def Rosen(): args = { 'x1': Ch(-120.), 'x2': Ch(-100.) } r1 = Ch(lambda x1, x2 : (x2 - x1**2.) * 10., args) r2 = Ch(lambda x1 : x1 * -1. + 1, args) func = [r1, r2] return func, [args['x1'], args['x2']]
def on_changed(self, which): if 'ortho' in which: w = self.ortho.width h = self.ortho.height self.glf = OsContext(np.int(w), np.int(h), typ=GL_FLOAT) _setup_ortho(self.glf, self.ortho.left.r, self.ortho.right.r, self.ortho.bottom.r, self.ortho.top.r, self.ortho.near, self.ortho.far, self.ortho.view_mtx) self.glf.Viewport(0, 0, w, h) self.glb = OsContext(np.int(w), np.int(h), typ=GL_UNSIGNED_BYTE) self.glb.Viewport(0, 0, w, h) _setup_ortho(self.glb, self.ortho.left.r, self.ortho.right.r, self.ortho.bottom.r, self.ortho.top.r, self.ortho.near, self.ortho.far, self.ortho.view_mtx) if not hasattr(self, 'num_channels'): self.num_channels = 3 if not hasattr(self, 'bgcolor'): self.bgcolor = Ch(np.array([.5] * self.num_channels)) which.add('bgcolor') if not hasattr(self, 'overdraw'): self.overdraw = True if 'bgcolor' in which: self.glf.ClearColor(self.bgcolor.r[0], self.bgcolor.r[1 % self.num_channels], self.bgcolor.r[2 % self.num_channels], 1.)
def RigidTransformSlow(**kwargs): # Returns a Ch object with dterms 'v', 'rt', and 't' result = Ch(lambda v, rt, t: v.dot(Rodrigues(rt=rt)) + t) if len(kwargs) > 0: result.set(**kwargs) return result
def MeshToScan(scan, mesh_verts, mesh_faces, mesh_template_or_sampler, rho=lambda x: x, normalize=True, signed=False): """Returns a Ch object whose only dterm is 'mesh_verts'""" sampler, n_samples = construct_sampler(mesh_template_or_sampler, mesh_verts.size / 3) norm_const = np.sqrt(n_samples) if normalize else 1 if signed: fn = lambda x: SignedSqrt(rho(x)) / norm_const else: fn = lambda x: ch.sqrt(rho(x)) / norm_const result = Ch(lambda mesh_verts: fn( MeshDistanceSquared(sample_verts=mesh_verts, sample_faces=mesh_faces, reference_verts=scan.v, reference_faces=scan.f, sampler=sampler, signed=signed))) result.mesh_verts = mesh_verts return result
def PtsToMesh(sample_verts, reference_verts, reference_faces, reference_template_or_sampler, rho=lambda x: x, normalize=True, signed=False): """Returns a Ch object whose dterms are 'reference_v' and 'sample_v'""" sampler = {'point2sample': sp.eye(sample_verts.size, sample_verts.size)} n_samples = sample_verts.size / 3 norm_const = np.sqrt(n_samples) if normalize else 1 if signed: fn = lambda x: SignedSqrt(rho(x)) / norm_const else: fn = lambda x: ch.sqrt(rho(x)) / norm_const result = Ch(lambda sample_v, reference_v: fn( MeshDistanceSquared(sample_verts=sample_v, reference_verts=reference_v, reference_faces=reference_faces, sampler=sampler, signed=signed))) result.reference_v = reference_verts result.sample_v = sample_verts return result
def test_bfgs_madsen(self): from ch import SumOfSquares import scipy.optimize obj = Ch(lambda x : SumOfSquares(Madsen(x = x)) ) def errfunc(x): obj.x = Ch(x) return obj.r def gradfunc(x): obj.x = Ch(x) return obj.dr_wrt(obj.x).ravel() x0 = np.array((3., 1.)) # Optimize with built-in bfgs. # Note: with 8 iters, this actually requires 14 gradient evaluations. # This can be verified by setting "disp" to 1. #tm = time.time() x1 = scipy.optimize.fmin_bfgs(errfunc, x0, fprime=gradfunc, maxiter=8, disp=0) #print 'forward: took %.es' % (time.time() - tm,) self.assertLess(obj.r/2., 0.4) # Optimize with chumpy's minimize (which uses scipy's bfgs). obj.x = x0 minimize(fun=obj, x0=[obj.x], method='bfgs', options={'maxiter': 8, 'disp': False}) self.assertLess(obj.r/2., 0.4)
def test_inv2(self): from linalg import Inv eps = 1e-8 idx = 13 mtx1 = np.random.rand(100).reshape((10,10)) mtx2 = mtx1.copy() mtx2.ravel()[idx] += eps diff_emp = (np.linalg.inv(mtx2) - np.linalg.inv(mtx1)) / eps mtx1 = Ch(mtx1) diff_pred = Inv(mtx1).dr_wrt(mtx1)[:,13].reshape(diff_emp.shape) #print(diff_emp) #print(diff_pred) #print(diff_emp - diff_pred) self.assertTrue(np.max(np.abs(diff_pred.ravel()-diff_emp.ravel())) < 1e-4)
def test_svd(self): from linalg import Svd eps = 1e-3 idx = 10 data = np.sin(np.arange(300)*100+10).reshape((-1,3)) data[3,:] = data[3,:]*0+10 data[:,1] *= 2 data[:,2] *= 4 data = data.copy() u,s,v = np.linalg.svd(data, full_matrices=False) data = Ch(data) data2 = data.r.copy() data2.ravel()[idx] += eps u2,s2,v2 = np.linalg.svd(data2, full_matrices=False) svdu, svdd, svdv = Svd(x=data) # test singular values diff_emp = (s2-s) / eps diff_pred = svdd.dr_wrt(data)[:,idx] #print(diff_emp) #print(diff_pred) ratio = diff_emp / diff_pred #print(ratio) self.assertTrue(np.max(np.abs(ratio - 1.)) < 1e-4) # test V diff_emp = (v2 - v) / eps diff_pred = svdv.dr_wrt(data)[:,idx].reshape(diff_emp.shape) ratio = diff_emp / diff_pred #print(ratio) self.assertTrue(np.max(np.abs(ratio - 1.)) < 1e-2) # test U diff_emp = (u2 - u) / eps diff_pred = svdu.dr_wrt(data)[:,idx].reshape(diff_emp.shape) ratio = diff_emp / diff_pred #print(ratio) self.assertTrue(np.max(np.abs(ratio - 1.)) < 1e-2)
def test_inv1(self): from linalg import Inv mtx1 = Ch(np.sin(2**np.arange(9)).reshape((3,3))) mtx1_inv = Inv(mtx1) dr = mtx1_inv.dr_wrt(mtx1) eps = 1e-5 mtx2 = mtx1.r.copy() input_diff = np.sin(np.arange(mtx2.size)).reshape(mtx2.shape) * eps mtx2 += input_diff mtx2_inv = Inv(mtx2) output_diff_emp = (np.linalg.inv(mtx2) - np.linalg.inv(mtx1.r)).ravel() output_diff_pred = Inv(mtx1).dr_wrt(mtx1).dot(input_diff.ravel()) #print(output_diff_emp) #print(output_diff_pred) self.assertTrue(np.max(np.abs(output_diff_emp - output_diff_pred)) < eps*1e-4) self.assertTrue(np.max(np.abs(mtx1_inv.r - np.linalg.inv(mtx1.r)).ravel()) == 0)
def pose_numpy_to_pkl(name, out_name): """Converts numpy array of (nx105) numpy pose fits to a pickle object of: 'mean', 'cov', 'pic'""" raw = np.load(os.path.join(pose_loc, name)) n_frames = raw.shape[0] data = raw.reshape((n_frames, 102)) # get non global joint rots mean = np.mean(data, axis=0) cov = np.cov(data.T) + 1e-8 * np.eye( 102) # add small amount to prevent matrix not being positive definite pic = np.linalg.cholesky(np.linalg.inv((cov))) # pre pad correctly to 'include' global rot out = { 'mean_pose': np.pad(mean, (3, 0)), 'cov': np.pad(cov, ((3, 0), (3, 0))), 'pic': Ch(np.pad(pic, ((3, 0), (3, 0)))), } with open(os.path.join(pose_loc, out_name), "wb") as outfile: pkl.dump(out, outfile)
def test_inv3(self): """Test linalg.inv with broadcasting support.""" from linalg import Inv mtx1 = Ch(np.sin(2**np.arange(12)).reshape((3,2,2))) mtx1_inv = Inv(mtx1) dr = mtx1_inv.dr_wrt(mtx1) eps = 1e-5 mtx2 = mtx1.r.copy() input_diff = np.sin(np.arange(mtx2.size)).reshape(mtx2.shape) * eps mtx2 += input_diff mtx2_inv = Inv(mtx2) output_diff_emp = (np.linalg.inv(mtx2) - np.linalg.inv(mtx1.r)).ravel() output_diff_pred = Inv(mtx1).dr_wrt(mtx1).dot(input_diff.ravel()) # print(output_diff_emp) # print(output_diff_pred) self.assertTrue(np.max(np.abs(output_diff_emp.ravel() - output_diff_pred.ravel())) < eps*1e-3) self.assertTrue(np.max(np.abs(mtx1_inv.r - np.linalg.inv(mtx1.r)).ravel()) == 0)
flag = 1; if not(os.path.exists('./Res1/result_' + lista[iters][5:-4] +'.mat')): print(lista[iters][5:-4] + ': ERROR, MISSIN RES1') continue a=sio.loadmat('./Res1/result_' + lista[iters][5:-4] +'.mat'); result.betas[:]=np.zeros(10); result.pose[:]= np.zeros(72); print lista[iters] Target = loadObj(lista[iters]) #Rigid alignment scale=Ch(1); trans=ch.array([0,0,0]); Tar_shift = Target.vertices+trans; indexes=a['pF_lb2'].reshape(6890); distances=Tar_shift[indexes-1]-result*scale; (t)=ch.minimize(distances, x0 = [trans,result.pose[[0,1,2]]], method = 'dogleg', callback = None, options = {'maxiter': 50, 'e_3': .0001, 'disp': 1}) #Non-rigid Alignment c_pre={}; if (W_Joints): k=a['Joints_Target']; j_to_consider = range(0,24) J_distances = J_reposed[j_to_consider,:] - (k[j_to_consider,:]+trans);
print(lista[iters][5:-4] + ' Already Done') continue else: flag = 1 if not (os.path.exists('./Res2/result2_' + lista[iters][5:-4] + '.mat')): print(lista[iters][5:-4] + ': CRITICAL ERROR, MISSIN RES2') continue a = sio.loadmat('./Res2/result2_' + lista[iters][5:-4] + '.mat') if not ('C' in a): print(lista[iters][5:-4] + ' Not elaborated yet') continue W_Joints = Ch(10) W_FMP2P = Ch(0.1) W_Landmarks = Ch(1) W_Norm_B = Ch(0.5) W_Norm_T = Ch(1) W_NN = Ch(1) W_Head = Ch(1) W_Hands = Ch(0) result.betas[:] = np.zeros(10) result.pose[:] = np.zeros(72) print lista[iters] Target = loadObj(lista[iters]) #Rigid alignment scale = Ch(1)
def set_and_get_r(self, x_in): self.x = Ch(x_in) return col(self.r)
def set_and_get_dr(self, x_in): self.x = Ch(x_in) return self.dr_wrt(self.x).flatten()
def test_color_derivatives(self): mesh, lightings, camera, frustum, renderers = self.load_basics() for renderer in renderers: im_shape = renderer.shape lighting = lightings[renderer.num_channels] # Get pixels and dI/dC mesh = get_earthmesh(trans=np.array([0, 0, 5]), rotation=np.array([math.pi / 2., 0, 0])) mesh_verts = Ch(mesh.v) mesh_colors = Ch(mesh.vc) camera.set(v=mesh_verts) # import pdb; pdb.set_trace() # print '-------------------------------------------' #lighting.set(vc=mesh_colors, v=mesh_verts) lighting.vc = mesh_colors[:, :renderer.num_channels] lighting.v = mesh_verts renderer.set(v=mesh_verts, vc=lighting) r = renderer.r dr = renderer.dr_wrt(mesh_colors).copy() # Establish a random direction eps = .4 direction = ( np.random.randn(mesh.v.size).reshape(mesh.v.shape) * .1 + np.sin(mesh.v * 19) * .1).flatten() # Find empirical forward derivatives in that direction mesh_colors = Ch(mesh.vc + direction.reshape(mesh.vc.shape) * eps / 2.) lighting.set(vc=mesh_colors[:, :renderer.num_channels]) renderer.set(vc=lighting) rfwd = renderer.r # Find empirical backward derivatives in that direction mesh_colors = Ch(mesh.vc - direction.reshape(mesh.vc.shape) * eps / 2.) lighting.set(vc=mesh_colors[:, :renderer.num_channels]) renderer.set(vc=lighting) rbwd = renderer.r dr_empirical = (np.asarray(rfwd, np.float64) - np.asarray(rbwd, np.float64)).ravel() / eps dr_predicted = dr.dot(col(direction.flatten())).reshape( dr_empirical.shape) images = OrderedDict() images['shifted colors'] = np.asarray(rfwd, np.float64) - .5 images[ r'empirical colors $\left(\frac{dI}{dC}\right)$'] = dr_empirical images[ r'predicted colors $\left(\frac{dI}{dC}\right)$'] = dr_predicted images['difference colors'] = dr_predicted - dr_empirical nonzero = images['difference colors'][np.nonzero( images['difference colors'] != 0)[0]] if visualize: matplotlib.rcParams.update({'font.size': 18}) plt.figure(figsize=(6 * 3, 2 * 3)) for idx, title in enumerate(images.keys()): plt.subplot(1, len(list(images.keys())), idx + 1) im = process(images[title].reshape(im_shape), vmin=-.5, vmax=.5) plt.title(title) plt.imshow(im) plt.show() print('color: median nonzero %.2e' % (np.median(np.abs(nonzero)), )) print('color: mean nonzero %.2e' % (np.mean(np.abs(nonzero)), )) self.assertLess(np.mean(np.abs(nonzero)), 2e-2) self.assertLess(np.median(np.abs(nonzero)), 4.5e-3)
def errfunc(x): obj.x = Ch(x) return obj.r
def test_cam_derivatives(self): mesh, lightings, camera, frustum, renderers = self.load_basics() camparms = { 'c': { 'mednz': 2.2e-2, 'meannz': 4.2e-2, 'desc': 'center of proj diff', 'eps0': 4., 'eps1': .1 }, #'f': {'mednz' : 2.5e-2, 'meannz': 6e-2, 'desc': 'focal diff', 'eps0': 100., 'eps1': .1}, 't': { 'mednz': 1.2e-1, 'meannz': 3.0e-1, 'desc': 'trans diff', 'eps0': .25, 'eps1': .1 }, 'rt': { 'mednz': 8e-2, 'meannz': 1.8e-1, 'desc': 'rot diff', 'eps0': 0.02, 'eps1': .5 }, 'k': { 'mednz': 7e-2, 'meannz': 5.1e-1, 'desc': 'distortion diff', 'eps0': .5, 'eps1': .05 } } for renderer in renderers: im_shape = renderer.shape lighting = lightings[renderer.num_channels] # Render a rotating mesh mesh = get_earthmesh(trans=np.array([0, 0, 5]), rotation=np.array([math.pi / 2., 0, 0])) mesh_verts = Ch(mesh.v.flatten()) camera.v = mesh_verts lighting.v = mesh_verts renderer.vc = lighting renderer.camera = camera for atrname, info in list(camparms.items()): # Get pixels and derivatives r = renderer.r atr = lambda: getattr(camera, atrname) satr = lambda x: setattr(camera, atrname, x) atr_size = atr().size dr = renderer.dr_wrt(atr()) # Establish a random direction tmp = np.random.rand(atr().size) - .5 direction = (tmp / np.linalg.norm(tmp)) * info['eps0'] #direction = np.sin(np.ones(atr_size))*info['eps0'] #direction = np.zeros(atr_size) # try: # direction[4] = 1. # except: pass #direction *= info['eps0'] eps = info['eps1'] # Render going forward in that direction satr(atr().r + direction * eps / 2.) rfwd = renderer.r # Render going backward in that direction satr(atr().r - direction * eps / 1.) rbwd = renderer.r # Put back satr(atr().r + direction * eps / 2.) # Establish empirical and predicted derivatives dr_empirical = (np.asarray(rfwd, np.float64) - np.asarray(rbwd, np.float64)).ravel() / eps dr_predicted = dr.dot(col(direction.flatten())).reshape( dr_empirical.shape) images = OrderedDict() images['shifted %s' % (atrname, )] = np.asarray(rfwd, np.float64) - .5 images[r'empirical %s' % (atrname, )] = dr_empirical images[r'predicted %s' % (atrname, )] = dr_predicted images[info['desc']] = dr_predicted - dr_empirical nonzero = images[info['desc']][np.nonzero( images[info['desc']] != 0)[0]] mederror = np.median(np.abs(nonzero)) meanerror = np.mean(np.abs(nonzero)) if visualize: matplotlib.rcParams.update({'font.size': 18}) plt.figure(figsize=(6 * 3, 2 * 3)) for idx, title in enumerate(images.keys()): plt.subplot(1, len(list(images.keys())), idx + 1) im = process(images[title].reshape(im_shape), vmin=-.5, vmax=.5) plt.title(title) plt.imshow(im) print('%s: median nonzero %.2e' % ( atrname, mederror, )) print('%s: mean nonzero %.2e' % ( atrname, meanerror, )) plt.draw() plt.show() self.assertLess(meanerror, info['meannz']) self.assertLess(mederror, info['mednz'])
def test_distortion(self): mesh, lightings, camera, frustum, renderers = self.load_basics() renderer = renderers[1] lighting = lightings[renderer.num_channels] lighting.light_pos = -lighting.light_pos * 100. mesh = get_earthmesh(trans=np.array([0, 0, -8]), rotation=np.array([math.pi / 2., 0, 0])) mesh_verts = Ch(mesh.v.flatten()) renderer.camera = camera camera.v = mesh_verts lighting.v = mesh_verts renderer.vc = lighting renderer.camera = camera camera.rt = np.array([np.pi, 0, 0]) # Get pixels and derivatives im_original = renderer.r.copy() #camera.k = np.zeros(5) #camera.k = np.arange(8,0,-1)*.1 #camera.k = np.array([ 0.00249999, 0.42208098, 0.45360267, 0.06808415, -0.38003062]) camera.k = np.array([5., 25., .3, .4, 1000., 5., 0., 0.]) im_distorted = renderer.r cr = renderer cmtx = np.array([[cr.camera.f.r[0], 0, cr.camera.c.r[0]], [0, cr.camera.f.r[1], cr.camera.c.r[1]], [0, 0, 1]]) from .cvwrap import cv2 im_undistorted = cv2.undistort(im_distorted, cmtx, cr.camera.k.r) d1 = (im_original - im_distorted).ravel() d2 = (im_original - im_undistorted).ravel() d1 = d1[d1 != 0.] d2 = d2[d2 != 0.] self.assertGreater(np.mean(d1**2) / np.mean(d2**2), 44.) self.assertLess(np.mean(d2**2), 0.0016) self.assertGreater(np.median(d1**2) / np.median(d2**2), 650) self.assertLess(np.median(d2**2), 1.9e-5) if visualize: import matplotlib.pyplot as plt plt.ion() matplotlib.rcParams.update({'font.size': 18}) plt.figure(figsize=(6 * 3, 2 * 3)) plt.subplot(1, 4, 1) plt.imshow(im_original) plt.title('original') plt.subplot(1, 4, 2) plt.imshow(im_distorted) plt.title('distorted') plt.subplot(1, 4, 3) plt.imshow(im_undistorted) plt.title('undistorted by opencv') plt.subplot(1, 4, 4) plt.imshow(im_undistorted - im_original + .5) plt.title('diff') plt.draw() plt.show()
def test_spherical_harmonics(self): global visualize if visualize: plt.ion() # Get mesh v, f = get_sphere_mesh() from geometry import VertNormals vn = VertNormals(v=v, f=f) #vn = Ch(mesh.estimate_vertex_normals()) # Get camera cam, frustum = getcam() # Get renderer from renderer import ColoredRenderer cam.v = v cr = ColoredRenderer(f=f, camera=cam, frustum=frustum, v=v) sh_red = SphericalHarmonics(vn=vn, light_color=np.array([1,0,0])) sh_green = SphericalHarmonics(vn=vn, light_color=np.array([0,1,0])) cr.vc = sh_red + sh_green ims_baseline = [] for comp_idx, subplot_idx in enumerate([3,7,8,9,11,12,13,14,15]): sh_comps = np.zeros(9) sh_comps[comp_idx] = 1 sh_red.components = Ch(sh_comps) sh_green.components = Ch(-sh_comps) newim = cr.r.reshape((frustum['height'], frustum['width'], 3)) ims_baseline.append(newim) if visualize: plt.subplot(3,5,subplot_idx) plt.imshow(newim) plt.axis('off') offset = row(.4 * (np.random.rand(3)-.5)) #offset = row(np.array([1.,1.,1.]))*.05 vn_shifted = (vn.r + offset) vn_shifted = vn_shifted / col(np.sqrt(np.sum(vn_shifted**2, axis=1))) vn_shifted = vn_shifted.ravel() vn_shifted[vn_shifted>1.] = 1 vn_shifted[vn_shifted<-1.] = -1 vn_shifted = Ch(vn_shifted) cr.replace(sh_red.vn, vn_shifted) if True: for comp_idx in range(9): if visualize: plt.figure(comp_idx+2) sh_comps = np.zeros(9) sh_comps[comp_idx] = 1 sh_red.components = Ch(sh_comps) sh_green.components = Ch(-sh_comps) pred = cr.dr_wrt(vn_shifted).dot(col(vn_shifted.r.reshape(vn.r.shape) - vn.r)).reshape((frustum['height'], frustum['width'], 3)) if visualize: plt.subplot(1,2,1) plt.imshow(pred) plt.title('pred (comp %d)' % (comp_idx,)) plt.subplot(1,2,2) newim = cr.r.reshape((frustum['height'], frustum['width'], 3)) emp = newim - ims_baseline[comp_idx] if visualize: plt.imshow(emp) plt.title('empirical (comp %d)' % (comp_idx,)) pred_flat = pred.ravel() emp_flat = emp.ravel() nnz = np.unique(np.concatenate((np.nonzero(pred_flat)[0], np.nonzero(emp_flat)[0]))) if comp_idx != 0: med_diff = np.median(np.abs(pred_flat[nnz]-emp_flat[nnz])) med_obs = np.median(np.abs(emp_flat[nnz])) if comp_idx == 4 or comp_idx == 8: self.assertTrue(med_diff / med_obs < .6) else: self.assertTrue(med_diff / med_obs < .3) if visualize: plt.axis('off')
def test_vert_derivatives(self): mesh, lightings, camera, frustum, renderers = self.load_basics() for renderer in renderers: lighting = lightings[renderer.num_channels] im_shape = renderer.shape # Render a rotating mesh mesh = get_earthmesh(trans=np.array([0, 0, 5]), rotation=np.array([math.pi / 2., 0, 0])) mesh_verts = Ch(mesh.v.flatten()) camera.set(v=mesh_verts) lighting.set(v=mesh_verts) renderer.set(camera=camera) renderer.set(vc=lighting) # Get pixels and derivatives r = renderer.r dr = renderer.dr_wrt(mesh_verts) # Establish a random direction direction = (np.random.rand(mesh.v.size).reshape(mesh.v.shape) - .5) * .1 + np.sin(mesh.v * 10) * .2 direction *= .5 eps = .2 # Render going forward in that direction mesh_verts = Ch(mesh.v + direction * eps / 2.) lighting.set(v=mesh_verts) renderer.set(v=mesh_verts, vc=lighting) rfwd = renderer.r # Render going backward in that direction mesh_verts = Ch(mesh.v - direction * eps / 2.) lighting.set(v=mesh_verts) renderer.set(v=mesh_verts, vc=lighting) rbwd = renderer.r # Establish empirical and predicted derivatives dr_empirical = (np.asarray(rfwd, np.float64) - np.asarray(rbwd, np.float64)).ravel() / eps dr_predicted = dr.dot(col(direction.flatten())).reshape( dr_empirical.shape) images = OrderedDict() images['shifted verts'] = np.asarray(rfwd, np.float64) - .5 images[ r'empirical verts $\left(\frac{dI}{dV}\right)$'] = dr_empirical images[ r'predicted verts $\left(\frac{dI}{dV}\right)$'] = dr_predicted images['difference verts'] = dr_predicted - dr_empirical nonzero = images['difference verts'][np.nonzero( images['difference verts'] != 0)[0]] if visualize: matplotlib.rcParams.update({'font.size': 18}) plt.figure(figsize=(6 * 3, 2 * 3)) for idx, title in enumerate(images.keys()): plt.subplot(1, len(list(images.keys())), idx + 1) im = process(images[title].reshape(im_shape), vmin=-.5, vmax=.5) plt.title(title) plt.imshow(im) print('verts: median nonzero %.2e' % (np.median(np.abs(nonzero)), )) print('verts: mean nonzero %.2e' % (np.mean(np.abs(nonzero)), )) plt.draw() plt.show() self.assertLess(np.mean(np.abs(nonzero)), 7e-2) self.assertLess(np.median(np.abs(nonzero)), 4e-2)
def gradfunc(x): obj.x = Ch(x) return obj.dr_wrt(obj.x).ravel()
def test_lightpos_derivatives(self): mesh, lightings, camera, frustum, renderers = self.load_basics() for renderer in renderers: im_shape = renderer.shape lighting = lightings[renderer.num_channels] # Render a rotating mesh mesh = get_earthmesh(trans=np.array([0, 0, 5]), rotation=np.array([math.pi / 2., 0, 0])) mesh_verts = Ch(mesh.v.flatten()) camera.set(v=mesh_verts) # Get predicted derivatives wrt light pos light1_pos = Ch(np.array([-1000, -1000, -1000])) lighting.set(light_pos=light1_pos, v=mesh_verts) renderer.set(vc=lighting, v=mesh_verts) dr = renderer.dr_wrt(light1_pos).copy() # Establish a random direction for the light direction = (np.random.rand(3) - .5) * 1000. eps = 1. # Find empirical forward derivatives in that direction lighting.set(light_pos=light1_pos.r + direction * eps / 2.) renderer.set(vc=lighting) rfwd = renderer.r # Find empirical backward derivatives in that direction lighting.set(light_pos=light1_pos.r - direction * eps / 2.) renderer.set(vc=lighting) rbwd = renderer.r # Establish empirical and predicted derivatives dr_empirical = (np.asarray(rfwd, np.float64) - np.asarray(rbwd, np.float64)).ravel() / eps dr_predicted = dr.dot(col(direction.flatten())).reshape( dr_empirical.shape) images = OrderedDict() images['shifted lightpos'] = np.asarray(rfwd, np.float64) - .5 images[ r'empirical lightpos $\left(\frac{dI}{dL_p}\right)$'] = dr_empirical images[ r'predicted lightpos $\left(\frac{dI}{dL_p}\right)$'] = dr_predicted images['difference lightpos'] = dr_predicted - dr_empirical nonzero = images['difference lightpos'][np.nonzero( images['difference lightpos'] != 0)[0]] if visualize: matplotlib.rcParams.update({'font.size': 18}) plt.figure(figsize=(6 * 3, 2 * 3)) for idx, title in enumerate(images.keys()): plt.subplot(1, len(list(images.keys())), idx + 1) im = process(images[title].reshape(im_shape), vmin=-.5, vmax=.5) plt.title(title) plt.imshow(im) plt.show() print('lightpos: median nonzero %.2e' % (np.median(np.abs(nonzero)), )) print('lightpos: mean nonzero %.2e' % (np.mean(np.abs(nonzero)), )) self.assertLess(np.mean(np.abs(nonzero)), 2.4e-2) self.assertLess(np.median(np.abs(nonzero)), 1.2e-2)
def test_dogleg_madsen(self): obj = Madsen(x = Ch(np.array((3.,1.)))) minimize(fun=obj, x0=[obj.x], method='dogleg', options={'maxiter': 34, 'disp': False}) self.assertTrue(np.sum(obj.r**2)/2 < 0.386599528247)