lags_i = np.arange(0, 120, 10)

list_of_fc = [
    fcev(
        path_data=ERA_q65tail,
        precur_aggr=precur_aggr,
        use_fold=use_fold,
        start_end_TVdate=None,
        stat_model=(
            'logitCV',
            {
                'Cs': 10,  #np.logspace(-4,1,10)
                'class_weight': {
                    0: 1,
                    1: 1
                },
                'scoring': 'neg_brier_score',
                'penalty': 'l2',
                'solver': 'lbfgs',
                'max_iter': 100,
                'kfold': 5,
                'seed': 2
            }),
        kwrgs_pp={
            'add_autocorr': False,
            'normalize': 'datesRV'
        },
        dataset='',
        keys_d='CPPA+sm'),
    fcev(
        path_data=ERA_q65tail,
        precur_aggr=precur_aggr,
Exemplo n.º 2
0
kwrgs_events = kwrgs_events
precur_aggr = 15
add_autocorr = False
use_fold = None
n_boot = 5
lags_i = np.array([0, 10, 15, 20, 25, 30])
start_end_TVdate = None  # ('7-04', '8-22')

list_of_fc = [
    fcev(path_data=ERA_data,
         precur_aggr=precur_aggr,
         use_fold=use_fold,
         start_end_TVdate=None,
         stat_model=logitCV,
         kwrgs_pp={
             'add_autocorr': add_autocorr,
             'normalize': 'datesRV'
         },
         dataset=f'CPPA vs PEP',
         keys_d='PEP',
         n_cpu=n_cpu)
]
#  fcev(path_data=ERA_data, precur_aggr=precur_aggr,
#        use_fold=use_fold, start_end_TVdate=None,
#        stat_model=logitCV,
#        kwrgs_pp={'add_autocorr':add_autocorr, 'normalize':'datesRV'},
#        dataset=f'CPPA vs PEP',
#        keys_d='CPPA',
#        n_cpu=n_cpu),
# fcev(path_data=ERA_data, precur_aggr=precur_aggr,
#       use_fold=use_fold, start_end_TVdate=None,
    import wrapper_PCMCI as wPCMCI
except ImportError as e:
    print('Not able to load in Tigramite modules, to enable causal inference '
          'features, install Tigramite from '
          'https://github.com/jakobrunge/tigramite/')
	# remove created output folders
    shutil.rmtree(rg.path_outsub1)
    shutil.rmtree(os.path.join(main_dir, 'data', 'preprocessed'))
    raise(e)

from class_fc import fcev
import valid_plots as dfplots

if __name__ == '__main__':

    fc = fcev(path_data=path_df_data, n_cpu=1, causal=True)
    fc.get_TV(kwrgs_events=None)
    fc.fit_models(lead_max=35)
    dict_experiments = {}
    fc.perform_validation(n_boot=100, blocksize='auto',
                                  threshold_pred=(1.5, 'times_clim'))
    dict_experiments['test'] = fc.dict_sum


    working_folder, filename = fc._print_sett(list_of_fc=[fc])
    store=True
    dict_all = dfplots.merge_valid_info([fc], store=store)
    if store:
        dict_merge_all = functions_pp.load_hdf5(filename)

    kwrgs = {'wspace':0.25, 'col_wrap':3} #, 'threshold_bin':fc.threshold_pred}
Exemplo n.º 4
0
ERA_data = data_dir + '/CPPA_ERA5_14-05-20_08hr_lag_0_c378f.h5'


kwrgs_events = {'event_percentile': 'std'} # = mean + std, see class_RV.Ev_threshold

kwrgs_events = kwrgs_events
precur_aggr = 1
use_fold = None
n_boot = 2000
lags_i = np.array([0, 10, 15, 20 , 25, 30])
start_end_TVdate = ('6-24', '8-22')


list_of_fc = [fcev(path_data=ERA_data, precur_aggr=precur_aggr,
                    use_fold=use_fold, start_end_TVdate=start_end_TVdate,
                    stat_model=logitCV,
                    kwrgs_pp={'add_autocorr':False, 'normalize':'datesRV'},
                    dataset=f'ERA-5',
                    keys_d='PEP', n_cpu=n_cpu),
              fcev(path_data=ERA_data, precur_aggr=precur_aggr,
                    use_fold=use_fold, start_end_TVdate=start_end_TVdate,
                    stat_model=logitCV,
                    kwrgs_pp={'add_autocorr':False, 'normalize':'datesRV'},
                    dataset=f'ERA-5',
                    keys_d='CPPA', n_cpu=n_cpu),
              fcev(path_data=EC_data, precur_aggr=precur_aggr,
                    use_fold=use_fold, start_end_TVdate=start_end_TVdate,
                    stat_model=logitCV,
                    kwrgs_pp={'add_autocorr':False, 'normalize':'datesRV'},
                    dataset=f'EC-Earth',
                    keys_d='PEP', n_cpu=n_cpu),
              fcev(path_data=EC_data, precur_aggr=precur_aggr,