Exemplo n.º 1
0
    def get_answer(self, sentence, userID='123', show_details=False):

        results = ChatClient.get_classify(self, sentence)

        # if we have a classification then find the matching intent tag
        if results:
            # loop as long as there are matches to process
            while results:
                for i in self.dialog_intents['intents']:
                    # find a tag matching the first result
                    if i['tag'] == results[0][0]:
                        # send "no_matching" message when the matching rate of the message is lower than self.criteria_coincidence.
                        if self.criteria_coincidence > results[0][1]:
                            return "no_matching"

                        # set context for this intent if necessary
                        if 'context_set' in i:
                            if show_details:
                                self.logger.debug('context:', i['context_set'])
                            self.context[userID] = i['context_set']

                        # check if this intent is contextual and applies to this user's conversation
                        if not 'context_filter' in i or \
                            (userID in self.context and 'context_filter' in i and i['context_filter'] == self.context[userID]):
                            if show_details:
                                self.logger.debug('tag:', i['tag'])
                            # a random response from the intent
                            return random.choice(i['responses'])

                results.pop(0)
Exemplo n.º 2
0
    def get_answer(self, sentence, userID='123', show_details=False):

        #If a conversation that is not understood during the chatting is in progress more than 3 times,
        # send a usage guide message.
        if self.not_matching_count >= 3:
            self.not_matching_count = 1
            self.previous_not_matching = False
            return self.usage_guide_message

        results = ChatClient.get_classify(self, sentence)

        #Echo processing when using bad language three times in a row.
        if self.slang_matching_count >= 3:
            if results[0][0] != 'Slang':
                self.slang_matching_count = 1
                self.previous_slang_matching = False
            else:
                return sentence

        # if we have a classification then find the matching intent tag
        if results:
            # loop as long as there are matches to process
            while results:
                for i in self.dialog_intents['intents']:
                    # find a tag matching the first result
                    if i['tag'] == results[0][0]:
                        # send message when the matching rate of the message is lower than self.criteria_coincidence.
                        if self.criteria_coincidence > results[0][1]:
                            return_message = '"' + sentence + '"' + self.not_matching_message
                            if self.previous_not_matching:
                                self.not_matching_count += 1
                            self.previous_not_matching = True
                            return return_message

                        # check when using bad language three times in a row.
                        if results[0][0] == 'Slang':
                            if self.previous_slang_matching:
                                self.slang_matching_count += 1
                            self.previous_slang_matching = True

                        # set context for this intent if necessary
                        if 'context_set' in i:
                            if show_details:
                                self.logger.debug('context:', i['context_set'])
                            self.context[userID] = i['context_set']

                        # check if this intent is contextual and applies to this user's conversation
                        if not 'context_filter' in i or \
                            (userID in self.context and 'context_filter' in i and i['context_filter'] == self.context[userID]):
                            if show_details:
                                self.logger.debug('tag:', i['tag'])
                            # a random response from the intent
                            return random.choice(i['responses'])
                        else:
                            return self.context_filter_message

                results.pop(0)
Exemplo n.º 3
0
def test_ChatClient():
    #     def __init__(self, language, intents_file, training_data_file, tflearn_logs_dir, tflearn_model_file):
    # os.getcwd() - 현재 프로세스의 작업 디렉토리 얻기
    # os.curdir() - 현재 디렉토리 얻기
    # os.pardir() - 부모 디렉토리 얻기
    #특정 경로에 대해 절대 경로 얻기    os.path.abspath(".\\Scripts")
    print("현재 프로세스의 작업 디렉토리 [%s]" % os.getcwd())
    print("현재  디렉토리[%s]" % os.curdir)
    print("부모 디렉토리[%s]" % os.pardir)
    print("부모 디렉토리로 변경[%s]" % os.chdir(os.pardir))
    #     print("변경후 현재 프로세스의 작업 디렉토리 [%s]" % os.getcwd())
    print("ArkChatFramework디렉토리 [%s]" % os.path.abspath("ArkChatFramework"))

    print("intents 파일 디렉토리[%s]" %
          os.path.abspath("ArkNLU/DialogIntents/intents_home_kr.json"))

    input_file_name = os.path.abspath(
        "ArkNLU/DialogIntents/intents_home_kr.json")
    print("intents       파일 디렉토리[%s]" % input_file_name)

    input_training_data_file_name = os.path.abspath(
        "ArkNLU/NLUModel/training_data_home_kr")
    print("training      파일 디렉토리[%s]" % input_training_data_file_name)

    tflearn_logs_dir = os.path.abspath('ArkNLU/NLUModel/home_tflearn_kr_logs')
    print("tflearn_logs     디렉토리[%s]" % tflearn_logs_dir)

    tflearn_model_file_name = os.path.abspath(
        'ArkNLU/NLUModel/model_home_kr.tflearn')
    print("tflearn_model 파일 디렉토리[%s]" % tflearn_model_file_name)

    #     intents_file, training_data_file, tflearn_logs_dir, tflearn_model_file
    learning_model_files = dict(
        intents_file=input_file_name,
        training_data_file=input_training_data_file_name,
        tflearn_logs_dir=tflearn_logs_dir,
        tflearn_model_file=tflearn_model_file_name)

    bot = ChatClient('ko-KR', learning_model_files)
    print("ChatClient instance...")
    #     bot.read_dialog_intents_jsonfile()
    #     bot.restore_training_data_structures()
    #     bot.restore_training_model()

    userID = 'arkwith7'
    sentence = '미션이 무엇입니까?'

    results = bot.get_classify(sentence)
    print("미션이 무엇입니까? 사용자의도분류[%s]" % results)

    # 대화 말뭉치와 대화 의도가 정의된 JSON 문서 집합 읽기
    print("미션이 무엇입니까? 응답[%s]" %
          bot.response(sentence, userID, show_details=True))
Exemplo n.º 4
0
    def get_answer(self, sentence, userID='123', show_details=False):

        #If a conversation that is not understood during the chatting is in progress more than 3 times,
        # send a usage guide message.
        if self.not_matching_count >= 3:
            self.not_matching_count = 1
            self.previous_not_matching = False
            return self.set_answer("abnormal", "guide_message",
                                   self.usage_guide_message, "")

        results = ChatClient.get_classify(self, sentence)

        #Echo processing when using bad language three times in a row.
        if self.slang_matching_count >= 3:
            if results[0][0] != 'Slang':
                self.slang_matching_count = 1
                self.previous_slang_matching = False
            else:
                return self.set_answer("abnormal", "not_matching", sentence,
                                       "")

        # if we have a classification then find the matching intent tag
        if results:
            # loop as long as there are matches to process
            while results:
                for i in self.dialog_intents['intents']:
                    # find a tag matching the first result
                    if i['tag'] == results[0][0]:
                        self.logger.debug("previous_context_set : [%s] ",
                                          self.previous_context_set)
                        # send message when the matching rate of the message is lower than self.criteria_coincidence.
                        if self.criteria_coincidence > results[0][1]:
                            return_message = '"' + sentence + '"' + self.not_matching_message
                            if self.previous_not_matching:
                                self.not_matching_count += 1
                            self.previous_not_matching = True
                            return self.set_answer("abnormal", "not_matching",
                                                   return_message, "")

                        # check when using bad language three times in a row.
                        if results[0][0] == 'Slang':
                            if self.previous_slang_matching:
                                self.slang_matching_count += 1
                            self.previous_slang_matching = True

                        # set context for this intent if necessary
                        if 'context_set' in i:
                            if show_details:
                                self.logger.debug('context:', i['context_set'])
                            self.context[userID] = i['context_set']

                        # check context_set for this intent
                        if i['context_set']:
                            self.previous_context_set = i['context_set']
                            self.previous_responses = i['responses']
                            self.logger.debug("context_set : [%s] ",
                                              i['context_set'])
                            response = {}
                            response["response"] = i['responses']
                            return self.set_answer("list", i['patterns'][0],
                                                   i['responses'], "")

                        # check if this intent is contextual and applies to this user's conversation
                        if not 'context_filter' in i or \
                            (userID in self.context and 'context_filter' in i and i['context_filter'] == self.context[userID]):

                            if show_details:
                                self.logger.debug('tag:', i['tag'])

                            # a random response from the intent
                            self.previous_context_set = i['context_set']
                            self.previous_responses = i['responses']

                            explanation = []
                            if ('responses_ref' in i):
                                explanation = i['responses_ref']

                            return self.set_answer(
                                "qna", i['patterns'][0],
                                random.choice(i['responses']), explanation)

                        elif self.previous_context_set == i['context_filter']:
                            self.logger.debug("context_set : [%s] ",
                                              i['context_set'])
                            self.logger.debug("context_filter : [%s] ",
                                              i['context_filter'])
                            self.logger.debug("previous_context_set : [%s] ",
                                              self.previous_context_set)
                            self.previous_context_set = i['context_set']
                            self.previous_responses = i['responses']
                            return self.set_answer("list", i['patterns'][0],
                                                   i['responses'], "")
                        else:
                            if not self.previous_responses:
                                self.previous_responses = i['context_filter']
                                return_values = i['context_filter']
                            else:
                                return_values = ""
                                for value in self.previous_responses:
                                    return_values += value + ' '
                                self.previous_responses = i['context_filter']

                            # context_filter와 같은 tag의 responses값을 보여 주고 선택하게 함

                            return self.set_answer(
                                "abnormal", "not_matching", return_values +
                                "와 같은 " + self.context_filter_message, "")

                results.pop(0)