Exemplo n.º 1
0
 def setUp(self):
     self.model = C.ResNet50(
         pretrained_model=None, initialW=chainer.initializers.Uniform(1), arch='he')
     self.model.pool1 = lambda x: F.max_pooling_2d(
         x, ksize=3, stride=2, cover_all=False)
     self.x = np.zeros((1, 3, 224, 224), dtype=np.float32)
     self.fn = 'ResNet50.onnx'
Exemplo n.º 2
0
def export_onnx(input_image_path, output_path, gpu, only_output=True):
    """Export ResNet50 model to ONNX graph

    'model.onnx' file will be exported under ``output_path``.
    """
    model = C.ResNet50(pretrained_model='imagenet', arch='fb')

    input_image = read_image(input_image_path)
    input_image = scale(input_image, 256)
    input_image = center_crop(input_image, (224, 224))
    input_image -= model.mean
    input_image = input_image[None, :]

    if gpu >= 0:
        model.to_gpu()
        input_image = chainer.cuda.to_gpu(input_image)

    if only_output:
        os.makedirs(output_path, exist_ok=True)
        name = os.path.join(output_path, 'model.onnx')
        export(model, input_image, filename=name)
    else:
        # an input and output given by Chainer will be also emitted
        # for using as test dataset
        export_testcase(model, input_image, output_path)
Exemplo n.º 3
0
def main():
    model = C.VGG16(pretrained_model='imagenet')
    save_as_onnx_then_import_from_nnvm(model, 'vgg16.onnx')

    model = C.ResNet50(pretrained_model='imagenet', arch='he')
    # Change cover_all option to False to match the default behavior of MXNet's pooling
    model.pool1 = lambda x: F.max_pooling_2d(
        x, ksize=3, stride=2, cover_all=False)
    save_as_onnx_then_import_from_nnvm(model, 'resnet50.onnx')
Exemplo n.º 4
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import sys
import numpy as np
import cupy

import chainer
import chainercv.links as C
import onnx_chainer

model = C.ResNet50(pretrained_model='imagenet', arch='he')
#model = C.VGG16(pretrained_model='imagenet')
model.to_gpu()

# Pseudo input
x = chainer.Variable(cupy.zeros((1, 3, 224, 224), dtype=np.float32))

onnx_chainer.export(model, x, filename='resnet50.onnx')
Exemplo n.º 5
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import argparse
import chainer
import numpy as np

import chainercv.links as C
import onnx_chainer

parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=-1)
parser.add_argument('--size', type=int, default=224)
args = parser.parse_args()

model = C.ResNet50()
if args.gpu >= 0:
    chainer.cuda.get_device_from_id(args.gpu).use()
    model.to_gpu()

# Pseudo input
x = model.xp.zeros((1, 3, args.size, args.size), dtype=np.float32)

onnx_chainer.export_testcase(model, x, 'resnet50_%d' % args.size)