def __call__(self, in_data):
        # There are five data augmentation steps
        # 1. Color augmentation
        # 2. Random expansion
        # 3. Random cropping
        # 4. Resizing with random interpolation
        # 5. Random horizontal flipping

        img, bbox, label = in_data

        bbox = np.array(bbox).astype(np.float32)

        if len(bbox) == 0:
            warnings.warn("No bounding box detected", RuntimeWarning)
            img = resize_with_random_interpolation(img, (self.size, self.size))
            mb_loc, mb_label = self.coder.encode(bbox, label)
            return img, mb_loc, mb_label

        # 1. Color augmentation
        img = random_distort(img)

        # 2. Random expansion
        if np.random.randint(2):
            img, param = transforms.random_expand(
                img, fill=self.mean, return_param=True)
            bbox = transforms.translate_bbox(
                bbox, y_offset=param['y_offset'], x_offset=param['x_offset'])

        # 3. Random cropping
        img, param = random_crop_with_bbox_constraints(
            img, bbox, return_param=True)
        bbox, param = transforms.crop_bbox(
            bbox, y_slice=param['y_slice'], x_slice=param['x_slice'],
            allow_outside_center=False, return_param=True)
        label = label[param['index']]

        # 4. Resizing with random interpolatation
        _, H, W = img.shape
        img = resize_with_random_interpolation(img, (self.size, self.size))
        bbox = transforms.resize_bbox(bbox, (H, W), (self.size, self.size))

        # 5. Random horizontal flipping
        img, params = transforms.random_flip(
            img, x_random=True, return_param=True)
        bbox = transforms.flip_bbox(
            bbox, (self.size, self.size), x_flip=params['x_flip'])

        mb_loc, mb_label = self.coder.encode(bbox, label)
        return img, mb_loc, mb_label
Exemplo n.º 2
0
    def __call__(self, in_data):
        img, bbox, label = in_data

        # 1. Color augumentation
        img = random_distort(img)

        # 2. Random expansion
        if np.random.randint(2):
            img, param = transforms.random_expand(
                img, fill=self.mean, return_param=True)
            bbox = transforms.translate_bbox(
                bbox, y_offset=param["y_offset"], x_offset=param["x_offset"])

        # 3. Random cropping
        img, param = random_crop_with_bbox_constraints(
            img, bbox, return_param=True)
        bbox, param = transforms.crop_bbox(
            bbox, y_slice=param["y_slice"], x_slice=param["x_slice"],
            allow_outside_center=False, return_param=True)
        label = label[param["index"]]

        # 4. Resizing with random interpolation
        _, H, W = img.shape
        img = resize_with_random_interpolation(img, (self.size, self.size))
        bbox = transforms.resize_bbox(bbox, (H, W), (self.size, self.size))

        # 5. Transformation for SSD network input
        img -= self.mean
        mb_loc, mb_lab = self.coder.encode(bbox, label)

        return img, mb_loc, mb_lab
Exemplo n.º 3
0
    def __call__(self, in_data):
        img, bbox, label = in_data

        # 1. Color augumentation
        img = random_distort(img)

        # 2. Random expansion
        if np.random.randint(2):
            img, param = transforms.random_expand(
                img, fill=self.mean, return_param=True)
            bbox = transforms.translate_bbox(
                bbox, y_offset=param["y_offset"], x_offset=param["x_offset"])

        # 3. Random cropping
        img, param = random_crop_with_bbox_constraints(
            img, bbox, return_param=True)
        bbox, param = transforms.crop_bbox(
            bbox, y_slice=param["y_slice"], x_slice=param["x_slice"],
            allow_outside_center=False, return_param=True)
        label = label[param["index"]]

        # 4. Resizing with random interpolation
        _, H, W = img.shape
        img = resize_with_random_interpolation(img, (self.size, self.size))
        bbox = transforms.resize_bbox(bbox, (H, W), (self.size, self.size))

        # 5. Transformation for SSD network input
        img -= self.mean
        mb_loc, mb_lab = self.coder.encode(bbox, label)

        return img, mb_loc, mb_lab
    def __call__(self, in_data):
        # There are five data augmentation steps
        # 1. Color augmentation
        # 2. Random expansion
        # 3. Random cropping
        # 4. Resizing with random interpolation
        # 5. Random horizontal flipping
        # 6. Random vertical flipping

        img, bbox, label = in_data

        # 1. Color augmentation
        img = random_distort(img)

        # 2. Random expansion
        if np.random.randint(2):
            img, param = transforms.random_expand(img,
                                                  fill=self.mean,
                                                  return_param=True)
            bbox = transforms.translate_bbox(bbox,
                                             y_offset=param['y_offset'],
                                             x_offset=param['x_offset'])

        # 3. Random cropping
        img, param = random_crop_with_bbox_constraints(img,
                                                       bbox,
                                                       return_param=True)
        bbox, param = transforms.crop_bbox(bbox,
                                           y_slice=param['y_slice'],
                                           x_slice=param['x_slice'],
                                           allow_outside_center=False,
                                           return_param=True)
        label = label[param['index']]

        # 4. Resizing with random interpolatation
        _, H, W = img.shape
        img = resize_with_random_interpolation(img, (self.size, self.size))
        bbox = transforms.resize_bbox(bbox, (H, W), (self.size, self.size))

        # 5. Random horizontal flipping
        img, params = transforms.random_flip(img,
                                             x_random=True,
                                             return_param=True)
        bbox = transforms.flip_bbox(bbox, (self.size, self.size),
                                    x_flip=params['x_flip'])

        # 6. Random vertical flipping
        img, params = transforms.random_flip(img,
                                             y_random=True,
                                             return_param=True)
        bbox = transforms.flip_bbox(bbox, (self.size, self.size),
                                    y_flip=params['y_flip'])

        # Preparation for SSD network
        img -= self.mean
        mb_loc, mb_label = self.coder.encode(bbox, label)

        return img, mb_loc, mb_label
Exemplo n.º 5
0
    def __call__(self, in_data):
        # 5段階のステップでデータの水増しを行う
        # 1. 色の拡張
        # 2. ランダムな拡大
        # 3. ランダムなトリミング
        # 4. ランダムな補完の再補正
        # 5. ランダムな水平反転

        img, bbox, label = in_data

        # 1. 色の拡張
        # 明るさ,コントラスト,彩度,色相を組み合わせ,データ拡張をする
        img = random_distort(img)

        # 2. ランダムな拡大
        if np.random.randint(2):
            # キャンバスの様々な座標に入力画像を置いて,様々な比率の画像を生成し,bounding boxを更新
            img, param = transforms.random_expand(img,
                                                  fill=self.mean,
                                                  return_param=True)
            bbox = transforms.translate_bbox(bbox,
                                             y_offset=param['y_offset'],
                                             x_offset=param['x_offset'])

        # 3. ランダムなトリミング
        img, param = random_crop_with_bbox_constraints(img,
                                                       bbox,
                                                       return_param=True)
        # トリミングされた画像内にbounding boxが入るように調整
        bbox, param = transforms.crop_bbox(bbox,
                                           y_slice=param['y_slice'],
                                           x_slice=param['x_slice'],
                                           allow_outside_center=False,
                                           return_param=True)
        label = label[param['index']]

        # 4. ランダムな補完の再補正
        ## 画像とbounding boxのリサイズ
        _, H, W = img.shape
        img = resize_with_random_interpolation(img, (self.size, self.size))
        bbox = transforms.resize_bbox(bbox, (H, W), (self.size, self.size))

        # 5. ランダムな水平反転
        ## 画像とbounding boxをランダムに水平方向に反転
        img, params = transforms.random_flip(img,
                                             x_random=True,
                                             return_param=True)
        bbox = transforms.flip_bbox(bbox, (self.size, self.size),
                                    x_flip=params['x_flip'])

        # SSDのネットワークに入力するための準備の処理
        img -= self.mean
        ## SSDに入力するためのloc(デフォルトbounding boxのオフセットとスケール)と
        ## mb_label(クラスを表す配列)を出力
        mb_loc, mb_label = self.coder.encode(bbox, label)

        return img, mb_loc, mb_label
Exemplo n.º 6
0
    def __call__(self, in_data):
        # There are five data augmentation steps
        # 1. Color augmentation
        # 2. Random expansion
        # 3. Random cropping
        # 4. Resizing with random interpolation
        # 5. Random horizontal flipping

        img, bbox, label = in_data

        # 1. Color augmentation
        img = random_distort(img)

        # 2. Random expansion
        if np.random.randint(2):
            img, param = transforms.random_expand(
                img, fill=self.mean, return_param=True)
            bbox = transforms.translate_bbox(
                bbox, y_offset=param['y_offset'], x_offset=param['x_offset'])

        # 3. Random cropping
        img, param = random_crop_with_bbox_constraints(
            img, bbox, return_param=True)
        bbox, param = transforms.crop_bbox(
            bbox, y_slice=param['y_slice'], x_slice=param['x_slice'],
            allow_outside_center=False, return_param=True)
        label = label[param['index']]

        # 4. Resizing with random interpolatation
        _, H, W = img.shape
        img = resize_with_random_interpolation(img, (self.size, self.size))
        bbox = transforms.resize_bbox(bbox, (H, W), (self.size, self.size))

        # 5. Random horizontal flipping
        img, params = transforms.random_flip(
            img, x_random=True, return_param=True)
        bbox = transforms.flip_bbox(
            bbox, (self.size, self.size), x_flip=params['x_flip'])

        # Preparation for SSD network
        img -= self.mean
        mb_loc, mb_label = self.coder.encode(bbox, label)

        return img, mb_loc, mb_label
Exemplo n.º 7
0
    def __call__(self, in_data):
        img, bbox, label = in_data

        img = random_distort(img)

        if np.random.randint(2):
            img, param = transforms.random_expand(img,
                                                  fill=self.mean,
                                                  return_param=True)
            bbox = transforms.translate_bbox(bbox,
                                             y_offset=param['y_offset'],
                                             x_offset=param['x_offset'])

        img, param = random_crop_with_bbox_constraints(img,
                                                       bbox,
                                                       return_param=True)
        bbox, param = transforms.crop_bbox(bbox,
                                           y_slice=param['y_slice'],
                                           x_slice=param['x_slice'],
                                           allow_outside_center=False,
                                           return_param=True)
        label = label[param['index']]

        _, H, W = img.shape
        img = resize_with_random_interpolation(img, (self.size, self.size))
        bbox = transforms.resize_bbox(bbox, (H, W), (self.size, self.size))

        img, params = transforms.random_flip(img,
                                             x_random=True,
                                             return_param=True)
        bbox = transforms.flip_bbox(bbox, (self.size, self.size),
                                    x_flip=params['x_flip'])

        img -= self.mean
        mb_loc, mb_label = self.coder.encode(bbox, label)

        return img, mb_loc, mb_label
 def test_resize_grayscale(self):
     img = np.random.uniform(size=(1, 24, 32))
     out = resize_with_random_interpolation(img, size=(32, 64))
     self.assertEqual(out.shape, (1, 32, 64))
Exemplo n.º 9
0
    def __call__(self, in_data):
        """in_data includes three datas.
        Args:
            img(array): Shape is (3, H, W). range is [0, 255].
            bbox(array): Shape is (N, 4). (y_min, x_min, y_max, x_max).
                         range is [0, max size of boxes].
            label(array): Classes of bounding boxes.

        Returns:
            img(array): Shape is (3, out_H, out_W). range is [0, 1].
                        interpolation value equals to self.value.
        """
        # There are five data augmentation steps
        # 1. Color augmentation
        # 2. Random expansion
        # 3. Random cropping
        # 4. Resizing with random interpolation
        # 5. Random horizontal flipping
        if self.count % 10 == 0 and self.count % self.batchsize == 0 and self.count != 0:
            self.i += 1
            i = self.i % len(self.dim)
            self.output_shape = (self.dim[i], self.dim[i])
        self.count += 1

        img, bbox, label = in_data

        # 1. Color augmentation
        img = random_distort(img,
                             brightness_delta=32,
                             contrast_low=0.5,
                             contrast_high=1.5,
                             saturation_low=0.5,
                             saturation_high=1.5,
                             hue_delta=25)

        # Normalize. range is [0, 1]
        img /= 255.0

        _, H, W = img.shape
        scale = np.random.uniform(0.25, 2)
        random_expand = np.random.uniform(0.8, 1.2, 2)
        net_h, net_w = self.output_shape
        out_h = net_h * scale  # random_expand[0]
        out_w = net_w * scale  # random_expand[1]
        if H > W:
            out_w = out_h * (float(W) / H) * np.random.uniform(0.8, 1.2)
        elif H < W:
            out_h = out_w * (float(H) / W) * np.random.uniform(0.8, 1.2)

        out_h = int(out_h)
        out_w = int(out_w)

        img = resize_with_random_interpolation(img, (out_h, out_w))
        bbox = transforms.resize_bbox(bbox, (H, W), (out_h, out_w))

        if out_h < net_h and out_w < net_w:
            img, param = expand(img,
                                out_h=net_h,
                                out_w=net_w,
                                fill=self.value,
                                return_param=True)
            bbox = transforms.translate_bbox(bbox,
                                             y_offset=param['y_offset'],
                                             x_offset=param['x_offset'])
        else:
            out_h = net_h if net_h > out_h else int(out_h * 1.05)
            out_w = net_w if net_w > out_w else int(out_w * 1.05)
            img, param = expand(img,
                                out_h=out_h,
                                out_w=out_w,
                                fill=self.value,
                                return_param=True)
            bbox = transforms.translate_bbox(bbox,
                                             y_offset=param['y_offset'],
                                             x_offset=param['x_offset'])

            img, param = crop_with_bbox_constraints(img,
                                                    bbox,
                                                    return_param=True,
                                                    crop_height=net_h,
                                                    crop_width=net_w)
            bbox, param = transforms.crop_bbox(bbox,
                                               y_slice=param['y_slice'],
                                               x_slice=param['x_slice'],
                                               allow_outside_center=False,
                                               return_param=True)
            label = label[param['index']]

        # 5. Random horizontal flipping # OK
        img, params = transforms.random_flip(img,
                                             x_random=True,
                                             return_param=True)
        bbox = transforms.flip_bbox(bbox,
                                    self.output_shape,
                                    x_flip=params['x_flip'])

        # Preparation for Yolov2 network. scale=[0, 1]
        bbox[:, ::2] /= self.output_shape[0]  # y
        bbox[:, 1::2] /= self.output_shape[1]  # x

        num_bbox = len(bbox)
        len_max = max(num_bbox, self.max_target)
        out_bbox = np.zeros((len_max, 4), dtype='f')
        out_bbox[:num_bbox] = bbox[:num_bbox]
        out_label = np.zeros((len_max), dtype='i')
        out_label[:num_bbox] = label
        out_bbox = out_bbox[:self.max_target]
        out_label = out_label[:self.max_target]
        num_array = min(num_bbox, self.max_target)

        gmap = create_map_anchor_gt(bbox, self.anchors, self.output_shape,
                                    self.downscale, self.n_boxes, len_max)
        gmap = gmap[:self.max_target]

        img = np.clip(img, 0, 1)
        return img, out_bbox, out_label, gmap, np.array([num_array], dtype='i')
 def test_resize_grayscale(self):
     if not optional_modules:
         return
     img = np.random.uniform(size=(1, 24, 32))
     out = resize_with_random_interpolation(img, size=(32, 64))
     self.assertEqual(out.shape, (1, 32, 64))
 def test_resize_color(self):
     if not optional_modules:
         return
     img = np.random.uniform(size=(3, 24, 32))
     out = resize_with_random_interpolation(img, size=(32, 64))
     self.assertEqual(out.shape, (3, 32, 64))
Exemplo n.º 12
0
    def __call__(self, in_data):
        # There are five data augmentation steps
        # 1. Color augmentation
        # 2. Random expansion
        # 3. Random cropping
        # 4. Resizing with random interpolation
        # 5. Random horizontal flipping

        # mask = None
        img, bbox, label, mask = in_data

        # TODO: show information

        # self._show_img(img)
        # self._show_mask(mask)
        # 1. Color augmentation
        img = random_distort(img)

        # self._show_img(img)
        # 2. Random expansion
        if np.random.randint(2):
            img, param = transforms.random_expand(
                img, fill=self.mean, return_param=True)
            bbox = transforms.translate_bbox(
                bbox, y_offset=param['y_offset'], x_offset=param['x_offset'])
            if mask is not None:
                _, new_height, new_width = img.shape
                param['new_height'] = new_height
                param['new_width'] = new_width
                mask = self._random_expand_mask(mask, param)

        # self._show_img(img)
        # self._show_mask(mask)

        # 3. Random cropping
        img, param = random_crop_with_bbox_constraints(
            img, bbox, return_param=True)

        # self._show_img(img)

        mask = self._fixed_crop_mask(mask, param['y_slice'], param['x_slice'])

        # self._show_mask(mask)

        bbox, param = transforms.crop_bbox(
            bbox, y_slice=param['y_slice'], x_slice=param['x_slice'],
            allow_outside_center=False, return_param=True)
        label = label[param['index']]

        # 4. Resizing with random interpolatation
        _, H, W = img.shape
        img = resize_with_random_interpolation(img, (self.size, self.size))

        # self._show_img(img)

        if mask is not None:
            if mask.size == 0:
                raise RuntimeError
            mask = self._resize_with_nearest(mask, (self.size, self.size))

        # self._show_mask(mask)

        bbox = transforms.resize_bbox(bbox, (H, W), (self.size, self.size))

        # 5. Random horizontal flipping
        img, params = transforms.random_flip(
            img, x_random=True, return_param=True)
        bbox = transforms.flip_bbox(
            bbox, (self.size, self.size), x_flip=params['x_flip'])
        if mask is not None:
            mask = self._random_flip_mask(mask, x_flip=params['x_flip'], y_flip=params['y_flip'])

        # self._show_img(img)
        # self._show_mask(mask)

        # Preparation for SSD network
        img -= self.mean
        mb_loc, mb_label = self.coder.encode(bbox, label)
        if mask is None:
            mask = np.ones([self.size, self.size], dtype=np.int32) * -1
        # print("Dtype is :"+str(mask.dtype))
        data_type = str(mask.dtype)
        target_type = 'int32'
        if data_type != target_type:
            mask = mask.astype(np.int32)
        if img is None:
            raise RuntimeError
        return img, mb_loc, mb_label, mask