Exemplo n.º 1
0
    def test_clean_tab_wf_module_changed_raises_unneededexecution(self):
        """
        If a user changes tabs' output during render, raise UnneededExecution.

        It doesn't really matter _what_ the return value is, since the render()
        result will never be saved if this WfModule's delta has changed.
        UnneededExecution seems like the simplest contract to enforce.
        """
        # tab_output is what 'render' _thinks_ the output should be
        tab_output = ProcessResult(pd.DataFrame({"A": [1, 2]}))

        workflow = Workflow.create_and_init()
        tab = workflow.tabs.first()
        wfm = tab.wf_modules.create(
            order=0,
            slug="step-1",
            last_relevant_delta_id=workflow.last_delta_id)
        wfm.cache_render_result(workflow.last_delta_id, tab_output)
        # Simulate reality: wfm.last_relevant_delta_id will change
        wfm.last_relevant_delta_id += 1
        wfm.save(update_fields=["last_relevant_delta_id"])

        context = RenderContext(
            workflow.id,
            None,
            None,
            {tab.slug: StepResultShape("ok", tab_output.table_shape)},
            None,
        )
        with self.assertRaises(UnneededExecution):
            clean_value(ParamDType.Tab(), tab.slug, context)
Exemplo n.º 2
0
    def test_clean_tab_tab_delete_race_raises_unneededexecution(self):
        """
        If a user deletes the tab during render, raise UnneededExecution.

        It doesn't really matter _what_ the return value is, since the render()
        result will never be saved if this WfModule's delta has changed.
        UnneededExecution just seems like the quickest way out of this mess:
        it's an error the caller is meant to raise anyway, unlike
        `Tab.DoesNotExist`.
        """
        # tab_output is what 'render' _thinks_ the output should be
        tab_output = ProcessResult(pd.DataFrame({"A": [1, 2]}))

        workflow = Workflow.create_and_init()
        tab = workflow.tabs.first()
        wfm = tab.wf_modules.create(
            order=0,
            slug="step-1",
            last_relevant_delta_id=workflow.last_delta_id)
        wfm.cache_render_result(workflow.last_delta_id, tab_output)
        tab.is_deleted = True
        tab.save(update_fields=["is_deleted"])
        # Simulate reality: wfm.last_relevant_delta_id will change
        wfm.last_relevant_delta_id += 1
        wfm.save(update_fields=["last_relevant_delta_id"])

        context = RenderContext(
            workflow.id,
            None,
            None,
            {tab.slug: StepResultShape("ok", tab_output.table_shape)},
            None,
        )
        with self.assertRaises(UnneededExecution):
            clean_value(ParamDType.Tab(), tab.slug, context)
Exemplo n.º 3
0
    def test_clean_multicolumn_from_other_tab(self):
        tab_output = ProcessResult(pd.DataFrame({"A-from-tab-2": [1, 2]}))
        workflow = Workflow.create_and_init()
        tab = workflow.tabs.first()
        wfm = tab.wf_modules.create(
            order=0,
            slug="step-1",
            last_relevant_delta_id=workflow.last_delta_id)
        wfm.cache_render_result(workflow.last_delta_id, tab_output)

        schema = ParamDType.Dict({
            "tab":
            ParamDType.Tab(),
            "columns":
            ParamDType.Multicolumn(tab_parameter="tab"),
        })
        params = {"tab": tab.slug, "columns": ["A-from-tab-1", "A-from-tab-2"]}
        context = RenderContext(
            workflow.id,
            None,
            TableShape(3, [Column("A-from-tab-1", ColumnType.NUMBER())]),
            {tab.slug: StepResultShape("ok", tab_output.table_shape)},
            params,
        )
        result = clean_value(schema, params, context)
        # result['tab'] is not what we're testing here
        self.assertEqual(result["columns"], ["A-from-tab-2"])
Exemplo n.º 4
0
    def test_clean_tabs_preserve_ordering(self):
        tab2_output = ProcessResult(pd.DataFrame({"A": [1, 2]}))
        tab3_output = ProcessResult(pd.DataFrame({"B": [2, 3]}))
        workflow = Workflow.create_and_init()
        tab1 = workflow.tabs.first()
        tab2 = workflow.tabs.create(position=1, slug="tab-2", name="Tab 2")
        tab3 = workflow.tabs.create(position=1, slug="tab-3", name="Tab 3")
        wfm2 = tab2.wf_modules.create(
            order=0,
            slug="step-1",
            last_relevant_delta_id=workflow.last_delta_id)
        wfm2.cache_render_result(workflow.last_delta_id, tab2_output)
        wfm3 = tab3.wf_modules.create(
            order=0,
            slug="step-2",
            last_relevant_delta_id=workflow.last_delta_id)
        wfm3.cache_render_result(workflow.last_delta_id, tab3_output)

        # RenderContext's dict ordering determines desired tab order. (Python
        # 3.7 spec: dict is ordered in insertion order. CPython 3.6 and PyPy 7
        # do this, too.)
        context = RenderContext(
            workflow.id,
            None,
            None,
            {
                tab1.slug: None,
                tab2.slug: StepResultShape("ok", tab2_output.table_shape),
                tab3.slug: StepResultShape("ok", tab3_output.table_shape),
            },
            None,
        )
        # Supply wrongly-ordered tabs. Cleaned, they should be in order.
        result = clean_value(ParamDType.Multitab(), [tab3.slug, tab2.slug],
                             context)
        self.assertEqual(result[0].slug, tab2.slug)
        self.assertEqual(result[0].name, tab2.name)
        self.assertEqual(result[0].columns,
                         {"A": RenderColumn("A", "number", "{:,}")})
        assert_frame_equal(result[0].dataframe, pd.DataFrame({"A": [1, 2]}))
        self.assertEqual(result[1].slug, tab3.slug)
        self.assertEqual(result[1].name, tab3.name)
        self.assertEqual(result[1].columns,
                         {"B": RenderColumn("B", "number", "{:,}")})
        assert_frame_equal(result[1].dataframe, pd.DataFrame({"B": [2, 3]}))
Exemplo n.º 5
0
    def test_clean_tabs_preserve_ordering(self):
        tab2_output = ProcessResult(pd.DataFrame({'A': [1, 2]}))
        tab3_output = ProcessResult(pd.DataFrame({'B': [2, 3]}))
        workflow = Workflow.create_and_init()
        tab1 = workflow.tabs.first()
        tab2 = workflow.tabs.create(position=1, slug='tab-2', name='Tab 2')
        tab3 = workflow.tabs.create(position=1, slug='tab-3', name='Tab 3')
        wfm2 = tab2.wf_modules.create(
            order=0, last_relevant_delta_id=workflow.last_delta_id)
        wfm2.cache_render_result(workflow.last_delta_id, tab2_output)
        wfm3 = tab3.wf_modules.create(
            order=0, last_relevant_delta_id=workflow.last_delta_id)
        wfm3.cache_render_result(workflow.last_delta_id, tab3_output)

        # RenderContext's dict ordering determines desired tab order. (Python
        # 3.7 spec: dict is ordered in insertion order. CPython 3.6 and PyPy 7
        # do this, too.)
        context = RenderContext(
            workflow.id, None, {
                tab1.slug: None,
                tab2.slug: StepResultShape('ok', tab2_output.table_shape),
                tab3.slug: StepResultShape('ok', tab3_output.table_shape),
            }, None)
        schema = ParamDType.Dict({'tabs': ParamDType.Multitab()})

        # Supply wrongly-ordered tabs. Cleaned, they should be in order.
        result = clean_value(schema, {'tabs': [tab3.slug, tab2.slug]}, context)
        self.assertEqual(result['tabs'][0].slug, tab2.slug)
        self.assertEqual(result['tabs'][0].name, tab2.name)
        self.assertEqual(result['tabs'][0].columns, {
            'A': RenderColumn('A', 'number'),
        })
        assert_frame_equal(result['tabs'][0].dataframe,
                           pd.DataFrame({'A': [1, 2]}))
        self.assertEqual(result['tabs'][1].slug, tab3.slug)
        self.assertEqual(result['tabs'][1].name, tab3.name)
        self.assertEqual(result['tabs'][1].columns, {
            'B': RenderColumn('B', 'number'),
        })
        assert_frame_equal(result['tabs'][1].dataframe,
                           pd.DataFrame({'B': [2, 3]}))
Exemplo n.º 6
0
async def execute_workflow(workflow: Workflow, delta_id: int) -> None:
    """
    Ensure all `workflow.tabs[*].live_wf_modules` cache fresh render results.

    Raise UnneededExecution if the inputs become stale (at which point we don't
    care about results any more).

    WEBSOCKET NOTES: each wf_module is executed in turn. After each execution,
    we notify clients of its new columns and status.
    """
    # raises UnneededExecution
    pending_tab_flows = await _load_tab_flows(workflow, delta_id)

    # tab_shapes: keep track of outputs of each tab. (Outputs are used as
    # inputs into other tabs.) Before render begins, all outputs are `None`.
    # We'll execute tabs dependencies-first; if a WfModule depends on a
    # `tab_shape` we haven't rendered yet, that's because it _couldn't_ be
    # rendered first -- prompting a `TabCycleError`.
    #
    # `tab_shapes.keys()` returns tab slugs in the Workflow's tab order -- that
    # is, the order the user determines.
    tab_shapes: Dict[str, Optional[StepResultShape]] = dict(
        (flow.tab_slug, None) for flow in pending_tab_flows)

    # Execute one tab_flow at a time.
    #
    # We don't hold a DB lock throughout the loop: the loop can take a long
    # time; it might be run multiple times simultaneously (even on different
    # computers); and `await` doesn't work with locks.

    while pending_tab_flows:
        ready_flows, dependent_flows = partition_ready_and_dependent(
            pending_tab_flows)

        if not ready_flows:
            # All flows are dependent -- meaning they all have cycles. Execute
            # them last; they can detect their cycles through `tab_shapes`.
            break

        for tab_flow in ready_flows:
            result = await execute_tab_flow(workflow, tab_flow, tab_shapes)
            tab_shape = StepResultShape(result.status, result.table_shape)
            del result  # recover ram
            tab_shapes[tab_flow.tab_slug] = tab_shape

        pending_tab_flows = dependent_flows  # iterate

    # Now, `pending_tab_flows` only contains flows with cycles. Execute them,
    # but don't update `tab_shapes` because none of them should see the output
    # from any other. (If tab1 and tab 2 depend on each other, they should both
    # have the same error: "Cycle"; their order of execution shouldn't matter.)
    for tab_flow in pending_tab_flows:
        await execute_tab_flow(workflow, tab_flow, tab_shapes)
Exemplo n.º 7
0
    def test_clean_tabs_happy_path(self):
        tab1_output = ProcessResult(pd.DataFrame({'A': [1, 2]}))
        workflow = Workflow.create_and_init()
        tab1 = workflow.tabs.first()
        wfm = tab1.wf_modules.create(
            order=0, last_relevant_delta_id=workflow.last_delta_id)
        wfm.cache_render_result(workflow.last_delta_id, tab1_output)

        context = RenderContext(
            workflow.id, None, None, {
                tab1.slug: StepResultShape('ok', tab1_output.table_shape),
            }, None)
        result = clean_value(ParamDType.Multitab(), [tab1.slug], context)
        self.assertEqual(result[0].slug, tab1.slug)
        self.assertEqual(result[0].name, tab1.name)
        self.assertEqual(result[0].columns, {
            'A': RenderColumn('A', 'number', '{:,}'),
        })
        assert_frame_equal(result[0].dataframe, pd.DataFrame({'A': [1, 2]}))
Exemplo n.º 8
0
    def test_clean_tab_happy_path(self):
        tab_output = ProcessResult(pd.DataFrame({"A": [1, 2]}))
        workflow = Workflow.create_and_init()
        tab = workflow.tabs.first()
        wfm = tab.wf_modules.create(
            order=0,
            slug="step-1",
            last_relevant_delta_id=workflow.last_delta_id)
        wfm.cache_render_result(workflow.last_delta_id, tab_output)

        context = RenderContext(
            workflow.id,
            None,
            None,
            {tab.slug: StepResultShape("ok", tab_output.table_shape)},
            None,
        )
        result = clean_value(ParamDType.Tab(), tab.slug, context)
        self.assertEqual(result.slug, tab.slug)
        self.assertEqual(result.name, tab.name)
        self.assertEqual(result.columns,
                         {"A": RenderColumn("A", "number", "{:,}")})
        assert_frame_equal(result.dataframe, pd.DataFrame({"A": [1, 2]}))
Exemplo n.º 9
0
 def test_clean_tab_tab_error_raises_cycle(self):
     shape = StepResultShape('error', TableShape(0, []))
     context = RenderContext(None, None, None, {'tab-1': shape}, None)
     with self.assertRaises(TabOutputUnreachableError):
         clean_value(ParamDType.Tab(), 'tab-1', context)