Exemplo n.º 1
0
def test_mcl_ult():
    mcl = cl.load_sample("mcl")
    dev = cl.Development().fit_transform(mcl)
    cl_traditional = cl.Chainladder().fit(dev).ultimate_
    dev_munich = cl.MunichAdjustment(
        paid_to_incurred=[("paid", "incurred")]).fit_transform(dev)
    cl_munich = cl.Chainladder().fit(dev_munich).ultimate_
Exemplo n.º 2
0
def test_voting_ultimate():
    clrd = cl.load_sample("clrd")[["CumPaidLoss", "EarnedPremDIR"]]
    clrd = clrd[clrd["LOB"] == "wkcomp"]

    bcl_ult = cl.Chainladder().fit(clrd["CumPaidLoss"].sum(), ).ultimate_
    bf_ult = cl.BornhuetterFerguson().fit(
        clrd["CumPaidLoss"].sum(),
        sample_weight=clrd["EarnedPremDIR"].sum().latest_diagonal).ultimate_
    cc_ult = cl.CapeCod().fit(
        clrd["CumPaidLoss"].sum(),
        sample_weight=clrd["EarnedPremDIR"].sum().latest_diagonal).ultimate_

    bcl = cl.Chainladder()
    bf = cl.BornhuetterFerguson()
    cc = cl.CapeCod()

    estimators = [('bcl', bcl), ('bf', bf), ('cc', cc)]
    weights = np.array([[0.25, 0.25, 0.5]] * 4 + [[0, 0.5, 0.5]] * 3 +
                       [[0, 0, 1]] * 3)

    vot_ult = cl.VotingChainladder(estimators=estimators, weights=weights).fit(
        clrd["CumPaidLoss"].sum(),
        sample_weight=clrd["EarnedPremDIR"].sum().latest_diagonal,
    ).ultimate_

    weights = weights[..., np.newaxis]

    assert abs((bcl_ult * weights[..., 0, :] + bf_ult * weights[..., 1, :] +
                cc_ult * weights[..., 2, :]).sum() - vot_ult.sum()) < 1
Exemplo n.º 3
0
def test_json_subtri():
    assert (
        cl.read_json(
            cl.Chainladder().fit_predict(cl.load_sample("raa")).to_json()
        ).full_triangle_
        == cl.Chainladder().fit_predict(cl.load_sample("raa")).full_triangle_
    )
Exemplo n.º 4
0
def test_mcl_rollforward():
    mcl = cl.load_sample("mcl")
    mcl_prior = mcl[mcl.valuation < mcl.valuation_date]
    munich = cl.MunichAdjustment(
        paid_to_incurred=[("paid", "incurred")]).fit(mcl_prior)
    new = munich.transform(mcl)
    cl.Chainladder().fit(new).ultimate_
def test_bf_eq_cl_when_using_cl_apriori():
    cl_ult = cl.Chainladder().fit(cl.load_sample('quarterly')).ultimate_
    cl_ult.rename('development', ['apriori'])
    bf_ult = cl.BornhuetterFerguson().fit(cl.load_sample('quarterly'),
                                          sample_weight=cl_ult).ultimate_
    xp = cl_ult.get_array_module()
    assert xp.allclose(cl_ult.values, bf_ult.values, atol=1e-5)
Exemplo n.º 6
0
def test_misaligned_index(prism):
    prism = prism['Paid']
    model = cl.Chainladder().fit(
        cl.Development(groupby=['Line', 'Type']).fit_transform(prism))
    a = model.ultimate_.loc[prism.index.iloc[:10]].sum().sum()
    b = model.predict(prism.iloc[:10]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5
Exemplo n.º 7
0
def test_voting_ultimate(triangle_data, estimators, weights):
    bcl_ult = cl.Chainladder().fit(
        triangle_data["CumPaidLoss"].sum(), ).ultimate_
    bf_ult = cl.BornhuetterFerguson().fit(
        triangle_data["CumPaidLoss"].sum(),
        sample_weight=triangle_data["EarnedPremDIR"].sum(
        ).latest_diagonal).ultimate_
    cc_ult = cl.CapeCod().fit(triangle_data["CumPaidLoss"].sum(),
                              sample_weight=triangle_data["EarnedPremDIR"].sum(
                              ).latest_diagonal).ultimate_

    vot_ult = cl.VotingChainladder(
        estimators=estimators, weights=weights,
        default_weighting=(1, 2, 3)).fit(
            triangle_data["CumPaidLoss"].sum(),
            sample_weight=triangle_data["EarnedPremDIR"].sum().latest_diagonal,
        ).ultimate_

    direct_weight = np.array([[1, 2, 3]] * 4 + [[0, 0.5, 0.5]] * 3 +
                             [[0, 0, 1]] * 3)
    direct_weight = direct_weight[..., np.newaxis]

    assert abs((
        (bcl_ult * direct_weight[..., 0, :] + bf_ult *
         direct_weight[..., 1, :] + cc_ult * direct_weight[..., 2, :]) /
        direct_weight.sum(axis=-2)).sum() - vot_ult.sum()) < 1
Exemplo n.º 8
0
def test_weight_broadcasting():
    clrd = cl.load_sample("clrd")[["CumPaidLoss", "EarnedPremDIR"]]
    clrd = clrd[clrd["LOB"] == "wkcomp"]

    bcl = cl.Chainladder()
    bf = cl.BornhuetterFerguson()
    cc = cl.CapeCod()

    estimators = [('bcl', bcl), ('bf', bf), ('cc', cc)]
    min_dim_weights = np.array([[1, 2, 3]] * 4 + [[0, 0.5, 0.5]] * 3 +
                               [[0, 0, 1]] * 3)
    mid_dim_weights = np.array(
        [[[1, 2, 3]] * 4 + [[0, 0.5, 0.5]] * 3 + [[0, 0, 1]] * 3] * 1)
    max_dim_weights = np.array(
        [[[[1, 2, 3]] * 4 + [[0, 0.5, 0.5]] * 3 + [[0, 0, 1]] * 3] * 1] * 132)

    min_dim_ult = cl.VotingChainladder(
        estimators=estimators, weights=min_dim_weights).fit(
            clrd['CumPaidLoss'],
            sample_weight=clrd["EarnedPremDIR"].latest_diagonal,
        ).ultimate_.sum()
    mid_dim_ult = cl.VotingChainladder(
        estimators=estimators, weights=mid_dim_weights).fit(
            clrd['CumPaidLoss'],
            sample_weight=clrd["EarnedPremDIR"].latest_diagonal,
        ).ultimate_.sum()
    max_dim_ult = cl.VotingChainladder(
        estimators=estimators, weights=max_dim_weights).fit(
            clrd['CumPaidLoss'],
            sample_weight=clrd["EarnedPremDIR"].latest_diagonal,
        ).ultimate_.sum()
    assert (abs(min_dim_ult - mid_dim_ult - max_dim_ult) < 1)
Exemplo n.º 9
0
def test_pipeline():
    tri = cl.load_sample('clrd').groupby('LOB').sum()[[
        'CumPaidLoss', 'IncurLoss', 'EarnedPremDIR'
    ]]
    tri['CaseIncurredLoss'] = tri['IncurLoss'] - tri['CumPaidLoss']

    X = tri[['CumPaidLoss', 'CaseIncurredLoss']]
    sample_weight = tri['EarnedPremDIR'].latest_diagonal

    dev = [
        cl.Development(),
        cl.ClarkLDF(),
        cl.Trend(),
        cl.IncrementalAdditive(),
        cl.MunichAdjustment(paid_to_incurred=('CumPaidLoss',
                                              'CaseIncurredLoss')),
        cl.CaseOutstanding(paid_to_incurred=('CumPaidLoss',
                                             'CaseIncurredLoss'))
    ]
    tail = [cl.TailCurve(), cl.TailConstant(), cl.TailBondy(), cl.TailClark()]
    ibnr = [
        cl.Chainladder(),
        cl.BornhuetterFerguson(),
        cl.Benktander(n_iters=2),
        cl.CapeCod()
    ]

    for model in list(itertools.product(dev, tail, ibnr)):
        print(model)
        cl.Pipeline(
            steps=[('dev',
                    model[0]), ('tail',
                                model[1]), ('ibnr', model[2])]).fit_predict(
                                    X, sample_weight=sample_weight).ibnr_.sum(
                                        'origin').sum('columns').sum()
def test_benktander_to_chainladder(data, atol):
    tri = cl.load_sample(data)
    a = cl.Chainladder().fit(tri).ibnr_
    b = cl.Benktander(apriori=.8, n_iters=255).fit(tri, sample_weight=a).ibnr_
    xp = tri.get_array_module()
    assert xp.allclose(xp.nan_to_num(a.values),
                       xp.nan_to_num(b.values),
                       atol=atol)
def test_basic_case_outstanding():
    tri = cl.load_sample('usauto')
    m = cl.CaseOutstanding(paid_to_incurred=('paid', 'incurred')).fit(tri)
    out = cl.Chainladder().fit(m.fit_transform(tri))
    a = (out.full_triangle_['incurred'] -
         out.full_triangle_['paid']).iloc[..., -1, :9] * m.paid_ldf_.values
    b = (out.full_triangle_['paid'].cum_to_incr().iloc[..., -1, 1:10]).values
    assert (a - b).max() < 1e-6
Exemplo n.º 12
0
def estimators():
    bcl = cl.Chainladder()
    bf = cl.BornhuetterFerguson()
    cc = cl.CapeCod()

    estimators = [('bcl', bcl), ('bf', bf), ('cc', cc)]

    return estimators
Exemplo n.º 13
0
def test_misaligned_index2(clrd):
    clrd = clrd['CumPaidLoss']
    w = cl.load_sample('clrd')['EarnedPremDIR'].latest_diagonal
    bcl = cl.Chainladder().fit(
        cl.Development(groupby=['LOB']).fit_transform(clrd))
    bbk = cl.Benktander().fit(
        cl.Development(groupby=['LOB']).fit_transform(clrd), sample_weight=w)
    bcc = cl.CapeCod().fit(cl.Development(groupby=['LOB']).fit_transform(clrd),
                           sample_weight=w)

    a = bcl.ultimate_.iloc[:10].sum().sum()
    b = bcl.predict(clrd.iloc[:10]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5
    a = bbk.ultimate_.iloc[:10].sum().sum()
    b = bbk.predict(clrd.iloc[:10],
                    sample_weight=w.iloc[:10]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5
    a = bcc.ultimate_.iloc[:10].sum().sum()
    b = bcc.predict(clrd.iloc[:10],
                    sample_weight=w.iloc[:10]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5

    a = bcl.ultimate_.iloc[150:153].sum().sum()
    b = bcl.predict(clrd.iloc[150:153]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5
    a = bbk.ultimate_.iloc[150:153].sum().sum()
    b = bbk.predict(clrd.iloc[150:153],
                    sample_weight=w.iloc[150:153]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5
    a = bcc.ultimate_.iloc[150:153].sum().sum()
    b = bcc.predict(clrd.iloc[150:153],
                    sample_weight=w.iloc[150:153]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5

    a = bcl.ultimate_.iloc[150:152].sum().sum()
    b = bcl.predict(clrd.iloc[150:152]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5
    a = bbk.ultimate_.iloc[150:152].sum().sum()
    b = bbk.predict(clrd.iloc[150:152],
                    sample_weight=w.iloc[150:152]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5
    a = bcc.ultimate_.iloc[150:152].sum().sum()
    b = bcc.predict(clrd.iloc[150:152],
                    sample_weight=w.iloc[150:152]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5

    a = bcl.ultimate_.iloc[150].sum().sum()
    b = bcl.predict(clrd.iloc[150]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5
    a = bbk.ultimate_.iloc[150].sum().sum()
    b = bbk.predict(clrd.iloc[150],
                    sample_weight=w.iloc[150]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5
    a = bcc.ultimate_.iloc[150].sum().sum()
    b = bcc.predict(clrd.iloc[150],
                    sample_weight=w.iloc[150]).ultimate_.sum().sum()
    assert abs(a - b) < 1e-5
Exemplo n.º 14
0
def test_commutative():
    tri = cl.load_dataset('quarterly')
    xp = cp.get_array_module(tri.values)
    full = cl.Chainladder().fit(tri).full_expectation_
    assert tri.grain('OYDY').val_to_dev() == tri.val_to_dev().grain('OYDY')
    assert tri.cum_to_incr().grain('OYDY').val_to_dev() == tri.val_to_dev().cum_to_incr().grain('OYDY')
    assert tri.grain('OYDY').cum_to_incr().val_to_dev().incr_to_cum() == tri.val_to_dev().grain('OYDY')
    assert full.grain('OYDY').val_to_dev() == full.val_to_dev().grain('OYDY')
    assert full.cum_to_incr().grain('OYDY').val_to_dev() == full.val_to_dev().cum_to_incr().grain('OYDY')
    assert xp.allclose(xp.nan_to_num(full.grain('OYDY').cum_to_incr().val_to_dev().incr_to_cum().values),
            xp.nan_to_num(full.val_to_dev().grain('OYDY').values), atol=1e-5)
def get_triangle_projections(triangles,
                             average_methods=None,
                             n_periods=None,
                             grain='OYDY'):
    """
        Generates the main kpis such as ultimate loss, ibnr, loss development factors   
        Arguments --> A dictionnary of triangles or a single triangle,   
            the methods to derive the LDF (simple or volume average) defined as a list if there are several ultimate triangles to produce,   
            the number of periods to look at (-1 means all periods by default)   
            the origin/development pattern ('OxDy' with x and y in (Y, M, Q))   
        Returns --> a dictionnary storing the triangles and other kpis   
            the dict keys are 'ldf' for loss development factors, 'cdf' for the cumulative ones, 'fit' to get the fitted model and 'full_triangle' to get the full triangle produced

    """

    triangles_values = triangles.values() if isinstance(triangles,
                                                        dict) else [triangles]
    triangles_keys = triangles.keys() if isinstance(triangles, dict) else [1]

    selected_average_methods = ['volume'] * len(triangles_keys) if average_methods is None else \
                                average_methods if isinstance(average_methods, list) else [average_methods]

    selected_n_periods = [-1] * len(triangles_keys) if n_periods is None else \
                        n_periods if isinstance(n_periods, list) else [n_periods]

    # Gets the different types of figures we are studying (asif cost, cost excl LL, count, etc.)
    triangles_names = [triangle.columns[0] for triangle in triangles_values]

    # Builds the triangle transformer with development attributes ; loops through the triangles
    triangles_dev = [
        cl.Pipeline([('dev',
                      cl.Development(average=selected_average_methods[index],
                                     n_periods=selected_n_periods[index]))
                     ]).fit_transform(triangle.grain(grain))
        for index, triangle in enumerate(triangles_values)
    ]

    # Loops through the triangles_dev to derive the ldfs, cdfs and the fit method
    triangles_model = [(triangle_dev.ldf_, triangle_dev.cdf_,
                        cl.Chainladder().fit(triangle_dev))
                       for triangle_dev in triangles_dev]

    # Loops through the triangles_model to build a dict with the name of the figures (claims cost, count, etc.)
    # as primary key and the main triangle characteristics as second keys
    return {value: {
                    'ldf': triangles_model[index][0],
                    'cdf': triangles_model[index][1],
                    'fit': triangles_model[index][2],
                    'full_triangle': pd.concat([triangles_model[index][2].full_triangle_.to_frame(), triangles_model[index][2].ibnr_.to_frame()] \
                                               , axis=1).rename(columns={9999: 'Ultimates', value: 'IBNR'})
                    }
            for index, value in enumerate(triangles_names)}
Exemplo n.º 16
0
def test_voting_predict():
    bcl = cl.Chainladder()
    bf = cl.BornhuetterFerguson()
    cc = cl.CapeCod()

    estimators = [('bcl', bcl), ('bf', bf), ('cc', cc)]
    weights = np.array([[1, 2, 3]] * 3 + [[0, 0.5, 0.5]] * 3 + [[0, 0, 1]] * 3)

    vot = cl.VotingChainladder(estimators=estimators, weights=weights).fit(
        raa_1989,
        sample_weight=apriori_1989,
    )
    vot.predict(raa_1990, sample_weight=apriori_1990)
Exemplo n.º 17
0
def test_commutative(qtr, atol):
    xp = qtr.get_array_module()
    full = cl.Chainladder().fit(qtr).full_expectation_
    assert qtr.grain("OYDY").val_to_dev() == qtr.val_to_dev().grain("OYDY")
    assert qtr.cum_to_incr().grain(
        "OYDY").val_to_dev() == qtr.val_to_dev().cum_to_incr().grain("OYDY")
    assert qtr.grain("OYDY").cum_to_incr().val_to_dev().incr_to_cum(
    ) == qtr.val_to_dev().grain("OYDY")
    assert full.grain("OYDY").val_to_dev() == full.val_to_dev().grain("OYDY")
    assert full.cum_to_incr().grain(
        "OYDY").val_to_dev() == full.val_to_dev().cum_to_incr().grain("OYDY")
    a = full.grain("OYDY").cum_to_incr().val_to_dev().incr_to_cum()
    b = full.val_to_dev().grain("OYDY")
    assert abs(a - b).max().max().max() < atol
Exemplo n.º 18
0
def test_different_backends():
    clrd = cl.load_sample("clrd")[["CumPaidLoss", "EarnedPremDIR"]]
    clrd = clrd[clrd["LOB"] == "wkcomp"]

    bcl = cl.Chainladder()
    bf = cl.BornhuetterFerguson()
    cc = cl.CapeCod()

    estimators = [('bcl', bcl), ('bf', bf), ('cc', cc)]
    weights = np.array([[1, 2, 3]] * 4 + [[0, 0.5, 0.5]] * 3 + [[0, 0, 1]] * 3)

    model = cl.VotingChainladder(estimators=estimators, weights=weights).fit(
        clrd["CumPaidLoss"].sum().set_backend("numpy"),
        sample_weight=clrd["EarnedPremDIR"].sum().latest_diagonal.set_backend(
            "numpy"),
    )
    assert (abs(
        (model.predict(clrd["CumPaidLoss"].sum().set_backend("sparse"),
                       sample_weight=clrd["EarnedPremDIR"].sum().
                       latest_diagonal.set_backend("sparse")).ultimate_.sum() -
         model.ultimate_.sum())) < 1)
Exemplo n.º 19
0
def test_commutative():
    assert qtr == qtr_gt
    xp = qtr.get_array_module()
    full = cl.Chainladder().fit(qtr).full_expectation_
    assert qtr.grain("OYDY").val_to_dev() == qtr.val_to_dev().grain("OYDY")
    assert qtr.cum_to_incr().grain(
        "OYDY"
    ).val_to_dev() == qtr.val_to_dev().cum_to_incr().grain("OYDY")
    assert qtr.grain(
        "OYDY"
    ).cum_to_incr().val_to_dev().incr_to_cum() == qtr.val_to_dev().grain("OYDY")
    assert full.grain("OYDY").val_to_dev() == full.val_to_dev().grain("OYDY")
    assert full.cum_to_incr().grain(
        "OYDY"
    ).val_to_dev() == full.val_to_dev().cum_to_incr().grain("OYDY")
    assert xp.allclose(
        xp.nan_to_num(
            full.grain("OYDY").cum_to_incr().val_to_dev().incr_to_cum().values
        ),
        xp.nan_to_num(full.val_to_dev().grain("OYDY").values),
        atol=1e-5,
    )
Exemplo n.º 20
0
"""
======================
Value at Risk example
======================

This example uses the `BootstrapODPSample` to simulate new triangles that
are then used to simulate an IBNR distribution from which we can do
Value at Risk percentile lookups.
"""

import chainladder as cl
import seaborn as sns
sns.set_style('whitegrid')

# Load triangle
triangle = cl.load_dataset('genins')

# Create 1000 bootstrap samples of the triangle
resampled_triangles = cl.BootstrapODPSample().fit_transform(triangle)

# Create 1000 IBNR estimates
sim_ibnr = cl.Chainladder().fit(resampled_triangles).ibnr_.sum('origin')

# X - mu
sim_ibnr = (sim_ibnr - sim_ibnr.mean()).to_frame().sort_values()

# Plot data
sim_ibnr.index = [item / 1000 for item in range(1000)]
sim_ibnr.loc[0.90:].plot(title='Bootstrap VaR (90% and above)',
                         color='red').set(xlabel='VaR')
===========================

This example demonstrates how you can slice triangle objects to perform a
typical 'Actual vs Expected' analysis.  We will use Medical Malpractice
payment patterns for the demo.
"""

import chainladder as cl

# Load the data
tri_1997 = cl.load_sample('clrd')
tri_1997 = tri_1997.groupby('LOB').sum().loc['medmal']['CumPaidLoss']

# Create a triangle as of the previous valuation and build IBNR model
tri_1996 = tri_1997[tri_1997.valuation < '1997']
model_1996 = cl.Chainladder().fit(cl.TailCurve().fit_transform(tri_1996))

# Slice the expected losses from the 1997 calendar period of the model
ave = model_1996.full_triangle_.dev_to_val()
ave = ave[ave.valuation == tri_1997.valuation_date].rename(
    'columns', 'Expected')

# Slice the actual losses from the 1997 calendar period for prior AYs
ave['Actual'] = tri_1997.latest_diagonal[tri_1997.origin < '1997']
ave['Actual - Expected'] = ave['Actual'] - ave['Expected']

# Plotting
ave.to_frame().T.plot(y='Actual - Expected',
                      kind='bar',
                      legend=False,
                      grid=True).set(title='Calendar Period 1997 Performance',
Exemplo n.º 22
0
def test_dask_backend(raa):
    raa1 = cl.Chainladder().fit(raa.set_backend('dask')).ultimate_
    raa2 = cl.Chainladder().fit(raa).ultimate_
    assert (raa1 == raa2).compute()
Exemplo n.º 23
0
def test_basic_odp_cl(genins):
    assert abs(
        (cl.Chainladder().fit(genins).ultimate_ -
         cl.Chainladder().fit(cl.TweedieGLM().fit_transform(genins)).ultimate_) /
        genins.latest_diagonal).max()< 1e-2
Exemplo n.º 24
0
def test_create_full_triangle(raa):
    a = cl.Chainladder().fit(raa).full_triangle_
    b = cl.Triangle(
        a.to_frame(keepdims=True, implicit_axis=True),
        origin='origin', development='valuation', columns='values')
    assert a == b
IBNR Runoff
============

All IBNR models spin off several results triangles including `inbr_`,
`ultimate_`, `full_expectation`, and `full_triangle_`.  These can be
manipulated into a variety of formats. This example demonstrates how to
create a calendar year runoff of IBNR.
"""

import chainladder as cl

# Create a triangle
triangle = cl.load_sample('GenIns')

# Fit a model
model = cl.Chainladder().fit(triangle)

# Develop IBNR runoff triangle
runoff = (model.full_triangle_.cum_to_incr() - triangle.cum_to_incr())

# Convert to calendar period and aggregate across all accident years
cal_yr_runoff = runoff.dev_to_val().dropna().sum(axis='origin')

# Plot results
cal_yr_runoff.T.plot(kind='bar',
                     legend=False,
                     color='red',
                     grid=True,
                     title='GenIns: IBNR Run-off',
                     alpha=0.7).set(xlabel='Calendar Year', ylabel='IBNR')
Exemplo n.º 26
0
def test_valdev7():
    assert qtr == qtr_gt
    xp = qtr.get_array_module()
    x = cl.Chainladder().fit(qtr).full_expectation_
    assert xp.sum(x.dev_to_val().val_to_dev().values - x.values) < 1e-5
def test_bf_eq_cl_when_using_cl_apriori():
    cl_ult = cl.Chainladder().fit(cl.load_dataset('quarterly')).ultimate_
    cl_ult.rename('development', ['apriori'])
    bf_ult = cl.BornhuetterFerguson().fit(cl.load_dataset('quarterly'),
                                          sample_weight=cl_ult).ultimate_
    assert_allclose(cl_ult.triangle, bf_ult.triangle, atol=1e-5)
def test_benktander_to_chainladder(data, atol):
    tri = cl.load_dataset(data)
    a = cl.Chainladder().fit(tri).ibnr_
    b = cl.Benktander(apriori=.8, n_iters=255).fit(tri, sample_weight=a).ibnr_
    assert_allclose(a.triangle, b.triangle, atol=atol)
Exemplo n.º 29
0
import numpy as np
import chainladder as cl

raa = cl.load_sample("RAA")
raa_1989 = raa[raa.valuation < raa.valuation_date]
raa_1990 = raa[raa.origin > "1981"]
raa_1990 = raa_1990[raa_1990.valuation <= raa_1990.valuation_date]
cl_ult = cl.Chainladder().fit(raa).ultimate_  # Chainladder Ultimate
apriori = cl_ult * 0 + (float(cl_ult.sum()) / 10)  # Mean Chainladder Ultimate
apriori_1989 = apriori[apriori.origin < "1990"]
apriori_1990 = apriori[apriori.origin > "1981"]


def test_voting_predict():
    bcl = cl.Chainladder()
    bf = cl.BornhuetterFerguson()
    cc = cl.CapeCod()

    estimators = [('bcl', bcl), ('bf', bf), ('cc', cc)]
    weights = np.array([[1, 2, 3]] * 3 + [[0, 0.5, 0.5]] * 3 + [[0, 0, 1]] * 3)

    vot = cl.VotingChainladder(estimators=estimators, weights=weights).fit(
        raa_1989,
        sample_weight=apriori_1989,
    )
    vot.predict(raa_1990, sample_weight=apriori_1990)
Exemplo n.º 30
0
using the ``reported_count_estimator``.  The disposal rates of the latest diagonal
are then used to infer adjustments to the inner diagonals of both the closed
claim triangle as well as the paid amount triangle.

"""
import chainladder as cl
import matplotlib.pyplot as plt


# Load data
triangle = cl.load_sample('berqsherm').loc['Auto']
# Specify Berquist-Sherman model
berq = cl.BerquistSherman(
    paid_amount='Paid', incurred_amount='Incurred',
    reported_count='Reported', closed_count='Closed',
    reported_count_estimator=cl.Chainladder())

# Adjust our triangle data
berq_triangle = berq.fit_transform(triangle)
berq_cdf = cl.Development().fit(berq_triangle).cdf_
orig_cdf = cl.Development().fit(triangle).cdf_

# Plot data
fig, ((ax0, ax1)) = plt.subplots(ncols=2, figsize=(15,5))
(berq_cdf['Paid'] / orig_cdf['Paid']).T.plot(
    kind='bar', grid=True, legend=False, ax=ax0,
    title='Berquist Sherman Paid to Unadjusted Paid').set(
    xlabel='Age to Ultimate', ylabel='Paid CDF Adjustment');

(berq_cdf['Closed'] / orig_cdf['Closed']).T.plot(
    kind='bar', grid=True, legend=False, ax=ax1,