def run_vcl(hidden_size, no_epochs, data_gen, coreset_method, coreset_size=0, batch_size=None, single_head=True,sd = 0):
    print("seed ",sd)
    in_dim, out_dim = data_gen.get_dims()
    x_coresets, y_coresets = [], []
    x_testsets, y_testsets = [], []

    all_acc = np.array([])
    print("max iter ", data_gen.max_iter)

    for task_id in range(data_gen.max_iter):
        x_train, y_train, x_test, y_test = data_gen.next_task()
        x_testsets.append(x_test)
        y_testsets.append(y_test)

        # Set the readout head to train
        head = 0 if single_head else task_id
        bsize = x_train.shape[0] if (batch_size is None) else batch_size

        # Train network with maximum likelihood to initialize first model
        if task_id == 0:
            ml_model = Vanilla_NN(in_dim, hidden_size, out_dim, x_train.shape[0])
            ml_model.train(x_train, y_train, task_id, no_epochs, bsize)
            mf_weights = ml_model.get_weights()
            mf_variances = None
            ml_model.close_session()

        # Select coreset if needed
        if coreset_size > 0:
            x_coresets, y_coresets, x_train, y_train = coreset_method(x_coresets, y_coresets, x_train, y_train, coreset_size)

        # Train on non-coreset data
        s_time = time.time()
        mf_model = MFVI_NN(in_dim, hidden_size, out_dim, x_train.shape[0], prev_means=mf_weights, prev_log_variances=mf_variances)
        mf_model.train(x_train, y_train, head, no_epochs, bsize)
        e_time = time.time()
        print("time train ",e_time - s_time)
        mf_weights, mf_variances = mf_model.get_weights()

        # Incorporate coreset data and make prediction
        acc = utils.get_scores(mf_model, x_testsets, y_testsets, x_coresets, y_coresets, hidden_size, no_epochs, single_head, batch_size)
        all_acc = utils.concatenate_results(acc, all_acc)
        print(all_acc)
        write_data_to_file(all_acc , "result_vcl_split_seed"+str(sd)+".csv")

        mf_model.close_session()

    return all_acc
def run_vcl(hidden_size, no_epochs, data_gen, coreset_method, coreset_size=0, batch_size=None, single_head=True):
    in_dim, out_dim = data_gen.get_dims()
    x_coresets, y_coresets = [], []
    x_testsets, y_testsets = [], []

    all_acc = np.array([])

    for task_id in range(data_gen.max_iter):
        x_train, y_train, x_test, y_test = data_gen.next_task()
        x_testsets.append(x_test)
        y_testsets.append(y_test)

        # Set the readout head to train
        head = 0 if single_head else task_id
        bsize = x_train.shape[0] if (batch_size is None) else batch_size

        # Train network with maximum likelihood to initialize first model
        if task_id == 0:
            ml_model = Vanilla_NN(in_dim, hidden_size, out_dim, x_train.shape[0])
            ml_model.train(x_train, y_train, task_id, no_epochs, bsize)
            mf_weights = ml_model.get_weights()
            mf_variances = None
            ml_model.close_session()

        # Train on non-coreset data
        mf_model = MFVI_NN(in_dim, hidden_size, out_dim, x_train.shape[0], prev_means=mf_weights, prev_log_variances=mf_variances)
        mf_model.train(x_train, y_train, head, no_epochs, bsize)
        mf_weights, mf_variances = mf_model.get_weights()

        # Select coreset if needed
        if coreset_size > 0:
            if type(coreset_method) is str and coreset_method == "uncertainty_based":
                x_coresets, y_coresets, x_train, y_train = uncertainty_based(
                    mf_model, task_id, x_coresets, y_coresets, x_train, y_train, coreset_size)
            else:
                x_coresets, y_coresets, x_train, y_train = coreset_method(x_coresets, y_coresets, x_train, y_train, coreset_size)

        # Incorporate coreset data and make prediction
        acc = utils.get_scores(mf_model, x_testsets, y_testsets, x_coresets, y_coresets, hidden_size, no_epochs, single_head, batch_size)
        all_acc = utils.concatenate_results(acc, all_acc)

        mf_model.close_session()

    return all_acc
Exemplo n.º 3
0
def run_vcl(hidden_size, no_epochs, data_gen, coreset_method, coreset_size=0, batch_size=None, single_head=True, train_info = None):
    in_dim, out_dim = data_gen.get_dims()
    x_coresets, y_coresets = [], []
    x_testsets, y_testsets = [], []

    all_acc = np.array([])
    all_acc_for_save = np.zeros((data_gen.max_iter, data_gen.max_iter), dtype=np.float32)
    
    for task_id in range(data_gen.max_iter):
        x_train, y_train, x_test, y_test = data_gen.next_task()
        x_testsets.append(x_test)
        y_testsets.append(y_test)

        # Set the readout head to train
        head = 0 if single_head else task_id
        bsize = x_train.shape[0] if (batch_size is None) else batch_size

        # Train network with maximum likelihood to initialize first model
        if task_id == 0:
            print('Vanilla NN train for task 0!')
            ml_model = Vanilla_NN(in_dim, hidden_size, out_dim, x_train.shape[0])
            ml_model.train(x_train, y_train, task_id, no_epochs, bsize)
            mf_weights = ml_model.get_weights()
            mf_variances = None
            ml_model.close_session()

        # Select coreset if needed
        if coreset_size > 0:
            x_coresets, y_coresets, x_train, y_train = coreset_method(x_coresets, y_coresets, x_train, y_train, coreset_size)
        print('Current task : {}'.format(task_id))
        # Train on non-coreset data
        mf_model = MFVI_NN(in_dim, hidden_size, out_dim, x_train.shape[0], prev_means=mf_weights, prev_log_variances=mf_variances)
        mf_model.train(x_train, y_train, head, no_epochs, bsize)
        mf_weights, mf_variances = mf_model.get_weights()

        # Incorporate coreset data and make prediction
        acc = utils.get_scores(mf_model, x_testsets, y_testsets, x_coresets, y_coresets, hidden_size, no_epochs, single_head, batch_size)
        all_acc = utils.concatenate_results(acc, all_acc)
        
        
        for u in range(task_id + 1):

            print('>>> Test on task {:2d} : acc={:5.1f}% <<<'.format(u, 100 * acc[u]))
            all_acc_for_save[task_id, u] = acc[u]

        # Save

        log_name = '{}_{}_{}_{}epochs_batch{}_{}_{}coreset_{}'.format(train_info['date'], train_info['experiment'], train_info['tasknum'], no_epochs, train_info['batch'], train_info['coreset_method'], coreset_size, train_info['trial'])
        
        if single_head:
            log_name += '_single'
        
        save_path = './results/' + log_name + '.txt'
        print('Save at ' + save_path)
        np.savetxt(save_path, all_acc_for_save, '%.4f')
        
        
        
        mf_model.close_session()

    return all_acc
def run_vcl_shared(hidden_size, no_epochs, data_gen, coreset_method, coreset_size=0,
                   batch_size=None, path='sandbox/', multi_head=False, learning_rate=0.005, store_weights=False):
    in_dim, out_dim = data_gen.get_dims()
    x_coresets, y_coresets = [], []
    x_testsets, y_testsets = [], []
    x_trainsets, y_trainsets = [], []

    all_acc = np.array([])
    no_tasks = data_gen.max_iter

    # Store train and test sets (over all tasks)
    for i in range(no_tasks):
        x_train, y_train, x_test, y_test = data_gen.next_task()
        x_trainsets.append(x_train)
        y_trainsets.append(y_train)
        x_testsets.append(x_test)
        y_testsets.append(y_test)

    all_classes = range(data_gen.out_dim)
    training_loss_classes = []  # Training loss function depends on these classes
    training_classes = []       # Which classes' heads' weights change during training
    test_classes = []           # Which classes to compare between at test time
    for task_id in range(no_tasks):
        # The data input classes for this task
        data_classes = data_gen.classes[task_id]

        if multi_head:
            training_loss_classes.append(data_classes)
            training_classes.append(data_classes)
            test_classes.append(data_classes)
        else:
            # Single-head
            training_loss_classes.append(all_classes)
            training_classes.append(all_classes)
            test_classes.append(all_classes)

    # Create model
    no_heads = out_dim
    lower_size = [in_dim] + deepcopy(hidden_size)
    upper_sizes = [[hidden_size[-1], 1] for i in range(no_heads)]
    model = MFVI_NN(lower_size, upper_sizes, training_loss_classes=training_loss_classes,
                    data_classes=data_gen.classes, use_float64=multi_head)
    no_lower_weights = model.lower_net.no_weights
    no_upper_weights = [net.no_weights for net in model.upper_nets]

    # Set up model weights at initial prior
    weights_storage = WeightsStorage(no_lower_weights, no_upper_weights, prior_mean=0.0, prior_var=1.0)

    for task_id in range(no_tasks):
        # tf init model
        model.init_session(task_id, learning_rate, training_classes[task_id])

        # Get data
        x_train, y_train = x_trainsets[task_id], y_trainsets[task_id]

        # Set batch size
        bsize = x_train.shape[0] if (batch_size is None) else batch_size

        # Select coreset if needed
        if coreset_size > 0:
            x_coresets, y_coresets, x_train, y_train = coreset_method(
                x_coresets, y_coresets, x_train, y_train, coreset_size)

        # Prior of weights is previous posterior (or, if first task, already in weights_storage)
        lower_weights_prior, upper_weights_prior = weights_storage.return_weights()

        # Initialise using random means + small variances
        lower_weights = initialise_weights(lower_weights_prior)
        upper_weights = deepcopy(upper_weights_prior)
        for class_id in training_classes[task_id]:
            upper_weights[class_id] = deepcopy(initialise_weights(upper_weights_prior[class_id]))

        # Assign initial weights to the model
        model.assign_weights(range(no_heads), lower_weights, upper_weights)

        # Train on non-coreset data
        model.reset_optimiser()

        start_time = time.time()
        _, _ = model.train(x_train, y_train, task_id, lower_weights_prior, upper_weights_prior, no_epochs, bsize)
        end_time = time.time()
        print 'Time taken to train (s):', end_time - start_time

        # Get weights from model, and store in weights_storage
        lower_weights, upper_weights = model.get_weights(range(no_heads))
        weights_storage.store_weights(lower_weights, upper_weights)

        # Save model weights after training on non-coreset data
        if store_weights:
            np.savez(path + 'weights_%d.npz' % task_id, lower=lower_weights, upper=upper_weights,
                     classes=data_gen.classes,
                     MNISTdigits=data_gen.sets, class_index_conversion=data_gen.class_list)

        model.close_session()

        # Train on coreset data, then calculate test accuracy
        if multi_head:
            acc = np.zeros(no_tasks)
            for test_task_id in range(task_id+1):
                # Initialise session, and load weights into model
                model.init_session(test_task_id, learning_rate, training_classes[test_task_id])
                lower_weights, upper_weights = weights_storage.return_weights()
                model.assign_weights(range(no_heads), lower_weights, upper_weights)
                if len(x_coresets) > 0:
                    print 'Training on coreset data...'
                    # Train on each task's coreset data just before testing on that task
                    x_train_coreset, y_train_coreset = x_coresets[test_task_id], y_coresets[test_task_id]
                    bsize = x_train_coreset.shape[0] if (batch_size is None) else batch_size
                    model.reset_optimiser()
                    _, _ = model.train(x_train_coreset, y_train_coreset, test_task_id,
                                       lower_weights, upper_weights, no_epochs, bsize)

                # Test-time: Calculate test accuracy
                acc_interm = utils.get_scores_output_pred(model, x_testsets, y_testsets, test_classes,
                                                   task_idx=[test_task_id], multi_head=multi_head)
                acc[test_task_id] = acc_interm[0]

                model.close_session()

        else:
            acc = np.zeros(no_tasks)
            # Initialise session, and load weights into model
            model.init_session(task_id, learning_rate, training_classes[task_id])
            lower_weights, upper_weights = weights_storage.return_weights()
            model.assign_weights(range(no_heads), lower_weights, upper_weights)
            if len(x_coresets) > 0:
                print 'Training on coreset data...'
                x_train_coreset, y_train_coreset = utils.merge_coresets(x_coresets, y_coresets)
                bsize = x_train_coreset.shape[0] if (batch_size is None) else batch_size
                _, _ = model.train(x_train_coreset, y_train_coreset, task_id,
                                   lower_weights, upper_weights, no_epochs, bsize)

            # Test-time: Calculate test accuracy
            acc_interm = utils.get_scores_output_pred(model, x_testsets, y_testsets, test_classes,
                                               task_idx=range(task_id+1), multi_head=multi_head)
            acc[:task_id+1] = acc_interm

            model.close_session()

        # Append accuracies to all_acc array
        if task_id == 0:
            all_acc = np.array(acc)
        else:
            all_acc = np.vstack([all_acc, acc])
        print all_acc

    return all_acc
Exemplo n.º 5
0
def get_scores(model, x_testsets, y_testsets, x_coresets, y_coresets, hidden_size, no_epochs, single_head, batch_size=None):
    mf_weights, mf_variances = model.get_weights()
    acc = []

    if single_head:
        if len(x_coresets) > 0:
            x_train, y_train = merge_coresets(x_coresets, y_coresets)
            bsize = x_train.shape[0] if (batch_size is None) else batch_size
            final_model = MFVI_NN(x_train.shape[1], hidden_size, y_train.shape[1], x_train.shape[0], prev_means=mf_weights, prev_log_variances=mf_variances)
            final_model.train(x_train, y_train, 0, no_epochs, bsize)
        else:
            final_model = model

    for i in range(len(x_testsets)):
        if not single_head:
            if len(x_coresets) > 0:
                x_train, y_train = x_coresets[i], y_coresets[i]
                bsize = x_train.shape[0] if (batch_size is None) else batch_size
                final_model = MFVI_NN(x_train.shape[1], hidden_size, y_train.shape[1], x_train.shape[0], prev_means=mf_weights, prev_log_variances=mf_variances)
                final_model.train(x_train, y_train, i, no_epochs, bsize)
            else:
                final_model = model

        head = 0 if single_head else i
        x_test, y_test = x_testsets[i], y_testsets[i]

        pred = final_model.prediction_prob(x_test, head)
        pred_mean = np.mean(pred, axis=0)
        pred_y = np.argmax(pred_mean, axis=1)
        y = np.argmax(y_test, axis=1)
        cur_acc = len(np.where((pred_y - y) == 0)[0]) * 1.0 / y.shape[0]
        acc.append(cur_acc)

        if len(x_coresets) > 0 and not single_head:
            final_model.close_session()

    if len(x_coresets) > 0 and single_head:
        final_model.close_session()

    return acc