def visualize_orientation(direction, center=[0, 0, 0], scale=1.0, symmetric=False, color="green", color2="red"):
    """
    Draw an arrow. Helper function for "helix_orientation" etc.
    """
    from pymol import cgo

    color_list = cmd.get_color_tuple(color)
    color2_list = cmd.get_color_tuple(color2)
    if symmetric:
        scale *= 0.5
    end = cpv.add(center, cpv.scale(direction, scale))
    radius = 0.3
    obj = [cgo.SAUSAGE]
    obj.extend(center)
    obj.extend(end)
    obj.extend([radius, 0.8, 0.8, 0.8])
    obj.extend(color_list)
    if symmetric:
        start = cpv.sub(center, cpv.scale(direction, scale))
        obj.append(cgo.SAUSAGE)
        obj.extend(center)
        obj.extend(start)
        obj.extend([radius, 0.8, 0.8, 0.8])
        obj.extend(color2_list)
    coneend = cpv.add(end, cpv.scale(direction, 4.0 * radius))
    if cmd.get_version()[1] >= 1.2:
        obj.append(cgo.CONE)
        obj.extend(end)
        obj.extend(coneend)
        obj.extend([radius * 1.75, 0.0])
        obj.extend(color_list * 2)
        obj.extend([1.0, 1.0])  # Caps
    cmd.load_cgo(obj, get_unused_name("oriVec"), zoom=0)
def loop_orientation(selection, visualize=1, quiet=0):
    '''
DESCRIPTION

    Get the center and approximate direction of a peptide. Works for any
    secondary structure.
    Averages direction of N(i)->C(i) pseudo bonds.

USAGE

    loop_orientation selection [, visualize]

SEE ALSO

    helix_orientation
    '''
    visualize, quiet = int(visualize), int(quiet)
    stored.x = dict()
    cmd.iterate_state(STATE, '(%s) and name N+C' % (selection),
                      'stored.x.setdefault(chain + resi, dict())[name] = x,y,z')
    vec = cpv.get_null()
    count = 0
    for x in stored.x.itervalues():
        if 'C' in x and 'N' in x:
            vec = cpv.add(vec, cpv.sub(x['C'], x['N']))
            count += 1
    if count == 0:
        print 'warning: count == 0'
        raise CmdException
    vec = cpv.normalize(vec)
    return _common_orientation(selection, vec, visualize, quiet)
Exemplo n.º 3
0
    def testPairFit(self):
        cmd.fragment('trp')
        cmd.fragment('his')

        # 1 atom
        sele = ('trp and guide', 'his and guide')
        pos = list(map(cmd.get_atom_coords, sele))
        vec = cpv.sub(*pos)
        mat_ref = [
            1.0, 0.0, 0.0, -vec[0],
            0.0, 1.0, 0.0, -vec[1],
            0.0, 0.0, 1.0, -vec[2],
            0.0, 0.0, 0.0, 1.0]
        rms = cmd.pair_fit(*sele)
        self.assertEqual(rms, 0.0)
        mat = cmd.get_object_matrix('trp')
        self.assertArrayEqual(mat, mat_ref, 1e-4)

        # 2 atoms
        sele += ('trp & name CB', 'his & name CB')
        rms = cmd.pair_fit(*sele)
        self.assertAlmostEqual(rms, 0.0082, delta=1e-4)

        # 4 atoms
        sele += ('trp & name CG', 'his & name CG',
                 'trp & name CD1', 'his & name CD2')
        rms = cmd.pair_fit(*sele)
        self.assertAlmostEqual(rms, 0.0713, delta=1e-4)
Exemplo n.º 4
0
Arquivo: cgo.py Projeto: Almad/pymol
 def append_cyl(self):
     if self.l_vert and self.c_colr and self.l_radi:
         if self.tri_flag:
             self.tri_flag=0
             self.obj.append(END)
         self.obj.append(SAUSAGE)
         d = cpv.sub(self.l_vert[1],self.l_vert[0])
         d = cpv.normalize_failsafe(d)
         d0 = cpv.scale(d,self.l_radi/4.0)
         self.obj.extend(cpv.add(self.l_vert[0],d0))
         self.obj.extend(cpv.sub(self.l_vert[1],d0))
         self.obj.append(self.l_radi)
         self.obj.extend(self.c_colr[0])
         self.obj.extend(self.c_colr[1])
     self.l_vert=None
     self.c_colr=None
     self.l_radi=None
Exemplo n.º 5
0
def _cgo_quad(pos, normal, radius):
    '''Return a CGO list specifying a quad.'''
    v1 = cpv.normalize(_perp_vec(normal))
    v2 = cpv.cross_product(normal, v1)
    v1 = cpv.scale(v1, radius)
    v2 = cpv.scale(v2, radius)
    obj = [ cgo.BEGIN,
            cgo.TRIANGLE_STRIP,
            cgo.NORMAL]
    obj.extend(normal)
    obj.append(cgo.VERTEX)
    obj.extend(cpv.add(pos, v1))
    obj.append(cgo.VERTEX)
    obj.extend(cpv.add(pos, v2))
    obj.append(cgo.VERTEX)
    obj.extend(cpv.sub(pos, v2))
    obj.append(cgo.VERTEX)
    obj.extend(cpv.sub(pos, v1))
    obj.append(cgo.END)
    return obj
Exemplo n.º 6
0
    def append_tri(self):
        if self.l_vert:
            d0 = cpv.sub(self.l_vert[0],self.l_vert[1])
            d1 = cpv.sub(self.l_vert[0],self.l_vert[2])
            n0 = cpv.cross_product(d0,d1)
            n0 = cpv.normalize_failsafe(n0)

            if not self.tri_flag:
                self.obj.append(BEGIN)
                self.obj.append(TRIANGLES)
                self.tri_flag = 1

            indices = [0, 1, 2]

            if not self.l_norm:
                # TODO could simplify this if ray tracing would support
                # object-level two_sided_lighting. Duplicating the
                # face with an offset is a hack and produces visible
                # lines on edges.
                n1 = [-n0[0],-n0[1],-n0[2]]
                ns = cpv.scale(n0,0.002)
                indices = [0, 1, 2, 4, 3, 5]
                l_vert_offsetted =     [cpv.add(v, ns) for v in self.l_vert]
                l_vert_offsetted.extend(cpv.sub(v, ns) for v in self.l_vert)
                self.l_vert = l_vert_offsetted
                self.l_norm = [n0, n0, n0, n1, n1, n1]
            elif cpv.dot_product(self.l_norm[0], n0) < 0:
                indices = [0, 2, 1]

            for i in indices:
                self.obj.append(COLOR) # assuming unicolor
                self.obj.extend(self.t_colr[i % 3])
                self.obj.append(NORMAL)
                self.obj.extend(self.l_norm[i])
                self.obj.append(VERTEX)
                self.obj.extend(self.l_vert[i])

        self.l_vert=None
        self.t_colr=None
        self.l_norm=None
def helix_orientation(selection, visualize=1, sigma_cutoff=1.5, quiet=0):
    """
DESCRIPTION

    Get the center and direction of a helix as vectors. Will only work
    for helices and gives slightly different results than loop_orientation.
    Averages direction of C(i)->O(i) bonds.

USAGE

    helix_orientation selection [, visualize [, sigma_cutoff]]

ARGUMENTS

    selection = string: atom selection of helix

    visualize = 0 or 1: show fitted vector as arrow {default: 1}

    sigma_cutoff = float: drop outliers outside
    (standard_deviation * sigma_cutoff) {default: 1.5}

SEE ALSO

    angle_between_helices, helix_orientation_hbond, loop_orientation, cafit_orientation
    """
    visualize, quiet, sigma_cutoff = int(visualize), int(quiet), float(sigma_cutoff)
    stored.x = dict()
    cmd.iterate_state(
        STATE, "(%s) and name C+O" % (selection), "stored.x.setdefault(chain + resi, dict())[name] = x,y,z"
    )
    vec_list = []
    count = 0
    for x in stored.x.values():
        if "C" in x and "O" in x:
            vec_list.append(cpv.sub(x["O"], x["C"]))
            count += 1
    if count == 0:
        print("warning: count == 0")
        raise CmdException
    vec = _vec_sum(vec_list)
    if count > 2 and sigma_cutoff > 0:
        angle_list = [cpv.get_angle(vec, x) for x in vec_list]
        angle_mu, angle_sigma = _mean_and_std(angle_list)
        vec_list = [
            vec_list[i] for i in range(len(vec_list)) if abs(angle_list[i] - angle_mu) < angle_sigma * sigma_cutoff
        ]
        if not quiet:
            print("Dropping %d outlier(s)" % (len(angle_list) - len(vec_list)))
        vec = _vec_sum(vec_list)
    vec = cpv.normalize(vec)
    return _common_orientation(selection, vec, visualize, quiet)
Exemplo n.º 8
0
    def compute_surface_normals():
        '''
        Compute average normals from all adjacent triangles
        on each vertex
        '''
        from functools import reduce

        # don't use cpv.normalize which has an RSMALL4 limit
        normalize = lambda v: cpv.scale(v, 1. / cpv.length(v))

        for face in table['face']:
            if 'vertex_index' in face:
                indices = face['vertex_index']
            elif 'vertex_indices' in face:
                indices = face['vertex_indices']
            else:
                return

            f_vert = [vertices[i] for i in indices]
            f_xyz = [(v['x'], v['y'], v['z']) for v in f_vert]

            try:
                normal = normalize(cpv.cross_product(
                    cpv.sub(f_xyz[1], f_xyz[0]),
                    cpv.sub(f_xyz[2], f_xyz[1])))
            except ZeroDivisionError:
                continue

            for v in f_vert:
                v.setdefault('normals', []).append(normal)

        for v in vertices:
            try:
                v['nx'], v['ny'], v['nz'] = normalize(
                        reduce(cpv.add, v.pop('normals')))
            except (KeyError, ZeroDivisionError):
                continue
Exemplo n.º 9
0
def visualize_orientation(direction, center=[0.0]*3, scale=1.0, symmetric=False, color='green', color2='red'):
    '''
DESCRIPTION

    Draw an arrow. Helper function for "helix_orientation" etc.
    '''
    from pymol import cgo

    color_list = cmd.get_color_tuple(color)
    color2_list = cmd.get_color_tuple(color2)

    if symmetric:
        scale *= 0.5
    end = cpv.add(center, cpv.scale(direction, scale))
    radius = 0.3

    obj = [cgo.SAUSAGE]
    obj.extend(center)
    obj.extend(end)
    obj.extend([
        radius,
        0.8, 0.8, 0.8,
    ])
    obj.extend(color_list)

    if symmetric:
        start = cpv.sub(center, cpv.scale(direction, scale))
        obj.append(cgo.SAUSAGE)
        obj.extend(center)
        obj.extend(start)
        obj.extend([
            radius,
            0.8, 0.8, 0.8,
        ])
        obj.extend(color2_list)

    coneend = cpv.add(end, cpv.scale(direction, 4.0*radius/cpv.length(direction)))
    obj.append(cgo.CONE)
    obj.extend(end)
    obj.extend(coneend)
    obj.extend([
        radius * 1.75,
        0.0,
    ])
    obj.extend(color_list * 2)
    obj.extend([
        1.0, 1.0, # Caps
    ])
    cmd.load_cgo(obj, get_unused_name('oriVec'), zoom=0)
Exemplo n.º 10
0
 def __init__(self, p1, p2, radius, color1,
              color2=None, color3=None,
              hlength=None, hradius=None,
              hlength_scale=3.0, hradius_scale=0.6):
     if hlength is None:
         hlength = radius * hlength_scale
     if hradius is None:
         hradius = hlength * hradius_scale
     normal = cpv.normalize(cpv.sub(p1, p2))
     pM = cpv.add(cpv.scale(normal, hlength), p2)
     line = Cylinder(p1, pM, radius, color1, color2)
     cone = Cone(
         pM, p2, hradius, color2 or color1, radius2=0, color2=color3
     )
     self._primitive = (line + cone).primitive
Exemplo n.º 11
0
 def scramble(self,mode):
     if self.cmd.count_atoms(self.sculpt_object):
         sc_tmp = "_scramble_tmp"
         if mode == 0:
             self.cmd.select(sc_tmp,self.sculpt_object+
                         " and not (fixed or restrained)")
         if mode == 1:
             self.cmd.select(sc_tmp,self.sculpt_object+
                         " and not (fixed)")
         extent = self.cmd.get_extent(sc_tmp)
         center = self.cmd.get_position(sc_tmp)
         radius = 1.25*cpv.length(cpv.sub(extent[0],extent[1]))
         self.cmd.alter_state(self.cmd.get_state(), sc_tmp,
                              "(x,y,z)=rsp(pos,rds)",
             space= { 'rsp' :  cpv.random_displacement,
                      'pos' : center,
                      'rds' : radius })
         self.cmd.delete(sc_tmp)
Exemplo n.º 12
0
def planeFromPoints(point1, point2, point3, facetSize):
    v1 = cpv.normalize(cpv.sub(point2, point1))
    v2 = cpv.normalize(cpv.sub(point3, point1))
    normal = cpv.cross_product(v1, v2)
    v2 = cpv.cross_product(normal, v1)
    x = cpv.scale(v1, facetSize)
    y = cpv.scale(v2, facetSize)
    center = point2
    corner1 = cpv.add(cpv.add(center, x), y)
    corner2 = cpv.sub(cpv.add(center, x), y)
    corner3 = cpv.sub(cpv.sub(center, x), y)
    corner4 = cpv.add(cpv.sub(center, x), y)
    return plane(corner1, corner2, corner3, corner4, normal)
Exemplo n.º 13
0
    def get_cgo(self, dot_mode=0, dot_radius=0.03):
        """Generate a CGO list for a dot."""
        cgolist = []

        # COLOR
        cgolist.extend(_cgo_color(self.color))

        if dot_mode == 0:  # spheres
            logger.debug("Adding dot to cgolist...")
            cgolist.extend(_cgo_sphere(self.coords, dot_radius))
            logger.debug("Finished adding dot to cgolist.")

        if dot_mode == 1:  # quads
            logger.debug("Adding quad to cgolist...")
            normal = cpv.normalize(cpv.sub(self.coords, self.atom['coords']))
            cgolist.extend(_cgo_quad(self.coords, normal, dot_radius * 1.5))
            logger.debug("Finished adding quad to cgolist.")

        return cgolist
Exemplo n.º 14
0
def loop_orientation(selection, state=STATE, visualize=1, quiet=1):
    '''
DESCRIPTION

    Get the center and approximate direction of a peptide. Works for any
    secondary structure.
    Averages direction of N(i)->C(i) pseudo bonds.

USAGE

    loop_orientation selection [, visualize ]

SEE ALSO

    helix_orientation
    '''
    state, visualize, quiet = int(state), int(visualize), int(quiet)

    coords = dict()
    cmd.iterate_state(state, '(%s) and name N+C' % (selection),
            'coords.setdefault(chain + resi, {})[name] = x,y,z', space=locals())

    vec = cpv.get_null()
    center = cpv.get_null()

    count = 0
    for x in coords.itervalues():
        if 'C' in x and 'N' in x:
            vec = cpv.add(vec, cpv.sub(x['C'], x['N']))
        for coord in x.itervalues():
            center = cpv.add(center, coord)
            count += 1

    if count == 0:
        print 'warning: count == 0'
        raise CmdException

    vec = cpv.normalize(vec)
    center = cpv.scale(center, 1./count)

    _common_orientation(selection, center, vec, visualize, 2.0*len(coords), quiet)
    return center, vec
def helix_orientation_hbond(selection, visualize=1, cutoff=3.5, quiet=0):
    '''
DESCRIPTION

    Get the center and direction of a helix as vectors. Will only work
    for alpha helices and gives slightly different results than
    helix_orientation. Averages direction of O(i)->N(i+4) hydrogen bonds.

USAGE

    helix_orientation selection [, visualize [, cutoff]]

ARGUMENTS

    cutoff = float: maximal hydrogen bond distance {default: 3.5}

SEE ALSO

    helix_orientation
    '''
    visualize, quiet, cutoff = int(visualize), int(quiet), float(cutoff)
    stored.x = dict()
    cmd.iterate_state(STATE, '(%s) and name N+O' % (selection),
                      'stored.x.setdefault(resv, dict())[name] = x,y,z')
    vec_list = []
    for resi in stored.x:
        resi_other = resi + 4
        if 'O' in stored.x[resi] and resi_other in stored.x:
            if 'N' in stored.x[resi_other]:
                vec = cpv.sub(stored.x[resi_other]['N'], stored.x[resi]['O'])
                if cpv.length(vec) < cutoff:
                    vec_list.append(vec)
    if len(vec_list) == 0:
        print 'warning: count == 0'
        raise CmdException
    vec = _vec_sum(vec_list)
    vec = cpv.normalize(vec)
    return _common_orientation(selection, vec, visualize, quiet)
Exemplo n.º 16
0
def cgo_grid(
pos1=[0,0,0],
pos2=[1,0,0],
pos3=[0,0,1],
length_x=30,
length_z='',
npoints_x='',
npoints_z='',
nwaves_x=2,
nwaves_z='',
offset_x=0,
offset_z='',
gain_x=1,
gain_z='',
thickness=2.0,
color='',
nstates=60,
startframe=1,
endframe=1,
mode=0,
view=0,
name='',
quiet=1):
    '''
DESCRIPTION

    Generates an animated flowing mesh object using the points provided
    or the current view. The shape is affected substantially by the arguments!

USEAGE

    cgo_grid [ pos1 [, pos2 [, pos3 [, length_x [, length_z
             [, npoints_x [, npoints_z [, nwaves_x [, nwaves_z
             [, offset_x [, offset_z [, gain_x [, gain_z [, thickness
             [, color [, nstates [, startframe [, endframe [, mode
             [, view [, name [, quiet ]]]]]]]]]]]]]]]]]]]]]]

EXAMPLE

    cgo_grid view=1

ARGUMENTS

    pos1 = single atom selection (='pk1') or list of 3 floats {default: [0,0,0]}

    pos2 = single atom selection (='pk2') or list of 3 floats {default: [1,0,0]}

    pos3 = single atom selection (='pk3') or list of 3 floats {default: [0,0,1]}

    --> the plane is defined by pos1 (origin) and vectors to pos2 and pos3, respectively

    length_x = <float>: length of membrane {default: 30}
    length_z = <float>: length of membrane {default: ''} # same as length_x

    npoints_x = <int>: number of points(lines) along x-direction
                {default: ''} #will be set to give a ~1 unit grid
    npoints_z = <int>: number of points(lines) along z-direction
                {default: ''} #will be set to give a ~1 unit grid
                {minimum: 1 # automatic}

    nwaves_x =   <float>: number of complete sin waves along object x-axis
                 {default: 2}
    nwaves_z =  <float>: number of complete sin waves along object z-axis
                {default: ''} # same as nwaves_x
                define separately to adjust number of waves in each direction



    offset_x = <float> phase delay (in degrees) of sin wave in x-axis
             can be set to affect shape and starting amplitude {default: 0}
    offset_z = <float> phase delay (in degrees) of sin wave in z-axis
             can be set to affect shape and starting amplitude
             {default: ''} # same as  offset_x
    offset_x and offset_z can be used together to phase
    otherwise identical objects

    gain_x = <float>: multiplication factor for y-amplitude for x-direction
             {default: 1}
    gain_z = <float>: multiplication factor for y-amplitude for z-direction
             {default: ''} #=gain_x

    thickness = <float>: line thickness {default: 2}

    color = color name <string> (e.g. 'skyblue') OR
            rgb-value list of 3 floats (e.g. [1.0,1.0,1.0]) OR
            {default: ''} // opposite of background
            input illegal values for random coloring

    nstates =  <int>: number of states; {default: 60}
               this setting will define how many states
               the object will have (per wave) and how fluent and fast the
               animation will be.
               Higher values will promote 'fluent' transitions,
               but decrease flow speed.
                   Note: Frame animation cycles thought the states one at a time
                   and needs to be set accordingly. Can also be used to phase
                   otherwise identical objects.
               Set to 1 for static object {automatic minimum}

    startframe: specify starting frame <int> or set (='') to use current frame
                set to 'append' to extend movie from the last frame {default: 1}
      endframe: specify end frame <int> or set (='') to use last frame
                if 'append' is used for startframe,
                endframe becomes the number of frames to be appended instead
                {default: 1}
                Note: if start- and endframe are the same, movie animation will
                be skipped, the object will be loaded and can be used afterwards

    mode: defines positioning {default: 0}:
    0: pos1 is center
    1: pos1 is corner

    view {default: 0}:
    '0': off/ uses provided points to create CGO
    '1': overrides atom selections and uses current orienatation for positioning
         - pos1 = origin/center
         - pos2 = origin +1 in camera y
         - pos3 = origin +1 in camera z

    name: <string> name of cgo object {default: ''} / automatic

    quiet: <boolean> toggles output

    '''
    ########## BEGIN OF FUNCTION CODE ##########
    def get_coord(v):
        if not isinstance(v, str):
            try:
                return v[:3]
            except:
                return False
        if v.startswith('['):
            return cmd.safe_list_eval(v)[:3]
        try:
            if cmd.count_atoms(v)==1:
                # atom coordinates
                return cmd.get_atom_coords(v)
            else:
                # more than one atom --> use "center"
                # alt check!
                if cmd.count_atoms('(alt *) and not (alt "")')!=0:
                    print("cgo_grid: warning! alternative coordinates found for origin, using center!")
                view_temp=cmd.get_view()
                cmd.zoom(v)
                v=cmd.get_position()
                cmd.set_view(view_temp)
                return v
        except:
            return False

    def eval_color(v):
        try:
            if not v:
                v=eval(cmd.get('bg_rgb'))
                v=list(map(sum, list(zip(v,[-1,-1,-1]))))
                v=list(map(abs, v))
                if v[0]==v[1]==v[2]==0.5: # grey
                    v=[0,0,0]
                return v
            if isinstance(v, list):
                return v[0:3]
            if not isinstance(v, str):
                return v[0:3]
            if v.startswith('['):
                return cmd.safe_list_eval(v)[0:3]
            return list(cmd.get_color_tuple(v))
        except:
            return [random.random(),random.random(),random.random()]
    cmd.extend("eval_color", eval_color)

    color=eval_color(color)

    try:
        mode=int(mode)
    except:
        raise Exception("Input error in Mode")
    if mode<0 or mode>1:
        raise Exception("Mode out of range!")

    try:
        nstates=int(nstates)
        if nstates<1:
            nstates=1
            print("NB! nstates set to 1 (automatic minimum)")
        length_x=float(length_x)
        if length_z=='':
            length_z=length_x
        else:
            length_z=float(length_z)
        if npoints_x=='':
            npoints_x=int(length_x)+1
        else:
            npoints_x=int(npoints_x)
        if npoints_x<1:
            npoints_x=1
            print("NB! npoints_x set to 1 (automatic minimum)")
        if npoints_z =='':
            npoints_z=int(length_z)+1
        else:
            npoints_z=int(npoints_z)
        if npoints_z<1:
            npoints_z=1
            print("NB! npoints_x set to 1 (automatic minimum)")

        nwaves_x=abs(float(nwaves_x))
        if nwaves_z=='':
            nwaves_z=nwaves_x
        else:
            nwaves_z=abs(float(nwaves_z))
        offset_x=float(offset_x)*math.pi/180
        if offset_z=='':
            offset_z=offset_x
        else:
            offset_z=float(offset_z)*math.pi/180
        thickness=float(thickness)
        gain_x=float(gain_x)
        if gain_z=='':
            gain_z=gain_x
        else:
            gain_z=float(gain_z)
        if not name:
            name = cmd.get_unused_name('membrane')
        else:
            name = str(name)

        if int(quiet):
            quiet=True
        else:
            quiet=False
        if int(view):
            view=True
        else:
            view=False
    except:
        raise Exception("Input error in parameters!")


    #prevent auto zooming on object
    temp_auto_zoom=cmd.get('auto_zoom')
    cmd.set('auto_zoom', '0')

    if int(view):
        xyz1=cmd.get_position()
        tempname = cmd.get_unused_name('temp')
        ori_ax=[[0,0,0],[10,0,0],[0,0,10]]
        for a in range (0,len(ori_ax)):
            cmd.pseudoatom(tempname, resi=''+str(a+1)+'', pos=xyz1)
            cmd.translate(ori_ax[a],
            selection=''+tempname+' and resi '+str(a+1)+'', camera='1')
            ori_ax[a]=cmd.get_atom_coords(''+tempname+' and resi '+str(a+1)+'')
        cmd.delete(tempname)
        xyz1=ori_ax[0]
        xyz2=ori_ax[1]
        xyz3=ori_ax[2]
    else:
        xyz1 = get_coord(pos1)
        xyz2 = get_coord(pos2)
        xyz3 = get_coord(pos3)

    if (not startframe):
        startframe=cmd.get('frame')

    if (not endframe):
        endframe=cmd.count_frames()
    if endframe==0: endframe=1

    if (startframe=='append'):
        startframe=cmd.count_frames()+1
        try:
            endframe=int(endframe)
            cmd.madd('1 x'+str(endframe))
            endframe=cmd.count_frames()
        except ValueError:
            raise Exception("Input error: Value for 'endframe' is not integer!")

    try:
        startframe=int(startframe)
        endframe=int(endframe)
        endframe/startframe
        startframe/endframe
    except ValueError:
        raise Exception("Input error: Failed to convert to integer!")
    except ZeroDivisionError:
        raise Exception("Error: unexpected zero value!")
    except:
        raise Exception("Unexpected error!")

    if (nstates==1):
        if not quiet: print("Creating one state object!")

    if startframe > endframe:
        startframe, endframe = endframe, startframe
        if not quiet: print("Inverted start and end frames!")


    ########## BEGIN OF FUNCTIONAL SCRIPT ##########

    #normalize and get orthogonal vector

    # define vectors from points
    xyz2 = cpv.sub(xyz2, xyz1)
    xyz3 = cpv.sub(xyz3, xyz1)

    #NB! cpv.get_system2 outputs normalized vectors [x,y,z]
    xyz4 = cpv.get_system2(xyz2,xyz3)
    xyz2 = xyz4[0]
    xyz3 = xyz4[1]
    for x in range(0,3):
        for z in range(0,3):
            if x==z:
                continue
            if xyz4[x]==xyz4[z]:
                raise Exception("Illegal vector settings!")
    xyz4 = cpv.negate(xyz4[2]) #overwrites original

    # transform origin to corner
    if mode==0:
        if npoints_x>1:
            xyz1 = cpv.sub(xyz1, cpv.scale(xyz2,length_x/2))
        if npoints_z>1:
            xyz1 = cpv.sub(xyz1, cpv.scale(xyz3,length_z/2))

    #defines array lines
    nlines=max([npoints_x, npoints_z])
    # in case only one line max

    # create an empty array for xyz entries
    # this may contain more values than are actually drawn later,
    # but they are needed to draw lines in each direction
    grid_xyz = []
    for x in range(0,nlines):
        grid_xyz.append([0.0,0.0,0.0]*nlines)

    # grid distance and steps
    # prevent zero divisions (lines=1) and enable calculations if lines=0
    if (not (npoints_x-1<2)):
        gap_length_x = length_x/(npoints_x-1)
        step_line_x = 2*math.pi/(npoints_x-1)
    else:
        gap_length_x=length_x
        step_line_x=2*math.pi

    if (not (npoints_z-1<2)):
        gap_length_z = length_z/(npoints_z-1)
        step_line_z = 2*math.pi/(npoints_z-1)
    else:
        gap_length_z=length_z
        step_line_z=2*math.pi

    # calculate steps
    if nstates==1:
        step_state=0
    else:
        step_state = 2*math.pi/(nstates-1)

    ########## BEGIN STATE ITERATION ##########
    # create a n-state object in PyMol

    for a in range(0,nstates):
        # Reset object
        obj = []
        #assign color
        obj.extend( [ COLOR, color[0], color[1], color[2] ] )
        #set width
        obj.extend( [ LINEWIDTH, thickness ] )

        # Calculate xyz-coordinates for each line

        for x in range(0,nlines):

            for z in range(0,nlines):

                # update grid position in x-direction
                xyztemp=cpv.add(xyz1,cpv.scale(xyz2,gap_length_x*x))

                # update grid position in z-direction
                xyztemp=cpv.add(xyztemp,cpv.scale(xyz3,gap_length_z*z))

                # calculate amplitude for y-direction and update grid position
                y_amp=(\
                      gain_x*math.sin(offset_x+nwaves_x*((a*step_state)+(x*step_line_x)))/2+\
                      gain_z*math.sin(offset_z+nwaves_z*((a*step_state)+(z*step_line_z)))/2\
                      )
                xyztemp=cpv.add(xyztemp,cpv.scale(xyz4,y_amp))
                grid_xyz[x][z]=xyztemp

        #Now the coordinates for this state are defined!

        #Now the coordinates are read separately:

        # allow to run the loops as often as required
        #if npoints_x==0:npoints_x=npoints_z

        #lines along z in x direction
        for z in range(0,npoints_z):
            obj.extend( [ BEGIN, LINE_STRIP ] )
            for x in range(0,npoints_x):
                obj.extend( [ VERTEX, grid_xyz[x][z][0], grid_xyz[x][z][1], grid_xyz[x][z][2] ] )
            obj.append( END )

        #lines along x in z direction
        for x in range(0,npoints_x):
            obj.extend( [ BEGIN, LINE_STRIP ] )
            for z in range(0,npoints_z):
                obj.extend( [ VERTEX, grid_xyz[x][z][0], grid_xyz[x][z][1], grid_xyz[x][z][2] ] )
            obj.append( END )

        # Load state into PyMOL object:
        cmd.load_cgo(obj,name,a+1)
    # All states of object loaded!

    #reset auto zooming to previous value
    cmd.set('auto_zoom', temp_auto_zoom)

    # animate object using frames instead of states
    if (not endframe==startframe):
        framecount=0
        countvar=1

        for frame in range(startframe, endframe + 1):
            #increase count
            framecount=framecount+countvar

            # set state in frame
            cmd.mappend(frame,
            "/cmd.set('state', %s, %s)" % (repr(framecount), repr(name)))

            # Looping
            if framecount==nstates:
                if ((int(nwaves_x)!=nwaves_x) or (int(nwaves_z)!=nwaves_z)):
                    #if not complete sinus wave
                    #--> reverse wave in ongoing animation
                    countvar=-1
                else:
                    #wave is complete --> repeat
                    framecount=0
            # count up from first state
            if framecount==1: countvar=1
        if not quiet: print("object loaded and animated with frames!")
    else:
        if not quiet: print("object loaded!")

    #OUTPUT
    if not quiet:
        print("Grid variables for:",name)
        print("corner:", xyz1)
        print("vector 1:", xyz2)
        print("vector 2:", xyz3)

        print("length_x:",length_x)
        print("length_z:",length_z)
        print("npoints_x:", npoints_x)
        print("npoints_z:", npoints_z)

        print("nwaves_x:", nwaves_x)
        print("nwaves_z:", nwaves_z)

        print("offset_x:",offset_x)
        print("offset_z:",offset_z)

        print("gain_x:",gain_x)
        print("gain_z:",gain_z)

        print("thickness:",thickness)

        print("states", nstates)
        if (not endframe==startframe):
            print("frames: start:",startframe,"end:",endframe)

    return grid_xyz
Exemplo n.º 17
0
def planeFromPoints(p1, p2, p3, vm1=None, vm2=None, center=True, settings={}):
    v1 = cpv.sub(p1, p2)
    v2 = cpv.sub(p3, p2)
    normal = cpv.cross_product(v1, v2)

    if 'translate' in settings:
        vtran = cpv.scale(cpv.normalize(normal), settings['translate'])
        p1_t = cpv.sub(p1, vtran)
        p2_t = cpv.sub(p2, vtran)
        p3_t = cpv.sub(p3, vtran)
        print("New coordinates are:")
        print_info("New", p1_t, p2_t, p3_t)
        print("New coordinates are for normalized plane:")
        v1_t = cpv.normalize(cpv.sub(p1_t, p2_t))
        v2_t = cpv.normalize(cpv.sub(p3_t, p2_t))
        normal_t = cpv.normalize(cpv.cross_product(v1_t, v2_t))
        v2_t = cpv.normalize(cpv.cross_product(normal_t, v1_t))
        p1_t2 = cpv.add(v1_t, p2_t)
        p3_t2 = cpv.add(v2_t, p2_t)
        print_info("Newnormal", p1_t2, p2_t, p3_t2)

    if vm1 != None:
        v1 = cpv.scale(cpv.normalize(v1), vm1)
    if vm2 != None:
        v2 = cpv.scale(cpv.normalize(v2), vm2)

    centrum = p2
    if center:
        corner1 = cpv.add(cpv.add(centrum, v1), v2)
        corner2 = cpv.sub(cpv.add(centrum, v1), v2)
        corner3 = cpv.sub(cpv.sub(centrum, v1), v2)
        corner4 = cpv.add(cpv.sub(centrum, v1), v2)
    else:
        corner1 = cpv.add(cpv.add(centrum, v1), v2)
        corner2 = cpv.add(centrum, v1)
        corner3 = centrum
        corner4 = cpv.add(centrum, v2)

    return plane(corner1, corner2, corner3, corner4, normal, settings)
Exemplo n.º 18
0
    def append_tri(self):
        if self.l_vert and not self.l_norm:
            d0 = cpv.sub(self.l_vert[0], self.l_vert[1])
            d1 = cpv.sub(self.l_vert[0], self.l_vert[2])
            n0 = cpv.cross_product(d0, d1)
            n0 = cpv.normalize_failsafe(n0)
            n1 = [-n0[0], -n0[1], -n0[2]]
            ns = cpv.scale(n0, 0.002)
            if not self.tri_flag:
                self.obj.append(BEGIN)
                self.obj.append(TRIANGLES)
                self.tri_flag = 1
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[0])
            self.obj.append(NORMAL)
            self.obj.extend(n0)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.add(self.l_vert[0], ns))
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[1])
            self.obj.append(NORMAL)
            self.obj.extend(n0)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.add(self.l_vert[1], ns))
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[2])
            self.obj.append(NORMAL)
            self.obj.extend(n0)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.add(self.l_vert[2], ns))
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[0])
            self.obj.append(NORMAL)
            self.obj.extend(n1)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.sub(self.l_vert[0], ns))
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[1])
            self.obj.append(NORMAL)
            self.obj.extend(n1)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.sub(self.l_vert[1], ns))
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[2])
            self.obj.append(NORMAL)
            self.obj.extend(n1)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.sub(self.l_vert[2], ns))

        elif self.l_vert and self.t_colr and self.l_norm:
            if not self.tri_flag:
                self.obj.append(BEGIN)
                self.obj.append(TRIANGLES)
                self.tri_flag = 1
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[0])
            self.obj.append(NORMAL)
            self.obj.extend(self.l_norm[0])
            self.obj.append(VERTEX)
            self.obj.extend(self.l_vert[0])
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[1])
            self.obj.append(NORMAL)
            self.obj.extend(self.l_norm[1])
            self.obj.append(VERTEX)
            self.obj.extend(self.l_vert[1])
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[2])
            self.obj.append(NORMAL)
            self.obj.extend(self.l_norm[2])
            self.obj.append(VERTEX)
            self.obj.extend(self.l_vert[2])
        self.l_vert = None
        self.t_colr = None
        self.l_norm = None
Exemplo n.º 19
0
def bbPlane(selection='(all)', color='gray', transp=0.3, state=-1, name=None, quiet=1):
    """
DESCRIPTION

    Draws a plane across the backbone for a selection

ARGUMENTS

    selection = string: protein object or selection {default: (all)}

    color = string: color name or number {default: white}

    transp = float: transparency component (0.0--1.0) {default: 0.0}

    state = integer: object state, 0 for all states {default: 1}

NOTES

    You need to pass in an object or selection with at least two
    amino acids.  The plane spans CA_i, O_i, N-H_(i+1), and CA_(i+1)
    """
    from pymol.cgo import BEGIN, TRIANGLES, COLOR, VERTEX, END
    from pymol import cgo
    from chempy import cpv

    # format input
    transp = float(transp)
    state, quiet = int(state), int(quiet)
    if name is None:
        name = cmd.get_unused_name("backbonePlane")

    if state < 0:
        state = cmd.get_state()
    elif state == 0:
        for state in range(1, cmd.count_states(selection) + 1):
            bbPlane(selection, color, transp, state, name, quiet)
        return

    AAs = []
    coords = dict()

    # need hydrogens on peptide nitrogen
    cmd.h_add('(%s) and n. N' % selection)

    # get the list of residue ids
    for obj in cmd.get_object_list(selection):
        sel = obj + " and (" + selection + ")"
        for a in cmd.get_model(sel + " and n. CA", state).atom:
            key = '/%s/%s/%s/%s' % (obj, a.segi, a.chain, a.resi)
            AAs.append(key)
            coords[key] = [a.coord, None, None]
        for a in cmd.get_model(sel + " and n. O", state).atom:
            key = '/%s/%s/%s/%s' % (obj, a.segi, a.chain, a.resi)
            if key in coords:
                coords[key][1] = a.coord
        for a in cmd.get_model(sel + " and ((n. N extend 1 and e. H) or (r. PRO and n. CD))", state).atom:
            key = '/%s/%s/%s/%s' % (obj, a.segi, a.chain, a.resi)
            if key in coords:
                coords[key][2] = a.coord

    # need at least two amino acids
    if len(AAs) <= 1:
        print("ERROR: Please provide at least two amino acids, the alpha-carbon on the 2nd is needed.")
        return

    # prepare the cgo
    obj = [
        BEGIN, TRIANGLES,
        COLOR,
    ]
    obj.extend(cmd.get_color_tuple(color))

    for res in range(0, len(AAs) - 1):
        curIdx, nextIdx = str(AAs[res]), str(AAs[res + 1])

        # populate the position array
        pos = [coords[curIdx][0], coords[curIdx][1], coords[nextIdx][2], coords[nextIdx][0]]

        # if the data are incomplete for any residues, ignore
        if None in pos:
            if not quiet:
                print(' bbPlane: peptide bond %s -> %s incomplete' % (curIdx, nextIdx))
            continue

        if cpv.distance(pos[0], pos[3]) > 4.0:
            if not quiet:
                print(' bbPlane: %s and %s not adjacent' % (curIdx, nextIdx))
            continue

        normal = cpv.normalize(cpv.cross_product(
            cpv.sub(pos[1], pos[0]),
            cpv.sub(pos[2], pos[0])))

        obj.append(cgo.NORMAL)
        obj.extend(normal)

        # need to order vertices to generate correct triangles for plane
        if cpv.dot_product(cpv.sub(pos[0], pos[1]), cpv.sub(pos[2], pos[3])) < 0:
            vorder = [0, 1, 2, 2, 3, 0]
        else:
            vorder = [0, 1, 2, 3, 2, 1]

        # fill in the vertex data for the triangles;
        for i in vorder:
            obj.append(VERTEX)
            obj.extend(pos[i])

    # finish the CGO
    obj.append(END)

    # update the UI
    cmd.load_cgo(obj, name, state, zoom=0)
    cmd.set("cgo_transparency", transp, name)
Exemplo n.º 20
0
def cgo_modevec(atom1='pk1', atom2='pk2', radius=0.05, gap=0.0, hlength=-1, hradius=-1,
              color='green', name='',scalefactor=10.0, cutoff=0.6, transparency=1.0): #was 0.6cut 12 scale
## scalefactor was 10.0 
    '''
DESCRIPTION

    Create a CGO mode vector starting at atom1 and pointint in atom2 displacement

ARGUMENTS

    atom1 = string: single atom selection or list of 3 floats {default: pk1}

    atom2 = string: displacement to atom1 for modevec

    radius = float: arrow radius {default: 0.5}

    gap = float: gap between arrow tips and the two atoms {default: 0.0}

    hlength = float: length of head

    hradius = float: radius of head

    color = string: one or two color names {default: blue red}

    name = string: name of CGO object
    
    scalefactor = scale how big of an arrow to make. Default 5

    transparency = 0.0 ~ 1.0, default=1.0 means being totally opaque
    '''
    from chempy import cpv

    radius, gap = float(radius), float(gap)
    hlength, hradius = float(hlength), float(hradius)
    scalefactor, cutoff = float(scalefactor), float(cutoff)
    transparency = float(transparency)
    try:
        color1, color2 = color.split()
    except:
        color1 = color2 = color
    color1 = list(cmd.get_color_tuple(color1))
    color2 = list(cmd.get_color_tuple(color2))

    def get_coord(v):
        if not isinstance(v, str):
            return v
        if v.startswith('['):
            return cmd.safe_list_eval(v)
        return cmd.get_atom_coords(v)

    xyz1 = get_coord(atom1)
    xyz2 = get_coord(atom2)
    newxyz2 = cpv.scale(xyz2, scalefactor)
    newxyz2 = cpv.add(newxyz2, xyz1)
    xyz2 = newxyz2
#    xyz2 = xyz2[0]*scalefactor, xyz2[1]*scalefactor, xyz2[2]*scalefactor
    normal = cpv.normalize(cpv.sub(xyz1, xyz2))

    if hlength < 0:
        hlength = radius * 3.0
    if hradius < 0:
        hradius = hlength * 0.6

    if gap:
        diff = cpv.scale(normal, gap)
        xyz1 = cpv.sub(xyz1, diff)
        xyz2 = cpv.add(xyz2, diff)

    xyz3 = cpv.add(cpv.scale(normal, hlength), xyz2)

# dont draw arrow if distance is too small
    distance = cpv.distance(xyz1, xyz2)
    if distance <= cutoff:
        return

#### generate transparent arrows; 
#### The original codes are the next block
####  --Ran
    obj = [25.0, transparency, 9.0] + xyz1 + xyz3 + [radius] + color1 + color2 + \
          [25.0, transparency, 27.0] + xyz3 + xyz2 + [hradius, 0.0] + color2 + color2 + \
          [1.0, 0.0]

#    obj = [cgo.CYLINDER] + xyz1 + xyz3 + [radius] + color1 + color2 + \
#          [cgo.CONE] + xyz3 + xyz2 + [hradius, 0.0] + color2 + color2 + \
#          [1.0, 0.0]

    if not name:
        name = cmd.get_unused_name('arrow')

    cmd.load_cgo(obj, name)
Exemplo n.º 21
0
def helix_orientation(selection, state=STATE, visualize=1, cutoff=3.5, quiet=1):
    '''
DESCRIPTION

    Get the center and direction of a helix as vectors. Will only work
    for alpha helices and gives slightly different results than
    cafit_orientation. Averages direction of C(i)->O(i)->N(i+4).

USAGE

    helix_orientation selection [, visualize [, cutoff ]]

ARGUMENTS

    selection = string: atom selection of helix

    visualize = 0 or 1: show fitted vector as arrow {default: 1}

    cutoff = float: maximal hydrogen bond distance {default: 3.5}

SEE ALSO

    angle_between_helices, loop_orientation, cafit_orientation
    '''
    state, visualize, quiet = int(state), int(visualize), int(quiet)
    cutoff = float(cutoff)

    atoms = {'C': dict(), 'O': dict(), 'N': dict()}
    cmd.iterate_state(state, '(%s) and name N+O+C' % (selection),
            'atoms[name][resv] = x,y,z', space={'atoms': atoms})

    vec_list = []
    for resi in atoms['C']:
        resi_other = resi + 4
        try:
            aC = atoms['C'][resi]
            aO = atoms['O'][resi]
            aN = atoms['N'][resi_other]
        except KeyError:
            continue

        dist = cpv.distance(aN, aO)
        dist_weight = 1. - (2.8 - dist)
        angle = cpv.get_angle_formed_by(aC, aO, aN)
        angle_weight = 1. - (3.1 - angle)

        if dist_weight > 0.0 and angle_weight > 0.0:
            if not quiet:
                print ' weight:', angle_weight * dist_weight
            vec = cpv.scale(cpv.sub(aN, aC), angle_weight * dist_weight)
            vec_list.append(vec)

    if len(vec_list) == 0:
        print 'warning: count == 0'
        raise CmdException

    center = cpv.scale(_vec_sum(atoms['O'].itervalues()), 1./len(atoms['O']))
    vec = _vec_sum(vec_list)
    vec = cpv.normalize(vec)

    _common_orientation(selection, center, vec, visualize, 1.5*len(vec_list), quiet)
    return center, vec
Exemplo n.º 22
0
def cgo_grid(pos1=[0, 0, 0],
             pos2=[1, 0, 0],
             pos3=[0, 0, 1],
             length_x=30,
             length_z='',
             npoints_x='',
             npoints_z='',
             nwaves_x=2,
             nwaves_z='',
             offset_x=0,
             offset_z='',
             gain_x=1,
             gain_z='',
             thickness=2.0,
             color='',
             nstates=60,
             startframe=1,
             endframe=1,
             mode=0,
             view=0,
             name='',
             quiet=1):
    '''
DESCRIPTION

    Generates an animated flowing mesh object using the points provided
    or the current view. The shape is affected substantially by the arguments!

USEAGE

    cgo_grid [ pos1 [, pos2 [, pos3 [, length_x [, length_z
             [, npoints_x [, npoints_z [, nwaves_x [, nwaves_z
             [, offset_x [, offset_z [, gain_x [, gain_z [, thickness
             [, color [, nstates [, startframe [, endframe [, mode
             [, view [, name [, quiet ]]]]]]]]]]]]]]]]]]]]]]

EXAMPLE

    cgo_grid view=1

ARGUMENTS

    pos1 = single atom selection (='pk1') or list of 3 floats {default: [0,0,0]}

    pos2 = single atom selection (='pk2') or list of 3 floats {default: [1,0,0]}

    pos3 = single atom selection (='pk3') or list of 3 floats {default: [0,0,1]}

    --> the plane is defined by pos1 (origin) and vectors to pos2 and pos3, respectively

    length_x = <float>: length of membrane {default: 30}
    length_z = <float>: length of membrane {default: ''} # same as length_x

    npoints_x = <int>: number of points(lines) along x-direction
                {default: ''} #will be set to give a ~1 unit grid
    npoints_z = <int>: number of points(lines) along z-direction
                {default: ''} #will be set to give a ~1 unit grid
                {minimum: 1 # automatic}

    nwaves_x =   <float>: number of complete sin waves along object x-axis
                 {default: 2}
    nwaves_z =  <float>: number of complete sin waves along object z-axis
                {default: ''} # same as nwaves_x
                define separately to adjust number of waves in each direction



    offset_x = <float> phase delay (in degrees) of sin wave in x-axis
             can be set to affect shape and starting amplitude {default: 0}
    offset_z = <float> phase delay (in degrees) of sin wave in z-axis
             can be set to affect shape and starting amplitude
             {default: ''} # same as  offset_x
    offset_x and offset_z can be used together to phase
    otherwise identical objects

    gain_x = <float>: multiplication factor for y-amplitude for x-direction
             {default: 1}
    gain_z = <float>: multiplication factor for y-amplitude for z-direction
             {default: ''} #=gain_x

    thickness = <float>: line thickness {default: 2}

    color = color name <string> (e.g. 'skyblue') OR
            rgb-value list of 3 floats (e.g. [1.0,1.0,1.0]) OR
            {default: ''} // opposite of background
            input illegal values for random coloring

    nstates =  <int>: number of states; {default: 60}
               this setting will define how many states
               the object will have (per wave) and how fluent and fast the
               animation will be.
               Higher values will promote 'fluent' transitions,
               but decrease flow speed.
                   Note: Frame animation cycles thought the states one at a time
                   and needs to be set accordingly. Can also be used to phase
                   otherwise identical objects.
               Set to 1 for static object {automatic minimum}

    startframe: specify starting frame <int> or set (='') to use current frame
                set to 'append' to extend movie from the last frame {default: 1}
      endframe: specify end frame <int> or set (='') to use last frame
                if 'append' is used for startframe,
                endframe becomes the number of frames to be appended instead
                {default: 1}
                Note: if start- and endframe are the same, movie animation will
                be skipped, the object will be loaded and can be used afterwards

    mode: defines positioning {default: 0}:
    0: pos1 is center
    1: pos1 is corner

    view {default: 0}:
    '0': off/ uses provided points to create CGO
    '1': overrides atom selections and uses current orienatation for positioning
         - pos1 = origin/center
         - pos2 = origin +1 in camera y
         - pos3 = origin +1 in camera z

    name: <string> name of cgo object {default: ''} / automatic

    quiet: <boolean> toggles output

    '''

    ########## BEGIN OF FUNCTION CODE ##########
    def get_coord(v):
        if not isinstance(v, str):
            try:
                return v[:3]
            except:
                return False
        if v.startswith('['):
            return cmd.safe_list_eval(v)[:3]
        try:
            if cmd.count_atoms(v) == 1:
                # atom coordinates
                return cmd.get_atom_coords(v)
            else:
                # more than one atom --> use "center"
                # alt check!
                if cmd.count_atoms('(alt *) and not (alt "")') != 0:
                    print "cgo_grid: warning! alternative coordinates found for origin, using center!"
                view_temp = cmd.get_view()
                cmd.zoom(v)
                v = cmd.get_position()
                cmd.set_view(view_temp)
                return v
        except:
            return False

    def eval_color(v):
        try:
            if not v:
                v = eval(cmd.get('bg_rgb'))
                v = map(sum, zip(v, [-1, -1, -1]))
                v = map(abs, v)
                if v[0] == v[1] == v[2] == 0.5:  # grey
                    v = [0, 0, 0]
                return v
            if isinstance(v, list):
                return v[0:3]
            if not isinstance(v, str):
                return v[0:3]
            if v.startswith('['):
                return cmd.safe_list_eval(v)[0:3]
            return list(cmd.get_color_tuple(v))
        except:
            return [random.random(), random.random(), random.random()]

    cmd.extend("eval_color", eval_color)

    color = eval_color(color)

    try:
        mode = int(mode)
    except:
        raise Exception("Input error in Mode")
    if mode < 0 or mode > 1:
        raise Exception("Mode out of range!")

    try:
        nstates = int(nstates)
        if nstates < 1:
            nstates = 1
            print "NB! nstates set to 1 (automatic minimum)"
        length_x = float(length_x)
        if length_z == '':
            length_z = length_x
        else:
            length_z = float(length_z)
        if npoints_x == '':
            npoints_x = int(length_x) + 1
        else:
            npoints_x = int(npoints_x)
        if npoints_x < 1:
            npoints_x = 1
            print "NB! npoints_x set to 1 (automatic minimum)"
        if npoints_z == '':
            npoints_z = int(length_z) + 1
        else:
            npoints_z = int(npoints_z)
        if npoints_z < 1:
            npoints_z = 1
            print "NB! npoints_x set to 1 (automatic minimum)"

        nwaves_x = abs(float(nwaves_x))
        if nwaves_z == '':
            nwaves_z = nwaves_x
        else:
            nwaves_z = abs(float(nwaves_z))
        offset_x = float(offset_x) * math.pi / 180
        if offset_z == '':
            offset_z = offset_x
        else:
            offset_z = float(offset_z) * math.pi / 180
        thickness = float(thickness)
        gain_x = float(gain_x)
        if gain_z == '':
            gain_z = gain_x
        else:
            gain_z = float(gain_z)
        if not name:
            name = cmd.get_unused_name('membrane')
        else:
            name = str(name)

        if int(quiet):
            quiet = True
        else:
            quiet = False
        if int(view):
            view = True
        else:
            view = False
    except:
        raise Exception("Input error in parameters!")

    #prevent auto zooming on object
    temp_auto_zoom = cmd.get('auto_zoom')
    cmd.set('auto_zoom', '0')

    if int(view):
        xyz1 = cmd.get_position()
        tempname = cmd.get_unused_name('temp')
        ori_ax = [[0, 0, 0], [10, 0, 0], [0, 0, 10]]
        for a in range(0, len(ori_ax)):
            cmd.pseudoatom(tempname, resi='' + str(a + 1) + '', pos=xyz1)
            cmd.translate(ori_ax[a],
                          selection='' + tempname + ' and resi ' + str(a + 1) +
                          '',
                          camera='1')
            ori_ax[a] = cmd.get_atom_coords('' + tempname + ' and resi ' +
                                            str(a + 1) + '')
        cmd.delete(tempname)
        xyz1 = ori_ax[0]
        xyz2 = ori_ax[1]
        xyz3 = ori_ax[2]
    else:
        xyz1 = get_coord(pos1)
        xyz2 = get_coord(pos2)
        xyz3 = get_coord(pos3)

    if (not startframe):
        startframe = cmd.get('frame')

    if (not endframe):
        endframe = cmd.count_frames()
    if endframe == 0: endframe = 1

    if (startframe == 'append'):
        startframe = cmd.count_frames() + 1
        try:
            endframe = int(endframe)
            cmd.madd('1 x' + str(endframe))
            endframe = cmd.count_frames()
        except ValueError:
            raise Exception(
                "Input error: Value for 'endframe' is not integer!")

    try:
        startframe = int(startframe)
        endframe = int(endframe)
        endframe / startframe
        startframe / endframe
    except ValueError:
        raise Exception("Input error: Failed to convert to integer!")
    except ZeroDivisionError:
        raise Exception("Error: unexpected zero value!")
    except:
        raise Exception("Unexpected error!")

    if (nstates == 1):
        if not quiet: print "Creating one state object!"

    if startframe > endframe:
        startframe, endframe = endframe, startframe
        if not quiet: print "Inverted start and end frames!"

    ########## BEGIN OF FUNCTIONAL SCRIPT ##########

    #normalize and get orthogonal vector

    # define vectors from points
    xyz2 = cpv.sub(xyz2, xyz1)
    xyz3 = cpv.sub(xyz3, xyz1)

    #NB! cpv.get_system2 outputs normalized vectors [x,y,z]
    xyz4 = cpv.get_system2(xyz2, xyz3)
    xyz2 = xyz4[0]
    xyz3 = xyz4[1]
    for x in range(0, 3):
        for z in range(0, 3):
            if x == z:
                continue
            if xyz4[x] == xyz4[z]:
                raise Exception("Illegal vector settings!")
    xyz4 = cpv.negate(xyz4[2])  #overwrites original

    # transform origin to corner
    if mode == 0:
        if npoints_x > 1:
            xyz1 = cpv.sub(xyz1, cpv.scale(xyz2, length_x / 2))
        if npoints_z > 1:
            xyz1 = cpv.sub(xyz1, cpv.scale(xyz3, length_z / 2))

    #defines array lines
    nlines = max([npoints_x, npoints_z])
    # in case only one line max

    # create an empty array for xyz entries
    # this may contain more values than are actually drawn later,
    # but they are needed to draw lines in each direction
    grid_xyz = []
    for x in range(0, nlines):
        grid_xyz.append([0.0, 0.0, 0.0] * nlines)

    # grid distance and steps
    # prevent zero divisions (lines=1) and enable calculations if lines=0
    if (not (npoints_x - 1 < 2)):
        gap_length_x = length_x / (npoints_x - 1)
        step_line_x = 2 * math.pi / (npoints_x - 1)
    else:
        gap_length_x = length_x
        step_line_x = 2 * math.pi

    if (not (npoints_z - 1 < 2)):
        gap_length_z = length_z / (npoints_z - 1)
        step_line_z = 2 * math.pi / (npoints_z - 1)
    else:
        gap_length_z = length_z
        step_line_z = 2 * math.pi

    # calculate steps
    if nstates == 1:
        step_state = 0
    else:
        step_state = 2 * math.pi / (nstates - 1)

    ########## BEGIN STATE ITERATION ##########
    # create a n-state object in PyMol

    for a in range(0, nstates):
        # Reset object
        obj = []
        #assign color
        obj.extend([COLOR, color[0], color[1], color[2]])
        #set width
        obj.extend([LINEWIDTH, thickness])

        # Calculate xyz-coordinates for each line

        for x in range(0, nlines):

            for z in range(0, nlines):

                # update grid position in x-direction
                xyztemp = cpv.add(xyz1, cpv.scale(xyz2, gap_length_x * x))

                # update grid position in z-direction
                xyztemp = cpv.add(xyztemp, cpv.scale(xyz3, gap_length_z * z))

                # calculate amplitude for y-direction and update grid position
                y_amp=(\
                      gain_x*math.sin(offset_x+nwaves_x*((a*step_state)+(x*step_line_x)))/2+\
                      gain_z*math.sin(offset_z+nwaves_z*((a*step_state)+(z*step_line_z)))/2\
                      )
                xyztemp = cpv.add(xyztemp, cpv.scale(xyz4, y_amp))
                grid_xyz[x][z] = xyztemp

        #Now the coordinates for this state are defined!

        #Now the coordinates are read separately:

        # allow to run the loops as often as required
        #if npoints_x==0:npoints_x=npoints_z

        #lines along z in x direction
        for z in range(0, npoints_z):
            obj.extend([BEGIN, LINE_STRIP])
            for x in range(0, npoints_x):
                obj.extend([
                    VERTEX, grid_xyz[x][z][0], grid_xyz[x][z][1],
                    grid_xyz[x][z][2]
                ])
            obj.append(END)

        #lines along x in z direction
        for x in range(0, npoints_x):
            obj.extend([BEGIN, LINE_STRIP])
            for z in range(0, npoints_z):
                obj.extend([
                    VERTEX, grid_xyz[x][z][0], grid_xyz[x][z][1],
                    grid_xyz[x][z][2]
                ])
            obj.append(END)

        # Load state into PyMOL object:
        cmd.load_cgo(obj, name, a + 1)
    # All states of object loaded!

    #reset auto zooming to previous value
    cmd.set('auto_zoom', temp_auto_zoom)

    # animate object using frames instead of states
    if (not endframe == startframe):
        framecount = 0
        countvar = 1

        for frame in range(startframe, endframe + 1):
            #increase count
            framecount = framecount + countvar

            # set state in frame
            cmd.mappend(
                frame,
                "/cmd.set('state', %s, %s)" % (repr(framecount), repr(name)))

            # Looping
            if framecount == nstates:
                if ((int(nwaves_x) != nwaves_x)
                        or (int(nwaves_z) != nwaves_z)):
                    #if not complete sinus wave
                    #--> reverse wave in ongoing animation
                    countvar = -1
                else:
                    #wave is complete --> repeat
                    framecount = 0
            # count up from first state
            if framecount == 1: countvar = 1
        if not quiet: print "object loaded and animated with frames!"
    else:
        if not quiet: print "object loaded!"

    #OUTPUT
    if not quiet:
        print "Grid variables for:", name
        print "corner:", xyz1
        print "vector 1:", xyz2
        print "vector 2:", xyz3

        print "length_x:", length_x
        print "length_z:", length_z
        print "npoints_x:", npoints_x
        print "npoints_z:", npoints_z

        print "nwaves_x:", nwaves_x
        print "nwaves_z:", nwaves_z

        print "offset_x:", offset_x
        print "offset_z:", offset_z

        print "gain_x:", gain_x
        print "gain_z:", gain_z

        print "thickness:", thickness

        print "states", nstates
        if (not endframe == startframe):
            print "frames: start:", startframe, "end:", endframe

    return grid_xyz
Exemplo n.º 23
0
Arquivo: cgo.py Projeto: Almad/pymol
    def append_tri(self):
        if self.l_vert and not self.l_norm:
            d0 = cpv.sub(self.l_vert[0],self.l_vert[1])
            d1 = cpv.sub(self.l_vert[0],self.l_vert[2])
            n0 = cpv.cross_product(d0,d1)
            n0 = cpv.normalize_failsafe(n0)
            n1 = [-n0[0],-n0[1],-n0[2]]
            ns = cpv.scale(n0,0.002)
            if not self.tri_flag:
                self.obj.append(BEGIN)
                self.obj.append(TRIANGLES)
                self.tri_flag = 1
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[0])
            self.obj.append(NORMAL)
            self.obj.extend(n0)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.add(self.l_vert[0],ns))
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[1])
            self.obj.append(NORMAL)
            self.obj.extend(n0)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.add(self.l_vert[1],ns))
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[2])
            self.obj.append(NORMAL)
            self.obj.extend(n0)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.add(self.l_vert[2],ns))
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[0])
            self.obj.append(NORMAL)
            self.obj.extend(n1)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.sub(self.l_vert[0],ns))
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[1])
            self.obj.append(NORMAL)
            self.obj.extend(n1)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.sub(self.l_vert[1],ns))
            self.obj.append(COLOR)  # assuming unicolor
            self.obj.extend(self.t_colr[2])
            self.obj.append(NORMAL)
            self.obj.extend(n1)
            self.obj.append(VERTEX)
            self.obj.extend(cpv.sub(self.l_vert[2],ns))

        elif self.l_vert and self.t_colr and self.l_norm:
            if not self.tri_flag:
                self.obj.append(BEGIN)
                self.obj.append(TRIANGLES)
                self.tri_flag = 1
            self.obj.append(COLOR) # assuming unicolor
            self.obj.extend(self.t_colr[0])
            self.obj.append(NORMAL)
            self.obj.extend(self.l_norm[0])
            self.obj.append(VERTEX)
            self.obj.extend(self.l_vert[0])
            self.obj.append(COLOR) # assuming unicolor
            self.obj.extend(self.t_colr[1])
            self.obj.append(NORMAL)
            self.obj.extend(self.l_norm[1])
            self.obj.append(VERTEX)
            self.obj.extend(self.l_vert[1])
            self.obj.append(COLOR) # assuming unicolor
            self.obj.extend(self.t_colr[2])
            self.obj.append(NORMAL)
            self.obj.extend(self.l_norm[2])
            self.obj.append(VERTEX)
            self.obj.extend(self.l_vert[2])
        self.l_vert=None
        self.t_colr=None
        self.l_norm=None
Exemplo n.º 24
0
    def update_box(self):

        if self.points_name in self.cmd.get_names():

            model = self.cmd.get_model(self.points_name)

            self.coord = (
                model.atom[0].coord,
                model.atom[1].coord,
                model.atom[2].coord,
                model.atom[3].coord,
            )

            p = self.coord[0]

            d10 = sub(self.coord[1], p)
            d20 = sub(self.coord[2], p)
            d30 = sub(self.coord[3], p)

            x10_20 = cross_product(d10, d20)
            if self.mode != 'quad':
                if dot_product(d30, x10_20) < 0.0:
                    p = model.atom[1].coord
                    d10 = sub(self.coord[0], p)
                    d20 = sub(self.coord[2], p)
                    d30 = sub(self.coord[3], p)

            n10_20 = normalize(x10_20)
            n10 = normalize(d10)

            d100 = d10
            d010 = remove_component(d20, n10)
            if self.mode != 'quad':
                d001 = project(d30, n10_20)
            else:
                d001 = n10_20

            n100 = normalize(d100)
            n010 = normalize(d010)
            n001 = normalize(d001)

            f100 = reverse(n100)
            f010 = reverse(n010)
            f001 = reverse(n001)

            if self.mode == 'quad':
                p000 = p
                p100 = add(p, remove_component(d10, n001))
                p010 = add(p, remove_component(d20, n001))
                p001 = add(p, remove_component(d30, n001))
            else:
                p000 = p
                p100 = add(p, d100)
                p010 = add(p, d010)
                p001 = add(p, d001)
                p110 = add(p100, d010)
                p011 = add(p010, d001)
                p101 = add(p100, d001)
                p111 = add(p110, d001)

            obj = []

            if self.mode == 'box':  # standard box

                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(f001)
                obj.append(VERTEX)
                obj.extend(p000)
                obj.append(VERTEX)
                obj.extend(p010)
                obj.append(VERTEX)
                obj.extend(p100)
                obj.append(VERTEX)
                obj.extend(p110)
                obj.append(END)

                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(n001)
                obj.append(VERTEX)
                obj.extend(p001)
                obj.append(VERTEX)
                obj.extend(p101)
                obj.append(VERTEX)
                obj.extend(p011)
                obj.append(VERTEX)
                obj.extend(p111)
                obj.append(END)

                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(f010)
                obj.append(VERTEX)
                obj.extend(p000)
                obj.append(VERTEX)
                obj.extend(p100)
                obj.append(VERTEX)
                obj.extend(p001)
                obj.append(VERTEX)
                obj.extend(p101)
                obj.append(END)

                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(n010)
                obj.append(VERTEX)
                obj.extend(p010)
                obj.append(VERTEX)
                obj.extend(p011)
                obj.append(VERTEX)
                obj.extend(p110)
                obj.append(VERTEX)
                obj.extend(p111)
                obj.append(END)

                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(f100)
                obj.append(VERTEX)
                obj.extend(p000)
                obj.append(VERTEX)
                obj.extend(p001)
                obj.append(VERTEX)
                obj.extend(p010)
                obj.append(VERTEX)
                obj.extend(p011)
                obj.append(END)

                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(n100)
                obj.append(VERTEX)
                obj.extend(p100)
                obj.append(VERTEX)
                obj.extend(p110)
                obj.append(VERTEX)
                obj.extend(p101)
                obj.append(VERTEX)
                obj.extend(p111)
                obj.append(END)

                model.atom[0].coord = p000
                model.atom[1].coord = p100
                model.atom[2].coord = add(p010, scale(d100, 0.5))
                model.atom[3].coord = add(add(p001, scale(d010, 0.5)), d100)

            elif self.mode == 'walls':

                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(n001)
                obj.append(VERTEX)
                obj.extend(p000)
                obj.append(VERTEX)
                obj.extend(p100)
                obj.append(VERTEX)
                obj.extend(p010)
                obj.append(VERTEX)
                obj.extend(p110)
                obj.append(END)

                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(n010)
                obj.append(VERTEX)
                obj.extend(p000)
                obj.append(VERTEX)
                obj.extend(p001)
                obj.append(VERTEX)
                obj.extend(p100)
                obj.append(VERTEX)
                obj.extend(p101)
                obj.append(END)

                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(n100)
                obj.append(VERTEX)
                obj.extend(p000)
                obj.append(VERTEX)
                obj.extend(p010)
                obj.append(VERTEX)
                obj.extend(p001)
                obj.append(VERTEX)
                obj.extend(p011)
                obj.append(END)

                model.atom[0].coord = p000
                model.atom[1].coord = p100
                model.atom[2].coord = p010
                model.atom[3].coord = p001
            elif self.mode == 'plane':
                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(n001)
                obj.append(VERTEX)
                obj.extend(p000)
                obj.append(VERTEX)
                obj.extend(p100)
                obj.append(VERTEX)
                obj.extend(p010)
                obj.append(VERTEX)
                obj.extend(p110)
                obj.append(END)
                model.atom[0].coord = p000
                model.atom[1].coord = p100
                model.atom[2].coord = p010
                model.atom[3].coord = add(add(p001, scale(d010, 0.5)),
                                          scale(d100, 0.5))
            elif self.mode == 'quad':
                obj.extend([BEGIN, TRIANGLE_STRIP])
                obj.append(NORMAL)
                obj.extend(n001)
                obj.append(VERTEX)
                obj.extend(p000)
                obj.append(VERTEX)
                obj.extend(p100)
                obj.append(VERTEX)
                obj.extend(p010)
                obj.append(VERTEX)
                obj.extend(p001)
                obj.append(END)
                model.atom[0].coord = p000
                model.atom[1].coord = p100
                model.atom[2].coord = p010
                model.atom[3].coord = p001

            self.cmd.load_model(model, '_tmp', zoom=0)
            self.cmd.update(self.points_name, "_tmp")
            self.cmd.delete("_tmp")

            # then we load it into PyMOL

            self.cmd.delete(self.cgo_name)
            self.cmd.load_cgo(obj, self.cgo_name, zoom=0)
            self.cmd.order(self.cgo_name + " " + self.points_name,
                           sort=1,
                           location='bottom')
            self.cmd.set("nonbonded_size",
                         math.sqrt(dot_product(d10, d10)) / 10,
                         self.points_name)
Exemplo n.º 25
0
def calculateNewPoint(p1, p2, distance):
    v1 = cpv.normalize(cpv.sub(p1, p2))
    return cpv.add(p1, cpv.scale(v1, distance))
Exemplo n.º 26
0
def cgo_arrow(atom1='pk1', atom2='pk2', radius=0.5, gap=0.0, hlength=-1, hradius=-1,
              color='black black', name=''):
    '''
#I modify the color the line just before
DESCRIPTION

    Create a CGO arrow between two picked atoms.

ARGUMENTS

    atom1 = string: single atom selection or list of 3 floats {default: pk1}

    atom2 = string: single atom selection or list of 3 floats {default: pk2}

    radius = float: arrow radius {default: 0.5}

    gap = float: gap between arrow tips and the two atoms {default: 0.0}

    hlength = float: length of head

    hradius = float: radius of head

    color = string: one or two color names {default: blue red}

    name = string: name of CGO object
    '''
    from chempy import cpv

    radius, gap = float(radius), float(gap)
    hlength, hradius = float(hlength), float(hradius)

    try:
        color1, color2 = color.split()
    except:
        color1 = color2 = color
    color1 = list(cmd.get_color_tuple(color1))
    color2 = list(cmd.get_color_tuple(color2))

    def get_coord(v):
        if not isinstance(v, str):
            return v
        if v.startswith('['):
            return cmd.safe_list_eval(v)
        return cmd.get_atom_coords(v)

    xyz1 = get_coord(atom1)
    xyz2 = get_coord(atom2)
    normal = cpv.normalize(cpv.sub(xyz1, xyz2))

    if hlength < 0:
        hlength = radius * 3.0
    if hradius < 0:
        hradius = hlength * 0.6

    if gap:
        diff = cpv.scale(normal, gap)
        xyz1 = cpv.sub(xyz1, diff)
        xyz2 = cpv.add(xyz2, diff)

    xyz3 = cpv.add(cpv.scale(normal, hlength), xyz2)

    obj = [cgo.CYLINDER] + xyz1 + xyz3 + [radius] + color1 + color2 + \
          [cgo.CONE] + xyz3 + xyz2 + [hradius, 0.0] + color2 + color2 + \
          [1.0, 0.0]

    if not name:
        name = cmd.get_unused_name('arrow')

    cmd.load_cgo(obj, name)
Exemplo n.º 27
0
def visualize_orientation(direction,
                          center=[0.0] * 3,
                          scale=1.0,
                          symmetric=False,
                          color='green',
                          color2='red',
                          *,
                          _self=cmd):
    '''
DESCRIPTION

    Draw an arrow. Helper function for "helix_orientation" etc.
    '''
    from pymol import cgo

    color_list = _self.get_color_tuple(color)
    color2_list = _self.get_color_tuple(color2)

    if symmetric:
        scale *= 0.5
    end = cpv.add(center, cpv.scale(direction, scale))
    radius = 0.3

    obj = [cgo.SAUSAGE]
    obj.extend(center)
    obj.extend(end)
    obj.extend([
        radius,
        0.8,
        0.8,
        0.8,
    ])
    obj.extend(color_list)

    if symmetric:
        start = cpv.sub(center, cpv.scale(direction, scale))
        obj.append(cgo.SAUSAGE)
        obj.extend(center)
        obj.extend(start)
        obj.extend([
            radius,
            0.8,
            0.8,
            0.8,
        ])
        obj.extend(color2_list)

    coneend = cpv.add(
        end, cpv.scale(direction, 4.0 * radius / cpv.length(direction)))
    obj.append(cgo.CONE)
    obj.extend(end)
    obj.extend(coneend)
    obj.extend([
        radius * 1.75,
        0.0,
    ])
    obj.extend(color_list * 2)
    obj.extend([
        1.0,
        1.0,  # Caps
    ])
    _self.load_cgo(obj, _self.get_unused_name('oriVec'), zoom=0)
Exemplo n.º 28
0
    def drawmol(self,model):
        print 'drawmol'
        self.sphere_list= glGenLists(1)
        glNewList(self.sphere_list, GL_COMPILE)
        print 'making sphere list of ', len(model.atom),' atoms'
        for a in model.atom:
            try:
                z = a.get_number()
            except Exception:
                z = 0
            r,g,b = colours[z]

            glColor3f(r,g,b)
            glPushMatrix()
            x = a.coord[0]
            y = a.coord[1]
            zz = a.coord[2]
            glTranslatef (x, y, zz)
            fac = rcov[z] / 2.0
            glScale(fac,fac,fac)
            glutSolidSphere(0.4, 16, 16)
            glPopMatrix()
        glEndList()

        self.line_list= glGenLists(1)
        glNewList(self.line_list, GL_COMPILE)
        glLineWidth(2.0)
        glBegin(GL_LINES)
        line_count = 0
        for a in model.atom:
            try:
                c = a.conn
            except AttributeError:
                c = []
            for t in c:
                if t.get_index() > a.get_index():

                    line_count = line_count + 1
                    vec = cpv.sub(t.coord, a.coord)
                    mid = cpv.add(a.coord,cpv.scale(vec,0.5))

                    try:
                        z = a.get_number()
                    except Exception:
                        z = 0

                    r,g,b = colours[z]
                    glColor3f(r, g, b)
                    glVertex3f(a.coord[0],a.coord[1],a.coord[2])
                    glVertex3f(mid[0],mid[1],mid[2])

                    try:
                        z = t.get_number()
                    except Exception:
                        z = 0

                    r,g,b = colours[z]
                    glColor3f(r, g, b)
                    glVertex3f(mid[0],mid[1],mid[2])
                    glVertex3f(t.coord[0],t.coord[1],t.coord[2])

        glEnd()
        glEndList()
        print 'made line list of ', line_count, ' lines'
def cgo_arrow(atom1='pk1',
              atom2='pk2',
              radius=0.5,
              gap=0.0,
              hlength=-1,
              hradius=-1,
              color='blue red',
              name=''):
    '''
DESCRIPTION
    Create a CGO arrow between two picked atoms.
ARGUMENTS
    atom1 = string: single atom selection or list of 3 floats {default: pk1}
    atom2 = string: single atom selection or list of 3 floats {default: pk2}
    radius = float: arrow radius {default: 0.5}
    gap = float: gap between arrow tips and the two atoms {default: 0.0}
    hlength = float: length of head
    hradius = float: radius of head
    color = string: one or two color names {default: blue red}
    name = string: name of CGO object
    '''
    from chempy import cpv

    radius, gap = float(radius), float(gap)
    hlength, hradius = float(hlength), float(hradius)

    try:
        color1, color2 = color.split()
    except:
        color1 = color2 = color
    color1 = list(cmd.get_color_tuple(color1))
    color2 = list(cmd.get_color_tuple(color2))

    def get_coord(v):
        if not isinstance(v, str):
            return v
        if v.startswith('['):
            return cmd.safe_list_eval(v)
        return cmd.get_atom_coords(v)

    xyz1 = get_coord(atom1)
    xyz2 = get_coord(atom2)
    normal = cpv.normalize(cpv.sub(xyz1, xyz2))

    if hlength < 0:
        hlength = radius * 3.0
    if hradius < 0:
        hradius = hlength * 0.6

    if gap:
        diff = cpv.scale(normal, gap)
        xyz1 = cpv.sub(xyz1, diff)
        xyz2 = cpv.add(xyz2, diff)

    xyz3 = cpv.add(cpv.scale(normal, hlength), xyz2)

    obj = [cgo.CYLINDER] + xyz1 + xyz3 + [radius] + color1 + color2 + \
          [cgo.CONE] + xyz3 + xyz2 + [hradius, 0.0] + color2 + color2 + \
          [1.0, 0.0]

    if not name:
        name = cmd.get_unused_name('arrow')

    cmd.load_cgo(obj, name)
Exemplo n.º 30
0
def set_view(view, center, trans, volume, persp):
    '''
    view is their 4x4

    center is the centor of rotation in tranformed coordinates
    
    '''
    view = list(view)
    
    # print view[0:4]
    # print view[4:8]
    # print view[8:12]
    # print view[12:16]
    # print "\nmaestro_center: %8.3f %8.3f %8.3f"%tuple(center)
    # print "maestro_transl: %8.3f %8.3f %8.3f"%tuple(trans)

    mat = [ view[0:3], view[4:7], view[8:11] ]
    tmp = cpv.sub(center,view[12:15])
    pymol_center = cpv.transform(mat,tmp)
    
    # print "volumeX: %8.3f %8.3f"%(tuple(volume[0:2]))
    # print "volumeY: %8.3f %8.3f"%(tuple(volume[2:4]))
    # print "volumeZ: %8.3f %8.3f"%(tuple(volume[4:6]))

    # print "pymol_center: %8.3f %8.3f %8.3f"%tuple(pymol_center)

    # print persp
    if persp<0.0:
        pymol_ortho = 1.0
    else:
        pymol_ortho = 0.0

    if pymol_ortho==0.0:
        fov = 1 + 100*(persp - 1.0)/3.0
        cmd.set('field_of_view',fov)

    fov = (math.pi * float(cmd.get("field_of_view")) / 180.0)

    # unclear why we have to multiple by 1.17 to get the correct look
        
    camera_dist = 1.17 * (abs(volume[2] - volume[3])/2.0)/math.atan(fov/2.0)

    vol_center = [ (volume[0]+volume[1])/2.0,
                   (volume[2]+volume[3])/2.0,
                   (volume[4]+volume[5])/2.0 ]
    
    pymol_objective = [ trans[0] + center[0] - vol_center[0],
                        trans[1] + center[1] - vol_center[1],
                        -camera_dist ]
    
    # print "pymol_objective: %8.3f %8.3f %8.3f"%tuple(pymol_objective)

    pymol_front = center[2] + trans[2] - volume[4] - pymol_objective[2] 
    pymol_back  = center[2] + trans[2] - volume[5] - pymol_objective[2] 

    pymol_view = cmd.get_view()
    cur_view = ( view[0:3] + view[4:7] + view[8:11] +
                 pymol_objective + pymol_center +
                 [ pymol_front, pymol_back, pymol_ortho ] )

    # print cur_view

    cmd.set_view(tuple(cur_view))
Exemplo n.º 31
0
def helix_orientation(selection,
                      state=STATE,
                      visualize=1,
                      cutoff=3.5,
                      quiet=1):
    '''
DESCRIPTION

    Get the center and direction of a helix as vectors. Will only work
    for alpha helices and gives slightly different results than
    cafit_orientation. Averages direction of C(i)->O(i)->N(i+4).

USAGE

    helix_orientation selection [, visualize [, cutoff ]]

ARGUMENTS

    selection = string: atom selection of helix

    visualize = 0 or 1: show fitted vector as arrow {default: 1}

    cutoff = float: maximal hydrogen bond distance {default: 3.5}

SEE ALSO

    angle_between_helices, loop_orientation, cafit_orientation
    '''
    state, visualize, quiet = int(state), int(visualize), int(quiet)
    cutoff = float(cutoff)

    atoms = {'C': dict(), 'O': dict(), 'N': dict()}
    cmd.iterate_state(state,
                      '(%s) and name N+O+C' % (selection),
                      'atoms[name][resv] = x,y,z',
                      space={'atoms': atoms})

    vec_list = []
    for resi in atoms['C']:
        resi_other = resi + 4
        try:
            aC = atoms['C'][resi]
            aO = atoms['O'][resi]
            aN = atoms['N'][resi_other]
        except KeyError:
            continue

        dist = cpv.distance(aN, aO)
        dist_weight = 1. - (2.8 - dist)
        angle = cpv.get_angle_formed_by(aC, aO, aN)
        angle_weight = 1. - (3.1 - angle)

        if dist_weight > 0.0 and angle_weight > 0.0:
            if not quiet:
                print(' weight:', angle_weight * dist_weight)
            vec = cpv.scale(cpv.sub(aN, aC), angle_weight * dist_weight)
            vec_list.append(vec)

    if len(vec_list) == 0:
        print('warning: count == 0')
        raise CmdException

    center = cpv.scale(_vec_sum(atoms['O'].values()), 1. / len(atoms['O']))
    vec = _vec_sum(vec_list)
    vec = cpv.normalize(vec)

    _common_orientation(selection, center, vec, visualize, 1.5 * len(vec_list),
                        quiet)
    return center, vec
Exemplo n.º 32
0
    def update_box(self):

        if self.points_name in self.cmd.get_names():

            model = self.cmd.get_model(self.points_name)

            self.coord = (
                model.atom[0].coord,
                model.atom[1].coord,
                model.atom[2].coord,
                model.atom[3].coord,
                )

            p = self.coord[0]

            d10 = sub(self.coord[1], p)
            d20 = sub(self.coord[2], p)
            d30 = sub(self.coord[3], p)

            x10_20 = cross_product(d10,d20)
            if self.mode != 'quad':
                if dot_product(d30,x10_20)<0.0:
                    p = model.atom[1].coord
                    d10 = sub(self.coord[0], p)
                    d20 = sub(self.coord[2], p)
                    d30 = sub(self.coord[3], p)

            n10_20 = normalize(x10_20)
            n10 = normalize(d10)

            d100 = d10
            d010 = remove_component(d20, n10)
            if self.mode != 'quad':
                d001 = project(d30, n10_20)
            else:
                d001 = n10_20

            n100 = normalize(d100)
            n010 = normalize(d010)
            n001 = normalize(d001)

            f100 = reverse(n100)
            f010 = reverse(n010)
            f001 = reverse(n001)

            if self.mode == 'quad':
                p000 = p
                p100 = add(p, remove_component(d10,n001))
                p010 = add(p, remove_component(d20,n001))
                p001 = add(p, remove_component(d30,n001))
            else:
                p000 = p
                p100 = add(p,d100)
                p010 = add(p,d010)
                p001 = add(p,d001)
                p110 = add(p100, d010)
                p011 = add(p010, d001)
                p101 = add(p100, d001)
                p111 = add(p110, d001)

            obj = []

            if self.mode == 'box': # standard box

                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(f001)
                obj.append(VERTEX); obj.extend(p000)
                obj.append(VERTEX); obj.extend(p010)
                obj.append(VERTEX); obj.extend(p100)
                obj.append(VERTEX); obj.extend(p110)
                obj.append(END)

                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(n001)
                obj.append(VERTEX); obj.extend(p001)
                obj.append(VERTEX); obj.extend(p101)
                obj.append(VERTEX); obj.extend(p011)
                obj.append(VERTEX); obj.extend(p111)
                obj.append(END)

                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(f010)
                obj.append(VERTEX); obj.extend(p000)
                obj.append(VERTEX); obj.extend(p100)
                obj.append(VERTEX); obj.extend(p001)
                obj.append(VERTEX); obj.extend(p101)
                obj.append(END)

                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(n010)
                obj.append(VERTEX); obj.extend(p010)
                obj.append(VERTEX); obj.extend(p011)
                obj.append(VERTEX); obj.extend(p110)
                obj.append(VERTEX); obj.extend(p111)
                obj.append(END)

                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(f100)
                obj.append(VERTEX); obj.extend(p000)
                obj.append(VERTEX); obj.extend(p001)
                obj.append(VERTEX); obj.extend(p010)
                obj.append(VERTEX); obj.extend(p011)
                obj.append(END)

                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(n100)
                obj.append(VERTEX); obj.extend(p100)
                obj.append(VERTEX); obj.extend(p110)
                obj.append(VERTEX); obj.extend(p101)
                obj.append(VERTEX); obj.extend(p111)
                obj.append(END)

                model.atom[0].coord = p000
                model.atom[1].coord = p100
                model.atom[2].coord = add(p010, scale(d100,0.5))
                model.atom[3].coord = add(add(p001, scale(d010,0.5)),d100)

            elif self.mode=='walls':

                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(n001)
                obj.append(VERTEX); obj.extend(p000)
                obj.append(VERTEX); obj.extend(p100)
                obj.append(VERTEX); obj.extend(p010)
                obj.append(VERTEX); obj.extend(p110)
                obj.append(END)

                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(n010)
                obj.append(VERTEX); obj.extend(p000)
                obj.append(VERTEX); obj.extend(p001)
                obj.append(VERTEX); obj.extend(p100)
                obj.append(VERTEX); obj.extend(p101)
                obj.append(END)

                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(n100)
                obj.append(VERTEX); obj.extend(p000)
                obj.append(VERTEX); obj.extend(p010)
                obj.append(VERTEX); obj.extend(p001)
                obj.append(VERTEX); obj.extend(p011)
                obj.append(END)

                model.atom[0].coord = p000
                model.atom[1].coord = p100
                model.atom[2].coord = p010
                model.atom[3].coord = p001
            elif self.mode=='plane':
                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(n001)
                obj.append(VERTEX); obj.extend(p000)
                obj.append(VERTEX); obj.extend(p100)
                obj.append(VERTEX); obj.extend(p010)
                obj.append(VERTEX); obj.extend(p110)
                obj.append(END)
                model.atom[0].coord = p000
                model.atom[1].coord = p100
                model.atom[2].coord = p010
                model.atom[3].coord = add(add(p001, scale(d010,0.5)),scale(d100,0.5))
            elif self.mode=='quad':
                obj.extend([ BEGIN, TRIANGLE_STRIP ])
                obj.append(NORMAL); obj.extend(n001)
                obj.append(VERTEX); obj.extend(p000)
                obj.append(VERTEX); obj.extend(p100)
                obj.append(VERTEX); obj.extend(p010)
                obj.append(VERTEX); obj.extend(p001)
                obj.append(END)
                model.atom[0].coord = p000
                model.atom[1].coord = p100
                model.atom[2].coord = p010
                model.atom[3].coord = p001

            self.cmd.load_model(model, '_tmp', zoom=0)
            self.cmd.update(self.points_name,"_tmp")
            self.cmd.delete("_tmp")

            # then we load it into PyMOL

            self.cmd.delete(self.cgo_name)
            self.cmd.load_cgo(obj,self.cgo_name,zoom=0)
            self.cmd.order(self.cgo_name+" "+self.points_name,sort=1,location='bottom')
            self.cmd.set("nonbonded_size",math.sqrt(dot_product(d10,d10))/10,self.points_name)
Exemplo n.º 33
0
def cgo_arrow(origin, endpoint, color='blue', radius=0.10, gap=0.0, hlength=-1,  hradius=-1,
               type='electric', name='', scaling = 7):

    '''
       :param origin: List representing origin point of vector to be drawn
       :type origin: List of floats

       :param endpoint: List representing endpoint of vector to be drawn
       :type endpoint: List of floats

       :param color: Color of arrow
       :type color: String, optional - default blue

       :param radius: Radius of cylinder portion of arrow
       :type radius: Float, optional - default .1

       :param gap: Specifies a gap between the head and body of the arrow, if desired
       :type gap: Float, optional - default 0

       :param hlength: Length of the head of the arrow
       :type hlength: Float, optional - default -1

       :param hradius: Radius of the head of the arrow
       :type hradius: Float, optional - default -1

       :param type: Type of vector being drawn, electric or magnetic
       :type type: String, optional - default electric

       :param name: Name to be shown in PyMol for the cgo object
       :type name: String, optional - default blank

       :param scaling: Scaling factor that is passed to scale_endpoint function
       :type scaling: Int, optional - default 7


       :return: None
    '''
    from chempy import cpv
    #converting parameters to floats
    radius, gap = float(radius), float(gap)
    hlength, hradius = float(hlength), float(hradius)

    if type == 'electric':
        color = 'red'
        name = 'electric'+name
    if type == 'magnetic':
        color = 'blue'
        name = 'magnetic'+name
    try:
        color1, color2 = color.split()
    except:
        color1 = color2 = color
    color1 = list(cmd.get_color_tuple(color1))
    color2 = list(cmd.get_color_tuple(color2))

    if origin == 'sele':
        xyz1 = cmd.get_coords('sele', 1)
        xyz1 = xyz1.flatten()
        xyz1 = xyz1.tolist()
        length=np.linalg.norm(np.array(endpoint))
        xyz2 = scale_endpoint(endpoint,scaling)
        xyz2 = shift_vectors(xyz2, xyz1)
    else:
        xyz1 = origin
        length=np.linalg.norm(np.array(endpoint)-np.array(xyz1))
        xyz2 = scale_endpoint(endpoint,scaling)


    normal = cpv.normalize(cpv.sub(xyz1, xyz2))

    if hlength < 0:
        hlength = radius * 3.0
    if hradius < 0:
        hradius = hlength * 0.6
    if gap:
        diff = cpv.scale(normal, gap)
        xyz1 = cpv.sub(xyz1, diff)
        xyz2 = cpv.add(xyz2, diff)
    ##Location where cylinder switches to cone
    xyz3 = cpv.add(cpv.scale(normal, hlength), xyz2)

    obj = [cgo.CYLINDER] + xyz1 + xyz3 + [radius] + color1 + color1 + \
          [cgo.CONE] + xyz3 + xyz2 + [hradius, 0.0] + color1 + color2 + \
          [1.0, 0.0]
    print(obj)

    ##Place pseudoatom with label at midpoint of vector
    v0=np.array(xyz1)
    v1=np.array(xyz2)
    loc=(v0+v1)/2

    if not name:
        name = cmd.get_unused_name('arrow')

    cmd.load_cgo(obj, f"vec_{name}")
    ##For some reason pos fails, but it just happens to put it where I want
    cmd.pseudoatom(f"lab_{name}",name="lab_"+name,label=f"{length:.2f}")#,pos=loc
    cmd.group(name,members=f"lab_{name} vec_{name}")