Exemplo n.º 1
0
def _execute_sample_2q_xeb_tasks_in_batches(
    tasks: List[_Sample2qXEBTask],
    sampler: 'cirq.Sampler',
    combinations_by_layer: List[CircuitLibraryCombination],
    repetitions: int,
    batch_size: int,
    progress_bar: Callable[..., ContextManager],
    dataset_directory: Optional[str] = None,
) -> List[Dict[str, Any]]:
    """Helper function used in `sample_2q_xeb_circuits` to batch and execute sampling tasks."""
    n_tasks = len(tasks)
    batched_tasks = [tasks[i : i + batch_size] for i in range(0, n_tasks, batch_size)]

    run_batch = _SampleInBatches(
        sampler=sampler, repetitions=repetitions, combinations_by_layer=combinations_by_layer
    )
    with ThreadPoolExecutor(max_workers=2) as pool:
        futures = [pool.submit(run_batch, task_batch) for task_batch in batched_tasks]

        records = []
        with progress_bar(total=len(batched_tasks) * batch_size) as progress:
            for future in concurrent.futures.as_completed(futures):
                new_records = future.result()
                if dataset_directory is not None:
                    os.makedirs(f'{dataset_directory}', exist_ok=True)
                    protocols.to_json(new_records, f'{dataset_directory}/xeb.{uuid.uuid4()}.json')
                records.extend(new_records)
                progress.update(batch_size)
    return records
Exemplo n.º 2
0
def save(task: Task, data: Dict[str, Any], base_dir: str, mode='x'):
    with_meta = {
        'timestamp': datetime.datetime.now().isoformat(),
        'task': task,
    }
    with_meta.update(data)

    fn = f'{base_dir}/{task.fn}.json'
    os.makedirs(os.path.dirname(fn), exist_ok=True)
    with open(fn, mode) as f:
        protocols.to_json(with_meta, f)
    return fn
Exemplo n.º 3
0
    def maybe_to_json(self, obj: Any):
        """Call `cirq.to_json with `value` according to the configuration options in this class.

        If `checkpoint=False`, nothing will happen. Otherwise, we will use `checkpoint_fn` and
        `checkpoint_other_fn` as the destination JSON file as described in the class docstring.
        """
        if not self.checkpoint:
            return
        assert self.checkpoint_fn is not None, 'mypy'
        assert self.checkpoint_other_fn is not None, 'mypy'
        if os.path.exists(self.checkpoint_fn):
            os.replace(self.checkpoint_fn, self.checkpoint_other_fn)
        protocols.to_json(obj, self.checkpoint_fn)
Exemplo n.º 4
0
def save(params: Any, obj: Any, base_dir: str, mode: str = 'x') -> str:
    """Save an object to filesystem as a JSON file.

    Arguments:
        params: Parameters describing the object. This should have an `filename`
            attribute containing the filename with which to save the object.
        obj: The object to save.
        base_dir: The directory in which to save the object.
        mode: The mode with which to open the file to write. Defaults to 'x',
            which means that the save will fail if the file already exists.

    Returns:
        The full path to the saved JSON file.
    """
    filename = os.path.join(base_dir, params.filename)
    os.makedirs(os.path.dirname(filename), exist_ok=True)
    with open(filename, mode) as f:
        protocols.to_json(obj, f)
    return filename
Exemplo n.º 5
0
def measure_grouped_settings(
    circuit: 'cirq.Circuit',
    grouped_settings: Dict[InitObsSetting, List[InitObsSetting]],
    sampler: 'cirq.Sampler',
    stopping_criteria: StoppingCriteria,
    *,
    readout_symmetrization: bool = False,
    circuit_sweep: 'cirq.study.sweepable.SweepLike' = None,
    readout_calibrations: Optional[BitstringAccumulator] = None,
    checkpoint: bool = False,
    checkpoint_fn: Optional[str] = None,
    checkpoint_other_fn: Optional[str] = None,
) -> List[BitstringAccumulator]:
    """Measure a suite of grouped InitObsSetting settings.

    This is a low-level API for accessing the observable measurement
    framework. See also `measure_observables` and `measure_observables_df`.

    Args:
        circuit: The circuit. This can contain parameters, in which case
            you should also specify `circuit_sweep`.
        grouped_settings: A series of setting groups expressed as a dictionary.
            The key is the max-weight setting used for preparing single-qubit
            basis-change rotations. The value is a list of settings
            compatible with the maximal setting you desire to measure.
            Automated routing algorithms like `group_settings_greedy` can
            be used to construct this input.
        sampler: A sampler.
        stopping_criteria: A StoppingCriteria object that can report
            whether enough samples have been sampled.
        readout_symmetrization: If set to True, each `meas_spec` will be
            split into two runs: one normal and one where a bit flip is
            incorporated prior to measurement. In the latter case, the
            measured bit will be flipped back classically and accumulated
            together. This causes readout error to appear symmetric,
            p(0|0) = p(1|1).
        circuit_sweep: Additional parameter sweeps for parameters contained
            in `circuit`. The total sweep is the product of the circuit sweep
            with parameter settings for the single-qubit basis-change rotations.
        readout_calibrations: The result of `calibrate_readout_error`.
        checkpoint: If set to True, save cumulative raw results at the end
            of each iteration of the sampling loop. Load in these results
            with `cirq.read_json`.
        checkpoint_fn: The filename for the checkpoint file. If `checkpoint`
            is set to True and this is not specified, a file in a temporary
            directory will be used.
        checkpoint_other_fn: The filename for another checkpoint file, which
            contains the previous checkpoint. This lets us avoid losing data if
            a failure occurs during checkpoint writing. If `checkpoint`
            is set to True and this is not specified, a file in a temporary
            directory will be used. If `checkpoint` is set to True and
            `checkpoint_fn` is specified but this argument is *not* specified,
            "{checkpoint_fn}.prev.json" will be used.
    """
    if readout_calibrations is not None and not readout_symmetrization:
        raise ValueError("Readout calibration only works if `readout_symmetrization` is enabled.")

    checkpoint_fn, checkpoint_other_fn = _parse_checkpoint_options(
        checkpoint=checkpoint, checkpoint_fn=checkpoint_fn, checkpoint_other_fn=checkpoint_other_fn
    )
    qubits = sorted({q for ms in grouped_settings.keys() for q in ms.init_state.qubits})
    qubit_to_index = {q: i for i, q in enumerate(qubits)}

    needs_init_layer = _needs_init_layer(grouped_settings)
    measurement_param_circuit = _with_parameterized_layers(circuit, qubits, needs_init_layer)
    grouped_settings = {
        _pad_setting(max_setting, qubits): settings
        for max_setting, settings in grouped_settings.items()
    }
    circuit_sweep = study.UnitSweep if circuit_sweep is None else study.to_sweep(circuit_sweep)

    # meas_spec provides a key for accumulators.
    # meas_specs_todo is a mutable list. We will pop things from it as various
    # specs are measured to the satisfaction of the stopping criteria
    accumulators = {}
    meas_specs_todo = []
    for max_setting, circuit_params in itertools.product(
        grouped_settings.keys(), circuit_sweep.param_tuples()
    ):
        # The type annotation for Param is just `Iterable`.
        # We make sure that it's truly a tuple.
        circuit_params = dict(circuit_params)

        meas_spec = _MeasurementSpec(max_setting=max_setting, circuit_params=circuit_params)
        accumulator = BitstringAccumulator(
            meas_spec=meas_spec,
            simul_settings=grouped_settings[max_setting],
            qubit_to_index=qubit_to_index,
            readout_calibration=readout_calibrations,
        )
        accumulators[meas_spec] = accumulator
        meas_specs_todo += [meas_spec]

    while True:
        meas_specs_todo, repetitions = _check_meas_specs_still_todo(
            meas_specs=meas_specs_todo,
            accumulators=accumulators,
            stopping_criteria=stopping_criteria,
        )
        if len(meas_specs_todo) == 0:
            break

        flippy_meas_specs, repetitions = _subdivide_meas_specs(
            meas_specs=meas_specs_todo,
            repetitions=repetitions,
            qubits=qubits,
            readout_symmetrization=readout_symmetrization,
        )

        resolved_params = [
            flippy_ms.param_tuples(needs_init_layer=needs_init_layer)
            for flippy_ms in flippy_meas_specs
        ]
        resolved_params = _to_sweep(resolved_params)

        results = sampler.run_sweep(
            program=measurement_param_circuit, params=resolved_params, repetitions=repetitions
        )

        assert len(results) == len(
            flippy_meas_specs
        ), 'Not as many results received as sweeps requested!'

        for flippy_ms, result in zip(flippy_meas_specs, results):
            accumulator = accumulators[flippy_ms.meas_spec]
            bitstrings = np.logical_xor(flippy_ms.flips, result.measurements['z'])
            accumulator.consume_results(bitstrings.astype(np.uint8, casting='safe'))

        if checkpoint:
            assert checkpoint_fn is not None, 'mypy'
            assert checkpoint_other_fn is not None, 'mypy'
            if os.path.exists(checkpoint_fn):
                os.replace(checkpoint_fn, checkpoint_other_fn)
            to_json(list(accumulators.values()), checkpoint_fn)

    return list(accumulators.values())