Exemplo n.º 1
0
def render_plot(dmap: Depthmap) -> np.ndarray:
    # detect floor and child
    floor: float = dmap.get_floor_level()
    mask = dmap.segment_child(floor)  # dmap.detect_floor(floor)

    # prepare plots
    output_plots = [
        render_depth(dmap),
        render_normal(dmap),
        render_segmentation(floor, mask, dmap),
        render_confidence(dmap),
    ]
    if dmap.has_rgb:
        highest_point: np.ndarray = dmap.get_highest_point(mask)
        output_rgb = render_rgb(dmap)
        output_rgb = blur_face(output_rgb, highest_point, dmap,
                               CHILD_HEAD_HEIGHT_IN_METERS)
        output_plots.append(output_rgb)

    return np.concatenate(output_plots, axis=1)
Exemplo n.º 2
0
    def __init__(self, dmap: Depthmap, rgb_fpath: str):
        """Create object from depthmap and rgb file path"""
        self.floor = dmap.get_floor_level()
        self.rgb = cv2.imread(str(rgb_fpath))
        dim = (640, int(self.rgb.shape[0] / self.rgb.shape[1] * 640.0))
        self.rgb = cv2.resize(self.rgb, dim, cv2.INTER_AREA)
        dmap.resize(self.rgb.shape[1], self.rgb.shape[0])

        self.dmap = dmap
        self.rgb_fpath = rgb_fpath

        cache_fpath = f'{rgb_fpath}-hrnet.json'
        try:
            with open(cache_fpath) as json_file:
                self.persons_coordinates = json.load(json_file)
        except OSError:
            self.persons_coordinates = HRNET_MODEL.result_on_artifact_level_from_image(
                self.rgb, rgb_fpath, '0')
            with open(cache_fpath, 'w') as json_file:
                json.dump(self.persons_coordinates,
                          json_file,
                          cls=NumpyEncoder)