def __call__(self, x):
     """Applies the convolution layer.
     Args:
         x (~chainer.Variable): Input image.
     Returns:
         ~chainer.Variable: Output of the convolution.
     """
     if self.W.data is None:
         self._initialize_params(x.shape[1])
     return dilated_convolution_2d.dilated_convolution_2d(
         x, self.W_bar, self.b, self.stride, self.pad, self.dilate)
Exemplo n.º 2
0
    def forward(self, x):
        """Applies the convolution layer.

        Args:
            x (~chainer.Variable): Input image.

        Returns:
            ~chainer.Variable: Output of the convolution.

        """
        if self.W.data is None:
            self._initialize_params(x.shape[1])
        return dilated_convolution_2d.dilated_convolution_2d(
            x, self.W, self.b, self.stride, self.pad, self.dilate)
    def __call__(self, x):
        """Applies the convolution layer.

        Args:
            x (~chainer.Variable): Input image.

        Returns:
            ~chainer.Variable: Output of the convolution.

        """
        if self.has_uninitialized_params:
            with cuda.get_device(self._device_id):
                self._initialize_params(x.shape[1])
        return dilated_convolution_2d.dilated_convolution_2d(
            x, self.W, self.b, self.stride,
            self.pad, self.dilate, self.use_cudnn)
    def __call__(self, x):
        """Applies the convolution layer.

        Args:
            x (~chainer.Variable): Input image.

        Returns:
            ~chainer.Variable: Output of the convolution.

        """
        if self.has_uninitialized_params:
            with cuda.get_device(self._device_id):
                self._initialize_params(x.shape[1])
        return dilated_convolution_2d.dilated_convolution_2d(
            x, self.W, self.b, self.stride, self.pad, self.dilate,
            self.use_cudnn)