Exemplo n.º 1
0
def path_bezier(control_points, weight=1, interpolation_count=50):
    """
    Rational Bezier curve.
    """
    ## cycle weights...
    if isinstance(weight, (list, tuple)):
        w_len = len(weight)
        p_len = len(control_points)
        weight = weight * (p_len // w_len) + weight[: p_len % w_len]

    plot_points = bezier_interpolation(control_points, interpolation_count, weight)
    return Path(plot_points)
Exemplo n.º 2
0
def path_bezier(control_points, weight=1, interpolation_count=50):
    """
    Rational Bezier curve.
    """
    ## cycle weights...
    if isinstance(weight, (list, tuple)):
        w_len = len(weight)
        p_len = len(control_points)
        weight = weight * (p_len // w_len) + weight[: p_len % w_len]

    plot_points = bezier_interpolation(control_points,
                                       interpolation_count,
                                       weight)
    return Path(plot_points)
Exemplo n.º 3
0
def path_interpolated(points, curvature, interpolation_count=50):
    """Returns a Path with bezier interpolation between the given `points`.
    The interpolation is computed so that the resulting path touches the
    given points.

    - `points` the key points from which to interpolate.
    - `curvature` the smoothness of the curve [0, 1].
    - `interpolation_count` is the number of points to add by interpolation,
        per segment.
    """

    if not (0 <= curvature <= 1):
        raise ValueError("`curvature` must be between 0 and 1 inclusive.")

    if curvature == 0:
        return Path(points)

    ## else we have a curve...
    points = CoordinateArray(points)

    curvature = 4 + (1.0 - curvature) * 40
    bi = [0, -0.25]
    a = [Coordinate(0, 0), (points[2] - points[0] - Coordinate(0, 0)) / 4.0]

    ## compute bi and a...
    for i in range(2, len(points) - 1):
        bi.append(-1 / (curvature + bi[i - 1]))
        a.append(-(points[i + 1] - points[i - 1] - a[i - 1]) * bi[i])

    ## compute dxy...
    dxy = [Coordinate(0, 0)]
    for i in reversed(list(range(len(points) - 1))):
        dxy.insert(0, a[i] + dxy[0] * bi[i])

    ## compute interpolated points...
    plot_points = []
    for i in range(len(points) - 1):
        control_points = [
            points[i],
            points[i] + dxy[i],
            points[i + 1] - dxy[i + 1],
            points[i + 1],
        ]
        plot_points += bezier_interpolation(control_points,
                                            interpolation_count, 1)[:-1]

    return Path(plot_points)
Exemplo n.º 4
0
def path_interpolated(points, curvature, interpolation_count = 50):
    '''Returns a Path with bezier interpolation between the given `points`.
    The interpolation is computed so that the resulting path touches the
    given points.

    - `points` the key points from which to interpolate.
    - `curvature` the smoothness of the curve [0, 1].
    - `interpolation_count` is the number of points to add by interpolation,
        per segment.
    '''

    if not (0 <= curvature <= 1):
        raise ValueError('`curvature` must be between 0 and 1 inclusive.')

    if curvature == 0:
        return Path(points)

    ## else we have a curve...
    points = CoordinateArray(points)

    curvature = 4 + (1.0 - curvature) * 40
    bi = [0, -0.25]
    a = [Coordinate(0, 0), (points[2] - points[0] - Coordinate(0, 0)) / 4.0]

    ## compute bi and a...
    for i in range(2, len(points)-1):
        bi.append(-1 / (curvature + bi[i - 1]))
        a.append(-(points[i+1] - points[i-1] - a[i-1]) * bi[i])

    ## compute dxy...
    dxy = [Coordinate(0, 0)]
    for i in reversed(range(len(points) - 1)):
        dxy.insert(0, a[i] + dxy[0] * bi[i])

    ## compute interpolated points...
    plot_points = [ ]
    for i in range(len(points) - 1):
        control_points = [
            points[i],
            points[i] + dxy[i],
            points[i+1] - dxy[i+1],
            points[i+1]]
        plot_points += bezier_interpolation(control_points,
                                                        interpolation_count, 1)[:-1]

    return Path(plot_points)