Exemplo n.º 1
0
    def __call__(self, x):
        test = not self.train
        outs = []

        if self.out1 > 0:
            h1 = self.conv1(x)
            h1 = self.conv1n(h1, test=test)
            h1 = relu.relu(h1)
            outs.append(h1)

        h3 = relu.relu(self.proj3n(self.proj3(x), test=test))
        h3 = relu.relu(self.conv3n(self.conv3(h3), test=test))
        outs.append(h3)

        h33 = relu.relu(self.proj33n(self.proj33(x), test=test))
        h33 = relu.relu(self.conv33an(self.conv33a(h33), test=test))
        h33 = relu.relu(self.conv33bn(self.conv33b(h33), test=test))
        outs.append(h33)

        if self.pooltype == 'max':
            p = max_pooling_2d.max_pooling_2d(x, 3, stride=self.stride, pad=1)
        else:
            p = average_pooling_2d.average_pooling_2d(x, 3, stride=self.stride,
                                                      pad=1)
        if self.proj_pool is not None:
            p = relu.relu(self.poolpn(self.poolp(p), test=test))
        outs.append(p)

        y = concat.concat(outs, axis=1)
        return y
Exemplo n.º 2
0
    def forward(self, x):
        outs = []

        if self.out1 > 0:
            h1 = self.conv1(x)
            h1 = self.conv1n(h1)
            h1 = relu.relu(h1)
            outs.append(h1)

        h3 = relu.relu(self.proj3n(self.proj3(x)))
        h3 = relu.relu(self.conv3n(self.conv3(h3)))
        outs.append(h3)

        h33 = relu.relu(self.proj33n(self.proj33(x)))
        h33 = relu.relu(self.conv33an(self.conv33a(h33)))
        h33 = relu.relu(self.conv33bn(self.conv33b(h33)))
        outs.append(h33)

        if self.pooltype == 'max':
            p = max_pooling_2d.max_pooling_2d(x, 3, stride=self.stride, pad=1,
                                              cover_all=False)
        else:
            p = average_pooling_2d.average_pooling_2d(x, 3, stride=self.stride,
                                                      pad=1)
        if self.proj_pool is not None:
            p = relu.relu(self.poolpn(self.poolp(p)))
        outs.append(p)

        y = concat.concat(outs, axis=1)
        return y
Exemplo n.º 3
0
    def __call__(self, x, test=None):
        """Computes the output of the InceptionBN module.

        Args:
            x (Variable): An input variable.
            test (bool): If ``True``, batch normalization layers run in testing
                mode; if ``test`` is omitted, ``not self.train`` is used as
                ``test``.

        """
        if test is None:
            test = not self.train
        outs = []

        if self.out1 > 0:
            h1 = self.conv1(x)
            h1 = self.conv1n(h1, test=test)
            h1 = relu.relu(h1)
            outs.append(h1)

        h3 = relu.relu(self.proj3n(self.proj3(x), test=test))
        h3 = relu.relu(self.conv3n(self.conv3(h3), test=test))
        outs.append(h3)

        h33 = relu.relu(self.proj33n(self.proj33(x), test=test))
        h33 = relu.relu(self.conv33an(self.conv33a(h33), test=test))
        h33 = relu.relu(self.conv33bn(self.conv33b(h33), test=test))
        outs.append(h33)

        if self.pooltype == 'max':
            p = max_pooling_2d.max_pooling_2d(x, 3, stride=self.stride, pad=1,
                                              cover_all=False)
        else:
            p = average_pooling_2d.average_pooling_2d(x, 3, stride=self.stride,
                                                      pad=1)
        if self.proj_pool is not None:
            p = relu.relu(self.poolpn(self.poolp(p), test=test))
        outs.append(p)

        y = concat.concat(outs, axis=1)
        return y
Exemplo n.º 4
0
def _global_average_pooling_2d(x):
    n, channel, rows, cols = x.data.shape
    h = average_pooling_2d(x, (rows, cols), stride=1)
    h = reshape(h, (n, channel))
    return h
Exemplo n.º 5
0
def _average_pooling_2d_k7(x):
    return average_pooling_2d(x, ksize=7, stride=1)
Exemplo n.º 6
0
def _average_pooling_2d_k5(x):
    return average_pooling_2d(x, ksize=5, stride=3)
Exemplo n.º 7
0
def _global_average_pooling_2d(x):
    n, channel, rows, cols = x.data.shape
    h = average_pooling_2d(x, (rows, cols), stride=1)
    h = reshape(h, (n, channel))
    return h