def TrainingModels_Changgeng(target_label, model_file_name):
    '''Randomly select num_training records to train, and test others.
    CP: Characteristic points
    '''
    from changgengLoader import ECGLoader
    ecg = ECGLoader(500, current_folderpath)

    random_forest_config = dict(max_depth=10)
    walker = RandomWalker(target_label=target_label,
                          random_forest_config=random_forest_config,
                          random_pattern_file_name=os.path.join(
                              os.path.dirname(model_file_name),
                              'random_pattern.json'))

    start_time = time.time()

    for record_ind in xrange(0, len(ecg.P_faillist)):
        record_name = ecg.P_faillist[record_ind]
        CP_file_name = os.path.join(current_folderpath, 'data', 'labels',
                                    target_label,
                                    '%s_poslist.json' % record_name)

        CP_marks = []

        # Add manual labels if possible
        if os.path.exists(CP_file_name) == True:
            with open(CP_file_name, 'r') as fin:
                print 'Collecting features from record %s.' % record_name
                CP_info = json.load(fin)
                poslist = CP_info['poslist']
                if len(poslist) == 0:
                    continue
                CP_marks.extend(zip(poslist, [
                    target_label,
                ] * len(poslist)))

        sig = ecg.load(record_ind)

        walker.collect_training_data(sig[0], CP_marks)
    print 'random forest start training(%s)...' % target_label
    walker.training()
    print 'trianing used %.3f seconds' % (time.time() - start_time)

    import joblib
    start_time = time.time()
    walker.save_model(model_file_name)
    print 'Serializing model time cost %f' % (time.time() - start_time)
Exemplo n.º 2
0
def TrainingModels_Changgeng(target_label, model_file_name):
    '''Randomly select num_training records to train, and test others.
    CP: Characteristic points
    '''

    import glob
    annot_jsonIDs = glob.glob(
        os.path.join(current_folderpath, 'data', 'labels', target_label,
                     '*.json'))
    annot_jsonIDs = [os.path.split(x)[-1] for x in annot_jsonIDs]
    annot_jsonIDs = [x.split('.')[0] for x in annot_jsonIDs]
    # skip failed records
    faillist = [
        8999, 8374, 6659, 6655, 6059, 5395, 1401, 1269, 737, 75, 9524, 9476
    ]
    faillist = [str(x) for x in faillist]
    annot_jsonIDs = list(set(annot_jsonIDs) - set(faillist))

    from changgengLoader import ECGLoader
    ecg = ECGLoader(500, current_folderpath)

    random_forest_config = dict(max_depth=10)
    walker = RandomWalker(target_label=target_label,
                          random_forest_config=random_forest_config,
                          random_pattern_file_name=os.path.join(
                              os.path.dirname(model_file_name),
                              'random_pattern.json'))

    start_time = time.time()

    for record_ind in xrange(0, len(annot_jsonIDs)):
        record_name = annot_jsonIDs[record_ind]
        CP_file_name = os.path.join(current_folderpath, 'data', 'labels',
                                    target_label, '%s.json' % record_name)

        CP_marks = []

        # Add manual labels if possible
        if os.path.exists(CP_file_name) == True:
            with open(CP_file_name, 'r') as fin:
                CP_info = json.load(fin)
                poslist = CP_info['poslist']
                poslist = [int(x / 2) for x in poslist]
                mat_file_name = CP_info['mat_file_name']
                if len(poslist) == 0:
                    continue
                CP_marks.extend(zip(poslist, [
                    target_label,
                ] * len(poslist)))

        print 'Collecting features from record %s.' % record_name
        sig = ecg.load(record_name)
        raw_sig = sig[0]

        import scipy.signal
        resampled_sig = scipy.signal.resample_poly(raw_sig, 1, 2)
        raw_sig = resampled_sig
        # debug
        # plt.figure(1)
        # plt.plot(raw_sig, label = 'signal')
        # plt.plot(xrange(0, len(raw_sig), 2), resampled_sig, label = 'resmaple')
        # plt.legend()
        # plt.grid(True)
        # plt.title(record_name)
        # plt.show()

        walker.collect_training_data(raw_sig, CP_marks)

    # Add QT training samples
    # ContinueAddQtTrainingSamples(walker, target_label)

    print 'random forest start training(%s)...' % target_label
    walker.training()
    print 'trianing used %.3f seconds' % (time.time() - start_time)

    import joblib
    start_time = time.time()
    walker.save_model(model_file_name)
    print 'Serializing model time cost %f' % (time.time() - start_time)
Exemplo n.º 3
0
def TestChanggeng(record_ind):
    '''Test case1.'''
    def RunWalkerModel(walker_model, seed_positions, confined_ranges,
                       feature_extractor):
        '''Run random walk detection model.
        Input:
            walker_model: random walk regressor for a certain label.
            seed_positions: list of seed position
            confined_ranges: list of confined_range
        '''
        if abs(fs - 250.0) > 1e-6:
            raise Exception('Bias has default fs = 250.0Hz!')

        print 'fs = ', fs

        # First add to prepare testing list
        for seed_position, confined_range in zip(seed_positions,
                                                 confined_ranges):
            walker_model.prepareTestSample(seed_position, confined_range)

        start_time = time.time()

        # Second, Testing all prepared positions
        path_list, scores_list = walker_model.runPreparedTesting(
            feature_extractor, iterations=200, stepsize=4)

        results = list()
        for path in path_list:
            # Tnew_list.append(len(set(path)))
            predict_position = int(np.mean(path[len(path) / 2:]) / 250.0 * fs)

            # For return value of super function
            results.append((predict_position, walker_model.target_label))
        return (results, path_list)

    import matplotlib.pyplot as plt
    import random
    fs = 250.0
    from changgengLoader import ECGLoader

    ecg = ECGLoader(500, current_folderpath)
    record_name = ecg.P_faillist[record_ind]
    sig = ecg.load(record_name)
    raw_sig = sig[0]
    import scipy.signal
    # raw_sig = Denoise(raw_sig)
    resampled_sig = scipy.signal.resample_poly(raw_sig, 1, 2)
    # plt.figure(1)
    # plt.plot(raw_sig, label = 'signal')
    # plt.plot(xrange(0, len(raw_sig), 2), resampled_sig, label = 'resmaple')
    # plt.legend()
    # plt.grid(True)
    # plt.title(record_name)
    # plt.show()

    raw_sig = resampled_sig

    model_folder = '/home/chenbin/hyf/Sourecode/Sourecode/ECG_random_walk/randomwalk/data/Lw3Np4000/improved'
    pattern_file_name = '/home/chenbin/hyf/Sourecode/Sourecode/ECG_random_walk/randomwalk/data/Lw3Np4000/random_pattern.json'
    model_list = GetModels(model_folder, pattern_file_name)
    start_time = time.time()

    # Start Testing
    results = list()
    # results = Testing_random_walk(raw_sig, 250.0, r_list, model_list)
    # results = Testing(raw_sig, 250.0, model_list, walker_iterations = 200)
    feature_extractor = model_list[0][0].GetFeatureExtractor(raw_sig)
    for walker_model, bias, model_label in model_list:
        if model_label != 'P':
            continue
        print 'Testing model label:', model_label
        seeds = list()
        confined_ranges = list()
        for pos in xrange(1, len(raw_sig), 200):
            seeds.append(pos)
            confined_ranges.append([0, len(raw_sig) - 1])
        seed_results, path_list = RunWalkerModel(walker_model, seeds,
                                                 confined_ranges,
                                                 feature_extractor)
        results.extend(seed_results)

    print 'Testing time cost %f secs.' % (time.time() - start_time)

    samples_count = len(raw_sig)
    time_span = samples_count / fs
    #print 'Span of testing range: %f samples(%f seconds).' % (samples_count, time_span)

    # Display results
    plt.figure(1)
    plt.clf()
    plt.plot(raw_sig, label='ECG')
    pos_list, label_list = zip(*results)
    labels = set(label_list)
    for label in labels:
        if label != 'P':
            continue
        pos_list = [int(x[0]) for x in results if x[1] == label]
        amp_list = [raw_sig[x] for x in pos_list]
        marker = 'o' if len(label) == 1 else '|'
        plt.plot(pos_list,
                 amp_list,
                 marker=marker,
                 linestyle='none',
                 markeredgewidth=5,
                 markersize=15,
                 alpha=0.85,
                 markerfacecolor='none',
                 markeredgecolor=(
                     random.random(),
                     random.random(),
                     random.random(),
                 ),
                 label=label)

        # Plot path
        for path, up_amplitude in zip(path_list, amp_list):
            plt.plot(path,
                     xrange(up_amplitude,
                            up_amplitude - int(len(path) * 0.01) + 1, 0.01),
                     'r',
                     alpha=0.43)

    # Plot failed test
    fail_results = ecg.loadAnnot(record_name, target_label='P')
    pos_list = [int(x[0] / 2) for x in fail_results if x[1] == 'P']
    amp_list = [raw_sig[x] for x in pos_list]
    plt.plot(pos_list,
             amp_list,
             'x',
             markersize=15,
             markeredgewidth=5,
             alpha=0.5,
             label='failed')

    plt.title(record_name)
    plt.grid(True)
    plt.legend()
    plt.show(block=False)
    pdb.set_trace()