Exemplo n.º 1
0
    def _plot_default(self):
        # Create data
        x = linspace(-5, 15.0, 100)
        y = jn(3, x)
        pd = ArrayPlotData(index=x, value=y)

        zoomable_plot = Plot(pd)
        zoomable_plot.plot(('index', 'value'),
                           name='external',
                           color='red',
                           line_width=3)

        # Attach tools to the plot
        zoom = ZoomTool(component=zoomable_plot,
                        tool_mode="box",
                        always_on=False)
        zoomable_plot.overlays.append(zoom)
        zoomable_plot.tools.append(PanTool(zoomable_plot))

        # Create a second inset plot, not resizable, not zoom-able
        inset_plot = Plot(pd)
        inset_plot.plot(('index', 'value'), color='blue')
        inset_plot.resizable = ''
        inset_plot.bounds = [250, 150]
        inset_plot.position = [450, 350]
        inset_plot.border_visible = True

        # Create a container and add our plots
        container = OverlayPlotContainer()
        container.add(zoomable_plot)
        container.add(inset_plot)
        return container
Exemplo n.º 2
0
def main():
    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 100)
    pd = ArrayPlotData(index=x)
    for i in range(5):
        pd.set_data("y" + str(i), jn(i, x))

    # Create some line plots of some of the data
    plot = Plot(
        pd,
        bgcolor="none",
        padding=30,
        border_visible=True,
        overlay_border=True,
        use_backbuffer=False)
    plot.legend.visible = True
    plot.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="auto")
    plot.plot(("index", "y3"), name="j_3", color="auto")
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)

    # Create the mlab test mesh and get references to various parts of the
    # VTK pipeline
    f = mlab.figure(size=(600, 500))
    m = mlab.test_mesh()
    scene = mlab.gcf().scene
    render_window = scene.render_window
    renderer = scene.renderer
    rwi = scene.interactor

    plot.resizable = ""
    plot.bounds = [200, 200]
    plot.padding = 25
    plot.bgcolor = "lightgray"
    plot.outer_position = [30, 30]
    plot.tools.append(MoveTool(component=plot, drag_button="right"))

    container = OverlayPlotContainer(bgcolor="transparent", fit_window=True)
    container.add(plot)

    # Create the Enable Window
    window = EnableVTKWindow(
        rwi,
        renderer,
        component=container,
        #istyle_class = tvtk.InteractorStyleSwitch,
        #istyle_class = tvtk.InteractorStyle,
        istyle_class=tvtk.InteractorStyleTrackballCamera,
        bgcolor="transparent",
        event_passthrough=True, )

    mlab.show()
    return window, render_window
Exemplo n.º 3
0
def main():
    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 100)
    pd = ArrayPlotData(index = x)
    for i in range(5):
        pd.set_data("y" + str(i), jn(i,x))

    # Create some line plots of some of the data
    plot = Plot(pd, bgcolor="none", padding=30, border_visible=True,
                 overlay_border=True, use_backbuffer=False)
    plot.legend.visible = True
    plot.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="auto")
    plot.plot(("index", "y3"), name="j_3", color="auto")
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)

    # Create the mlab test mesh and get references to various parts of the
    # VTK pipeline
    f = mlab.figure(size=(600,500))
    m = mlab.test_mesh()
    scene = mlab.gcf().scene
    render_window = scene.render_window
    renderer = scene.renderer
    rwi = scene.interactor

    plot.resizable = ""
    plot.bounds = [200,200]
    plot.padding = 25
    plot.bgcolor = "lightgray"
    plot.outer_position = [30,30]
    plot.tools.append(MoveTool(component=plot,drag_button="right"))

    container = OverlayPlotContainer(bgcolor = "transparent",
                    fit_window = True)
    container.add(plot)

    # Create the Enable Window
    window = EnableVTKWindow(rwi, renderer,
            component=container,
            #istyle_class = tvtk.InteractorStyleSwitch,
            #istyle_class = tvtk.InteractorStyle,
            istyle_class = tvtk.InteractorStyleTrackballCamera,
            bgcolor = "transparent",
            event_passthrough = True,
            )

    mlab.show()
    return window, render_window
Exemplo n.º 4
0
def _create_plot_component():
    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 100)
    pd = ArrayPlotData(index=x)
    for i in range(5):
        pd.set_data("y" + str(i), jn(i, x))

    # Create some line plots of some of the data
    plot1 = Plot(pd)
    plot1.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red")
    plot1.plot(("index", "y3"), name="j_3", color="blue")

    # Tweak some of the plot properties
    plot1.title = "Inset Plot"
    plot1.padding = 50

    # Attach some tools to the plot
    plot1.tools.append(PanTool(plot1))
    zoom = ZoomTool(component=plot1, tool_mode="box", always_on=False)
    plot1.overlays.append(zoom)

    # Create a second scatter plot of one of the datasets, linking its
    # range to the first plot
    plot2 = Plot(pd, range2d=plot1.range2d, padding=50)
    plot2.plot(('index', 'y3'), type="scatter", color="blue", marker="circle")
    plot2.resizable = ""
    plot2.bounds = [250, 250]
    plot2.position = [550, 150]
    plot2.bgcolor = "white"
    plot2.border_visible = True
    plot2.unified_draw = True

    plot2.tools.append(PanTool(plot2))
    plot2.tools.append(MoveTool(plot2, drag_button="right"))
    zoom = ZoomTool(component=plot2, tool_mode="box", always_on=False)
    plot2.overlays.append(zoom)

    # Create a container and add our plots
    container = OverlayPlotContainer()
    container.add(plot1)
    container.add(plot2)
    return container
Exemplo n.º 5
0
def clone_plot(clonetool, drop_position):
    # A little sketchy...
    canvas = clonetool.component.container.component.component

    # Create a new Plot object
    oldplot = clonetool.component
    newplot = Plot(oldplot.data)
    basic_traits = [
        "orientation", "default_origin", "bgcolor", "border_color",
        "border_width", "border_visible", "draw_layer", "unified_draw",
        "fit_components", "fill_padding", "visible", "aspect_ratio", "title"
    ]

    for attr in basic_traits:
        setattr(newplot, attr, getattr(oldplot, attr))

    # copy the ranges
    dst = newplot.range2d
    src = oldplot.range2d
    #for attr in ('_low_setting', '_low_value', '_high_setting', '_high_value'):
    #    setattr(dst, attr, getattr(src, attr))
    dst._xrange.sources = copy(src._xrange.sources)
    dst._yrange.sources = copy(src._yrange.sources)

    newplot.padding = oldplot.padding
    newplot.bounds = oldplot.bounds[:]
    newplot.resizable = ""
    newplot.position = drop_position

    newplot.datasources = copy(oldplot.datasources)

    for name, renderers in list(oldplot.plots.items()):
        newrenderers = []
        for renderer in renderers:
            new_r = clone_renderer(renderer)
            new_r.index_mapper = LinearMapper(range=newplot.index_range)
            new_r.value_mapper = LinearMapper(range=newplot.value_range)
            new_r._layout_needed = True
            new_r.invalidate_draw()
            new_r.resizable = "hv"
            newrenderers.append(new_r)
        newplot.plots[name] = newrenderers
    #newplot.plots = copy(oldplot.plots)

    for name, renderers in list(newplot.plots.items()):
        newplot.add(*renderers)

    newplot.index_axis.title = oldplot.index_axis.title
    newplot.index_axis.unified_draw = True
    newplot.value_axis.title = oldplot.value_axis.title
    newplot.value_axis.unified_draw = True

    # Add new tools to the new plot
    newplot.tools.append(
        AxisTool(component=newplot, range_controller=canvas.range_controller))

    # Add tools to the new plot
    pan_traits = [
        "drag_button", "constrain", "constrain_key", "constrain_direction",
        "speed"
    ]
    zoom_traits = [
        "tool_mode", "always_on", "axis", "enable_wheel", "drag_button",
        "wheel_zoom_step", "enter_zoom_key", "exit_zoom_key", "pointer",
        "color", "alpha", "border_color", "border_size", "disable_on_complete",
        "minimum_screen_delta", "max_zoom_in_factor", "max_zoom_out_factor"
    ]
    move_traits = [
        "drag_button", "end_drag_on_leave", "cancel_keys", "capture_mouse",
        "modifier_key"
    ]

    if not MULTITOUCH:
        for tool in oldplot.tools:
            if isinstance(tool, PanTool):
                newtool = tool.clone_traits(pan_traits)
                newtool.component = newplot
                break
        else:
            newtool = PanTool(newplot)
        # Reconfigure the pan tool to always use the left mouse, because we will
        # put plot move on the right mouse button
        newtool.drag_button = "left"
        newplot.tools.append(newtool)

        for tool in oldplot.tools:
            if isinstance(tool, MoveTool):
                newtool = tool.clone_traits(move_traits)
                newtool.component = newplot
                break
        else:
            newtool = MoveTool(newplot, drag_button="right")
        newplot.tools.append(newtool)

        for tool in oldplot.tools:
            if isinstance(tool, ZoomTool):
                newtool = tool.clone_traits(zoom_traits)
                newtool.component = newplot
                break
        else:
            newtool = ZoomTool(newplot)
        newplot.tools.append(newtool)

    else:
        pz = MPPanZoom(newplot)
        #pz.pan.constrain = True
        #pz.pan.constrain_direction = "x"
        #pz.zoom.mode = "range"
        #pz.zoom.axis = "index"
        newplot.tools.append(MPPanZoom(newplot))
        #newplot.tools.append(MTMoveTool(

    newplot._layout_needed = True

    clonetool.dest.add(newplot)
    newplot.invalidate_draw()
    newplot.request_redraw()
    canvas.request_redraw()
    return
Exemplo n.º 6
0
Arquivo: canvas.py Projeto: 5n1p/chaco
def clone_plot(clonetool, drop_position):
    # A little sketchy...
    canvas = clonetool.component.container.component.component

    # Create a new Plot object
    oldplot = clonetool.component
    newplot = Plot(oldplot.data)
    basic_traits = ["orientation", "default_origin", "bgcolor", "border_color",
                    "border_width", "border_visible", "draw_layer", "unified_draw",
                    "fit_components", "fill_padding", "visible", "aspect_ratio",
                    "title"]

    for attr in basic_traits:
        setattr(newplot, attr, getattr(oldplot, attr))

    # copy the ranges
    dst = newplot.range2d
    src = oldplot.range2d
    #for attr in ('_low_setting', '_low_value', '_high_setting', '_high_value'):
    #    setattr(dst, attr, getattr(src, attr))
    dst._xrange.sources = copy(src._xrange.sources)
    dst._yrange.sources = copy(src._yrange.sources)

    newplot.padding = oldplot.padding
    newplot.bounds = oldplot.bounds[:]
    newplot.resizable = ""
    newplot.position = drop_position

    newplot.datasources = copy(oldplot.datasources)

    for name, renderers in oldplot.plots.items():
        newrenderers = []
        for renderer in renderers:
            new_r = clone_renderer(renderer)
            new_r.index_mapper = LinearMapper(range=newplot.index_range)
            new_r.value_mapper = LinearMapper(range=newplot.value_range)
            new_r._layout_needed = True
            new_r.invalidate_draw()
            new_r.resizable = "hv"
            newrenderers.append(new_r)
        newplot.plots[name] = newrenderers
    #newplot.plots = copy(oldplot.plots)

    for name, renderers in newplot.plots.items():
        newplot.add(*renderers)

    newplot.index_axis.title = oldplot.index_axis.title
    newplot.index_axis.unified_draw = True
    newplot.value_axis.title = oldplot.value_axis.title
    newplot.value_axis.unified_draw = True

    # Add new tools to the new plot
    newplot.tools.append(AxisTool(component=newplot,
        range_controller=canvas.range_controller))

    # Add tools to the new plot
    pan_traits = ["drag_button", "constrain", "constrain_key", "constrain_direction",
                  "speed"]
    zoom_traits = ["tool_mode", "always_on", "axis", "enable_wheel", "drag_button",
                   "wheel_zoom_step", "enter_zoom_key", "exit_zoom_key", "pointer",
                   "color", "alpha", "border_color", "border_size", "disable_on_complete",
                   "minimum_screen_delta", "max_zoom_in_factor", "max_zoom_out_factor"]
    move_traits = ["drag_button", "end_drag_on_leave", "cancel_keys", "capture_mouse",
                   "modifier_key"]

    if not MULTITOUCH:
        for tool in oldplot.tools:
            if isinstance(tool, PanTool):
                newtool = tool.clone_traits(pan_traits)
                newtool.component = newplot
                break
        else:
            newtool = PanTool(newplot)
        # Reconfigure the pan tool to always use the left mouse, because we will
        # put plot move on the right mouse button
        newtool.drag_button = "left"
        newplot.tools.append(newtool)

        for tool in oldplot.tools:
            if isinstance(tool, MoveTool):
                newtool = tool.clone_traits(move_traits)
                newtool.component = newplot
                break
        else:
            newtool = MoveTool(newplot, drag_button="right")
        newplot.tools.append(newtool)

        for tool in oldplot.tools:
            if isinstance(tool, ZoomTool):
                newtool = tool.clone_traits(zoom_traits)
                newtool.component = newplot
                break
        else:
            newtool = ZoomTool(newplot)
        newplot.tools.append(newtool)

    else:
        pz = MPPanZoom(newplot)
        #pz.pan.constrain = True
        #pz.pan.constrain_direction = "x"
        #pz.zoom.mode = "range"
        #pz.zoom.axis = "index"
        newplot.tools.append(MPPanZoom(newplot))
        #newplot.tools.append(MTMoveTool(

    newplot._layout_needed = True

    clonetool.dest.add(newplot)
    newplot.invalidate_draw()
    newplot.request_redraw()
    canvas.request_redraw()
    return
Exemplo n.º 7
0
    def __init__(self, **kw):
        super(MLabChacoPlot, self).__init__(**kw)
        
        self.prices = get_data()
        x = self.prices['Date']
        pd = ArrayPlotData(index = x)
        pd.set_data("y", self.prices["Crude Supply"])

        # Create some line plots of some of the data
        plot = Plot(pd, bgcolor="none", padding=30, border_visible=True, 
                     overlay_border=True, use_backbuffer=False)
        #plot.legend.visible = True
        plot.plot(("index", "y"), name="Crude Price", color=(.3, .3, .8, .8))
        #plot.tools.append(PanTool(plot))

        plot.tools.append(PanTool(plot, constrain=True, drag_button="right",
                                  constrain_direction="x"))

        range_plt = plot.plots['Crude Price'][0]

        range_selection = RangeSelection(range_plt, left_button_selects=True)
        range_selection.on_trait_change(self.update_interval, 'selection')
        range_plt.tools.append(range_selection)
        range_plt.overlays.append(RangeSelectionOverlay(range_plt))


        zoom = ZoomTool(component=plot, tool_mode="range", always_on=False,
                        axis="index", max_zoom_out_factor=1.0,)
        plot.overlays.append(zoom)

        # Set the plot's bottom axis to use the Scales ticking system
        scale_sys = CalendarScaleSystem(fill_ratio=0.4,
                                        default_numlabels=5,
                                        default_numticks=10,)
        tick_gen = ScalesTickGenerator(scale=scale_sys)

        bottom_axis = ScalesPlotAxis(plot, orientation="bottom",
                                     tick_generator=tick_gen,
                                     label_color="white",
                                     line_color="white")

        # Hack to remove default axis - FIXME: how do I *replace* an axis?
        del(plot.underlays[-2])

        plot.overlays.append(bottom_axis)

        # Create the mlab test mesh and get references to various parts of the
        # VTK pipeline
        f = mlab.figure(size=(700,500))
        self.m = mlab.points3d(self.prices['Gasoline Supply'], self.prices['Jet Fuel Supply'], self.prices['Distillate Supply'], self.prices['Crude Supply'])
        
        # Add another glyph module to render the full set of points
        g2 = Glyph()
        g2.glyph.glyph_source.glyph_source.glyph_type = "circle"
        g2.glyph.glyph_source.glyph_source.filled = True
        g2.actor.property.opacity = 0.75
        self.m.module_manager.source.add_module(g2)
        
        # Set a bunch of properties on the scene to make things look right
        self.m.module_manager.scalar_lut_manager.lut_mode = 'PuBuGn'
        self.m.glyph.mask_points.random_mode = False
        self.m.glyph.mask_points.on_ratio = 1
        self.m.scene.isometric_view()
        self.m.scene.background = (.9, 0.95, 1.0)
        
        scene = mlab.gcf().scene
        render_window = scene.render_window
        renderer = scene.renderer
        rwi = scene.interactor

        plot.resizable = ""
        plot.bounds = [600,120]
        plot.padding = 25
        plot.bgcolor = "white"
        plot.outer_position = [30,30]
        plot.tools.append(MoveTool(component=plot,drag_button="right"))

        container = OverlayPlotContainer(bgcolor = "transparent",
                        fit_window = True)
        container.add(plot)

        # Create the Enable Window
        window = EnableVTKWindow(rwi, renderer, 
                component=container,
                istyle_class = tvtk.InteractorStyleTrackballCamera, 
                bgcolor = "transparent",
                event_passthrough = True,
                )

        mlab.show()
Exemplo n.º 8
0
 def _forest_plot_default(self):
     plot = Plot(self.plot_data)
     plot.img_plot("forest_image")
     plot.bounds = [0., 2.0]
     return plot
Exemplo n.º 9
0
 def _forest_plot_default(self):
     plot = Plot(self.plot_data)
     plot.img_plot("forest_image")
     plot.bounds = [0., 2.0]
     return plot