load canonical velocities (cartesian) ----
# vx, vx_sigma, vy, vy_sigma

names = 'vx', 'vx_stderr', 'vy', 'vy_stderr'
vx, vx_sigma, vy, vy_sigma = [glimpse.Raster.read(
    os.path.join('velocity', name + '.tif'))
    for name in names]
Exemplo n.º 7
0
IMG_SIZE = 0.5
FIGURE_SIZE = 0.25
MAX_RATIO = 0.5

# For each motion sequence...
motion = glimpse.helpers.read_json('motion.json')
for d in motion:
    paths = np.asarray(d['paths'])
    # Skip if all files already exist
    basenames = [os.path.join('motion', paths[i] + '-' + paths[i + 1])
        for i in range(len(paths) - 1)]
    nexists = np.sum([os.path.isfile(basename + '.pkl') for basename in basenames])
    if nexists == len(paths) - 1:
        continue
    # Load images
    images = [glimpse.Image(cg.find_image(path)) for path in paths]
    # Compute sequential matches
    for img in images:
        img.cam.resize(IMG_SIZE)
    matches = cg.build_sequential_matches(images, match=dict(max_ratio=MAX_RATIO))
    # For each motion pair...
    for i, control in enumerate(matches):
        # Skip if file exists
        if os.path.isfile(basenames[i] + '.pkl'):
            continue
        print(basenames[i])
        # Initialize control
        control.resize(1)
        # Filter with RANSAC
        model = glimpse.optimize.Cameras(
            control.cams, control,