Exemplo n.º 1
0
 def __init__(self, vh: VisdomHandler, single_stage: bool):
     self.__vh = vh
     self.__train_loss = LossTracker() if single_stage else MultipleLossTracker()
     self.__val_loss = LossTracker() if single_stage else MultipleLossTracker()
     self.__best_val_loss = 100.0
     self.__best_mean, self.__best_median, self.__best_trimean = 100.0, 100.0, 100.0
     self.__best_bst25, self.__best_wst25, self.__best_pct95 = 100.0, 100.0, 100.0
Exemplo n.º 2
0
def main():
    evaluator = Evaluator()

    path_to_log = os.path.join(PATH_TO_LOGS, "{}_{}_{}".format(MODEL_TYPE, DATA_FOLDER, str(time.time())))
    os.makedirs(path_to_log)

    path_to_metrics_log = os.path.join(path_to_log, "metrics.csv")
    path_to_experiment_log = os.path.join(path_to_log, "experiment.json")

    log_experiment(MODEL_TYPE, DATA_FOLDER, LEARNING_RATE, path_to_experiment_log)

    print("\nLoading data from '{}':".format(DATA_FOLDER))

    training_set = TemporalColorConstancy(mode="train", split_folder=DATA_FOLDER)
    train_loader = DataLoader(dataset=training_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=8)

    test_set = TemporalColorConstancy(mode="test", split_folder=DATA_FOLDER)
    test_loader = DataLoader(dataset=test_set, batch_size=BATCH_SIZE, num_workers=8)

    training_set_size, test_set_size = len(training_set), len(test_set)
    print("Training set size: ... {}".format(training_set_size))
    print("Test set size: ....... {}\n".format(test_set_size))

    model = MODELS[MODEL_TYPE]()

    if RELOAD_CHECKPOINT:
        print('\n Reloading checkpoint - pretrained model stored at: {} \n'.format(PATH_TO_PTH_CHECKPOINT))
        model.load(PATH_TO_PTH_CHECKPOINT)
    else:
        if PATH_TO_PTH_SUBMODULE != '':
            print('\n Loading pretrained submodules stored at: {} \n'.format(PATH_TO_PTH_SUBMODULE))
            model.load_submodules(PATH_TO_PTH_SUBMODULE)

    model.print_network()
    model.log_network(path_to_log)

    model.set_optimizer(learning_rate=LEARNING_RATE)

    print('\n Training starts... \n')

    best_val_loss, best_metrics = 100.0, evaluator.get_best_metrics()
    train_l1, train_l2, train_l3, train_mal = LossTracker(), LossTracker(), LossTracker(), LossTracker()
    val_l1, val_l2, val_l3, val_mal = LossTracker(), LossTracker(), LossTracker(), LossTracker()

    for epoch in range(EPOCHS):

        model.train_mode()
        train_l1.reset()
        train_l2.reset()
        train_l3.reset()
        train_mal.reset()
        start = time.time()

        for i, (sequence, mimic, label, file_name) in enumerate(train_loader):
            model.reset_gradient()
            sequence, mimic, label = sequence.to(DEVICE), mimic.to(DEVICE), label.to(DEVICE)
            o1, o2, o3 = model.predict(sequence, mimic)
            l1, l2, l3, mal = model.compute_loss([o1, o2, o3], label)
            mal.backward()
            model.optimize()

            train_l1.update(l1.item())
            train_l2.update(l2.item())
            train_l3.update(l3.item())
            train_mal.update(mal.item())

            if i % 5 == 0:
                print("[ Epoch: {}/{} - Batch: {}/{} ] | "
                      "[ Train L1: {:.4f} | Train L2: {:.4f} | Train L3: {:.4f} | Train MAL: {:.4f} ]"
                      .format(epoch, EPOCHS, i, training_set_size, l1.item(), l2.item(), l3.item(), mal.item()))

        train_time = time.time() - start
        log_time(time=train_time, time_type="train", path_to_log=path_to_experiment_log)

        val_l1.reset()
        val_l2.reset()
        val_l3.reset()
        val_mal.reset()
        start = time.time()

        if epoch % 5 == 0:

            print("\n--------------------------------------------------------------")
            print("\t\t Validation")
            print("--------------------------------------------------------------\n")

            with torch.no_grad():

                model.evaluation_mode()
                evaluator.reset_errors()

                for i, (sequence, mimic, label, file_name) in enumerate(test_loader):
                    sequence, mimic, label = sequence.to(DEVICE), mimic.to(DEVICE), label.to(DEVICE)
                    o1, o2, o3 = model.predict(sequence, mimic)
                    l1, l2, l3, mal = model.compute_loss([o1, o2, o3], label)
                    val_l1.update(l1.item())
                    val_l2.update(l2.item())
                    val_l3.update(l3.item())
                    val_mal.update(mal.item())
                    evaluator.add_error(l3.item())

                    if i % 5 == 0:
                        print("[ Epoch: {}/{} - Batch: {}/{} ] | "
                              "[ Val L1: {:.4f} | Val L2: {:.4f} | Val L3: {:.4f} | Val MAL: {:.4f} ]"
                              .format(epoch, EPOCHS, i, test_set_size, l1.item(), l2.item(), l3.item(), mal.item()))

            print("\n--------------------------------------------------------------\n")

        val_time = time.time() - start
        log_time(time=val_time, time_type="val", path_to_log=path_to_experiment_log)

        metrics = evaluator.compute_metrics()
        print("\n********************************************************************")
        print(" Train Time ... : {:.4f}".format(train_time))
        print(" Train MAL .... : {:.4f}".format(train_mal.avg))
        print(" Train L1 ..... : {:.4f}".format(train_l1.avg))
        print(" Train L2 ..... : {:.4f}".format(train_l2.avg))
        print(" Train L3 ..... : {:.4f}".format(train_l3.avg))
        if val_time > 0.1:
            print("....................................................................")
            print(" Val Time ..... : {:.4f}".format(val_time))
            print(" Val MAL ...... : {:.4f}".format(val_mal.avg))
            print(" Val L1 ....... : {:.4f}".format(val_l1.avg))
            print(" Val L2 ....... : {:.4f}".format(val_l2.avg))
            print(" Val L3 ....... : {:.4f} (Best: {:.4f})".format(val_l3.avg, best_val_loss))
            print("....................................................................")
            print_val_metrics(metrics, best_metrics)
        print("********************************************************************\n")

        if 0 < val_l3.avg < best_val_loss:
            best_val_loss = val_l3.avg
            best_metrics = evaluator.update_best_metrics()
            print("Saving new best model... \n")
            model.save(os.path.join(path_to_log, "model.pth"))

        log_metrics(train_mal.avg, val_mal.avg, metrics, best_metrics, path_to_metrics_log)
Exemplo n.º 3
0
def main():
    evaluator = Evaluator()

    for n in range(NUM_FOLDS):

        path_to_log = os.path.join(PATH_TO_LOGS, "ctccnet2_fold_{}_{}".format(n, time.time()))
        os.makedirs(path_to_log)

        path_to_metrics_log = os.path.join(path_to_log, "metrics.csv")
        path_to_experiment_log = os.path.join(path_to_log, "experiment.json")

        log_experiment("ctccnet2", "fold_{}".format(n), LEARNING_RATE, path_to_experiment_log)

        print("\n Loading data for FOLD {}:".format(n))

        training_set = GrayBall(mode="train", fold=n, num_folds=NUM_FOLDS, return_labels=True)
        train_loader = DataLoader(dataset=training_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=8)

        test_set = GrayBall(mode="test", fold=n, num_folds=NUM_FOLDS, return_labels=True)
        test_loader = DataLoader(dataset=test_set, batch_size=BATCH_SIZE, num_workers=8)

        training_set_size, test_set_size = len(training_set), len(test_set)
        print("\n TRAINING SET")
        print("\t Size: ..... {}".format(training_set_size))
        print("\t Scenes: ... {}".format(training_set.get_scenes()))
        print("\n TEST SET")
        print("\t Size: ..... {}".format(test_set_size))
        print("\t Scenes: ... {}".format(test_set.get_scenes()))

        model = ModelCTCCNet2()
        model.print_network()
        model.log_network(path_to_log)

        model.set_optimizer(learning_rate=LEARNING_RATE)

        print('\n Training starts... \n')

        best_val_loss, best_metrics = 100.0, evaluator.get_best_metrics()
        train_losses, train_losses_cor, val_losses, val_losses_cor = [], [], [], []
        for _ in range(NUM_STAGES + 1):
            train_losses.append(LossTracker())
            train_losses_cor.append(LossTracker())
            val_losses.append(LossTracker())
            val_losses_cor.append(LossTracker())

        for epoch in range(EPOCHS):

            model.train_mode()
            for tl, tlc in zip(train_losses, train_losses_cor):
                tl.reset()
                tlc.reset()
            start = time.time()

            for i, (seq_temp, seq_shot, labels, _) in enumerate(train_loader):
                seq_temp, seq_shot, labels = seq_temp.to(DEVICE), seq_shot.to(DEVICE), labels.to(DEVICE)
                outputs = model.predict(seq_temp, seq_shot, return_preds=True)
                cas_loss, cas_mal, cor_loss, cor_mal = model.compute_corr_loss(outputs, labels)

                for (tl, sl), (tlc, slc) in zip(zip(train_losses[:-1], cas_loss), zip(train_losses_cor[:-1], cor_loss)):
                    tl.update(sl.item())
                    tlc.update(slc.item())
                train_losses[-1].update(cas_mal.item())
                train_losses[-1].update(cor_mal.item())

                if i % 5 == 0:
                    mal = cas_mal.item() + cor_mal.item()
                    tl_log = " | ".join(["L{}: {:.4f}".format(i + 1, sl.item()) for i, sl in enumerate(cas_loss)])
                    tlc_log = " | ".join(["L{}: {:.4f}".format(i + 1, sl.item()) for i, sl in enumerate(cor_loss)])
                    print(" TRAIN: [ Epoch: {}/{} - Batch: {}/{} ] | Loss: {:.4f} |"
                          " Cascade: [  {} | MAL: {:.4f} ] |"
                          " Corrections: [ {} | MAL: {:.4f} ]"
                          .format(epoch + 1, EPOCHS, i + 1, training_set_size, mal,
                                  tl_log, cas_mal.item(), tlc_log, cor_mal.item()))

            train_time = time.time() - start
            log_time(time=train_time, time_type="train", path_to_log=path_to_experiment_log)

            for vl, vlc in zip(val_losses, val_losses_cor):
                vl.reset()
                vlc.reset()
            start = time.time()

            if epoch % 5 == 0:

                print("\n--------------------------------------------------------------")
                print("\t\t Validation")
                print("--------------------------------------------------------------\n")

                with torch.no_grad():

                    model.evaluation_mode()
                    evaluator.reset_errors()

                    for i, (seq_temp, seq_shot, labels, _) in enumerate(test_loader):
                        seq_temp, seq_shot, labels = seq_temp.to(DEVICE), seq_shot.to(DEVICE), labels.to(DEVICE)
                        outputs = model.predict(seq_temp, seq_shot, return_preds=True)
                        cas_loss, cas_mal, cor_loss, cor_mal = model.get_corr_loss(outputs, labels)

                        losses = zip(zip(val_losses[:-1], cas_loss), zip(val_losses_cor[:-1], cor_loss))
                        for (vl, sl), (vlc, slc) in losses:
                            vl.update(sl.item())
                            vlc.update(slc.item())
                        val_losses[-1].update(cas_mal.item())
                        val_losses[-1].update(cor_mal.item())
                        evaluator.add_error(cas_loss[-1].item())

                        if i % 5 == 0:
                            mal = cas_mal.item() + cor_mal.item()
                            log_cas = ["L{}: {:.4f}".format(i + 1, sl.item()) for i, sl in enumerate(cas_loss)]
                            log_cas = " | ".join(log_cas)
                            log_cor = ["L{}: {:.4f}".format(i + 1, sl.item()) for i, sl in enumerate(cor_loss)]
                            log_cor = " | ".join(log_cor)
                            print(" VAL: [ Epoch: {}/{} - Batch: {}/{} ] | Loss: {:.4f} |"
                                  " Cascade: [  {} | MAL: {:.4f} ] |"
                                  " Corrections: [ {} | MAL: {:.4f} ]"
                                  .format(epoch + 1, EPOCHS, i + 1, test_set_size, mal,
                                          log_cas, cas_mal.item(), log_cor, cor_mal.item()))

                print("\n--------------------------------------------------------------\n")

            val_time = time.time() - start
            log_time(time=val_time, time_type="val", path_to_log=path_to_experiment_log)

            metrics = evaluator.compute_metrics()
            print("\n********************************************************************")
            print(" Train Time ....... : {:.4f}".format(train_time))
            tl_log = " | ".join(["L{} {:.4f}".format(i + 1, tl.avg) for i, tl in enumerate(train_losses[:-1])])
            print(" AVG Train Loss ... : [ {} | MAL: {:.4f} ]".format(tl_log, train_losses[-1].avg))
            if val_time > 0.1:
                print("....................................................................")
                print(" Val Time ......... : {:.4f}".format(val_time))
                vl_log = " | ".join(["L{} {:.4f}".format(i + 1, vl.avg) for i, vl in enumerate(val_losses[:-1])])
                print(" AVG Val Loss: .... : [ {} | MAL: {:.4f} ]".format(vl_log, val_losses[-1].avg))
                print("....................................................................")
                print_val_metrics(metrics, best_metrics)
            print("********************************************************************\n")

            curr_val_loss = val_losses[-2].avg
            if 0 < curr_val_loss < best_val_loss:
                best_val_loss = curr_val_loss
                best_metrics = evaluator.update_best_metrics()
                print("Saving new best model... \n")
                model.save(os.path.join(path_to_log, "model.pth"))

            log_metrics(train_losses[-1].avg, val_losses[-1].avg, metrics, best_metrics, path_to_metrics_log)
Exemplo n.º 4
0
def main():
    evaluator = Evaluator()

    for n in range(NUM_FOLDS):

        path_to_log = os.path.join(
            PATH_TO_LOGS, "{}_fold_{}_{}".format(MODEL_TYPE, n, time.time()))
        os.makedirs(path_to_log)

        path_to_metrics_log = os.path.join(path_to_log, "metrics.csv")
        path_to_experiment_log = os.path.join(path_to_log, "experiment.json")

        log_experiment(MODEL_TYPE, "fold_{}".format(n), LEARNING_RATE,
                       path_to_experiment_log)

        print("\n Loading data for FOLD {}:".format(n))

        training_set = GrayBall(mode="train", fold=n, num_folds=NUM_FOLDS)
        train_loader = DataLoader(dataset=training_set,
                                  batch_size=BATCH_SIZE,
                                  shuffle=True,
                                  num_workers=8)

        test_set = GrayBall(mode="test", fold=n, num_folds=NUM_FOLDS)
        test_loader = DataLoader(dataset=test_set,
                                 batch_size=BATCH_SIZE,
                                 num_workers=8)

        training_set_size, test_set_size = len(training_set), len(test_set)
        print("\n TRAINING SET")
        print("\t Size: ..... {}".format(training_set_size))
        print("\t Scenes: ... {}".format(training_set.get_scenes()))
        print("\n TEST SET")
        print("\t Size: ..... {}".format(test_set_size))
        print("\t Scenes: ... {}".format(test_set.get_scenes()))

        model = MODELS[MODEL_TYPE]()

        if RELOAD_CHECKPOINT:
            print(
                '\n Reloading checkpoint - pretrained model stored at: {} \n'.
                format(PATH_TO_PTH_CHECKPOINT))
            model.load(PATH_TO_PTH_CHECKPOINT)

        model.print_network()
        model.log_network(path_to_log)

        model.set_optimizer(learning_rate=LEARNING_RATE)

        print('\n Training starts... \n')

        best_val_loss, best_metrics = 100.0, evaluator.get_best_metrics()
        train_loss, val_loss = LossTracker(), LossTracker()

        for epoch in range(EPOCHS):

            # --- Training ---

            model.train_mode()
            train_loss.reset()
            start = time.time()

            for i, data in enumerate(train_loader):

                model.reset_gradient()

                sequence, mimic, label, file_name = data
                sequence = sequence.unsqueeze(1).to(DEVICE) if len(
                    sequence.shape) == 4 else sequence.to(DEVICE)
                mimic = mimic.to(DEVICE)
                label = label.to(DEVICE)

                loss = model.compute_loss(sequence, label, mimic)
                model.optimize()

                train_loss.update(loss)

                if i % 5 == 0:
                    print(
                        "[ Epoch: {}/{} - Item: {}/{} ] | [ Train loss: {:.4f} ]"
                        .format(epoch, EPOCHS, i, training_set_size, loss))

            train_time = time.time() - start
            log_time(time=train_time,
                     time_type="train",
                     path_to_log=path_to_experiment_log)

            # --- Validation ---

            start = time.time()

            val_loss.reset()

            if epoch % 5 == 0:

                print(
                    "\n--------------------------------------------------------------"
                )
                print("\t\t Validation")
                print(
                    "--------------------------------------------------------------\n"
                )

                with torch.no_grad():

                    model.evaluation_mode()
                    evaluator.reset_errors()

                    for i, data in enumerate(test_loader):

                        sequence, mimic, label, file_name = data
                        sequence = sequence.unsqueeze(1).to(DEVICE) if len(
                            sequence.shape) == 4 else sequence.to(DEVICE)
                        mimic = mimic.to(DEVICE)
                        label = label.to(DEVICE)

                        o = model.predict(sequence, mimic)
                        loss = model.get_angular_loss(o, label).item()
                        val_loss.update(loss)
                        evaluator.add_error(loss)

                        if i % 5 == 0:
                            print(
                                "[ Epoch: {}/{} - Item: {}/{}] | Val loss: {:.4f} ]"
                                .format(epoch, EPOCHS, i, test_set_size, loss))

                print(
                    "\n--------------------------------------------------------------\n"
                )

            val_time = time.time() - start
            log_time(time=val_time,
                     time_type="val",
                     path_to_log=path_to_experiment_log)

            metrics = evaluator.compute_metrics()
            print(
                "\n********************************************************************"
            )
            print(" Train Time ... : {:.4f}".format(train_time))
            print(" Train Loss ... : {:.4f}".format(train_loss.avg))
            if val_time > 0.1:
                print(
                    "...................................................................."
                )
                print(" Val Time ..... : {:.4f}".format(val_time))
                print(" Val Loss ..... : {:.4f}".format(val_loss.avg))
                print(
                    "...................................................................."
                )
                print_val_metrics(metrics, best_metrics)
            print(
                "********************************************************************\n"
            )

            if 0 < val_loss.avg < best_val_loss:
                best_val_loss = val_loss.avg
                evaluator.update_best_metrics()
                print("Saving new best model... \n")
                model.save(os.path.join(path_to_log, "model.pth"))

            log_metrics(train_loss.avg, val_loss.avg, metrics, best_metrics,
                        path_to_metrics_log)
Exemplo n.º 5
0
def main(opt):
    data_folder = opt.data_folder
    epochs = opt.epochs
    learning_rate = opt.lr
    evaluator = Evaluator()

    path_to_log = os.path.join(
        "train", "tcc", "logs",
        "ctccnet2_{}_{}".format(data_folder, str(time.time())))
    os.makedirs(path_to_log)

    path_to_metrics_log = os.path.join(path_to_log, "metrics.csv")
    path_to_experiment_log = os.path.join(path_to_log, "experiment.json")

    log_experiment("ctccnet2", data_folder, learning_rate,
                   path_to_experiment_log)

    print("\n Loading data from '{}':".format(data_folder))

    training_set = TemporalColorConstancy(mode="train",
                                          split_folder=data_folder)
    train_loader = DataLoader(dataset=training_set,
                              batch_size=1,
                              shuffle=True,
                              num_workers=8)

    test_set = TemporalColorConstancy(mode="test", split_folder=data_folder)
    test_loader = DataLoader(dataset=test_set, batch_size=1, num_workers=8)

    training_set_size, test_set_size = len(training_set), len(test_set)
    print("Training set size: ... {}".format(training_set_size))
    print("Test set size: ....... {}\n".format(test_set_size))

    model = ModelCTCCNet2()

    if RELOAD_CHECKPOINT:
        print('\n Reloading checkpoint - pretrained model stored at: {} \n'.
              format(PATH_TO_PTH_CHECKPOINT))
        model.load(PATH_TO_PTH_CHECKPOINT)

    model.print_network()
    model.log_network(path_to_log)

    model.set_optimizer(learning_rate)

    print('\n Training starts... \n')

    best_val_loss, best_metrics = 100.0, evaluator.get_best_metrics()
    train_losses, val_losses = [], []
    for _ in range(NUM_STAGES + 1):
        train_losses.append(LossTracker())
        val_losses.append(LossTracker())

    for epoch in range(epochs):

        model.train_mode()
        for tl in train_losses:
            tl.reset()
        start = time.time()

        for i, (seq_temp, seq_shot, label, _) in enumerate(train_loader):
            seq_temp, seq_shot, label = seq_temp.to(DEVICE), seq_shot.to(
                DEVICE), label.to(DEVICE)
            outputs = model.predict(seq_temp, seq_shot)
            stages_loss, mal = model.compute_loss(outputs, label)

            for tl, sl in zip(train_losses[:-1], stages_loss):
                tl.update(sl.item())
            train_losses[-1].update(mal.item())

            if i % 5 == 0:
                tl_log = " | ".join([
                    "TL{} {:.4f}".format(i + 1, sl.item())
                    for i, sl in enumerate(stages_loss)
                ])
                print(
                    "[ Epoch: {}/{} - Batch: {}/{} ] | [ {} | Train MAL: {:.4f} ]"
                    .format(epoch + 1, epochs, i + 1, training_set_size,
                            tl_log, stages_loss[-1].item()))

        train_time = time.time() - start
        log_time(time=train_time,
                 time_type="train",
                 path_to_log=path_to_experiment_log)

        for vl in val_losses:
            vl.reset()
        start = time.time()

        if epoch % 5 == 0:

            print(
                "\n--------------------------------------------------------------"
            )
            print("\t\t Validation")
            print(
                "--------------------------------------------------------------\n"
            )

            with torch.no_grad():

                model.evaluation_mode()
                evaluator.reset_errors()

                for i, (seq_temp, seq_shot, label,
                        _) in enumerate(test_loader):
                    seq_temp, seq_shot, label = seq_temp.to(
                        DEVICE), seq_shot.to(DEVICE), label.to(DEVICE)
                    outputs = model.predict(seq_temp, seq_shot)
                    stages_loss, mal = model.get_loss(outputs, label)

                    for vl, sl in zip(val_losses[:-1], stages_loss):
                        vl.update(sl.item())
                    val_losses[-1].update(mal.item())

                    evaluator.add_error(stages_loss[-1].item())

                    if i % 5 == 0:
                        vl_log = [
                            "VL{} {:.4f}".format(i + 1, sl.item())
                            for i, sl in enumerate(stages_loss)
                        ]
                        vl_log = " | ".join(vl_log)
                        print(
                            "[ Epoch: {}/{} - Batch: {}/{} ] | [ {} | Val MAL: {:.4f} ]"
                            .format(epoch + 1, epochs, i + 1, test_set_size,
                                    vl_log, stages_loss[-1].item()))

            print(
                "\n--------------------------------------------------------------\n"
            )

        val_time = time.time() - start
        log_time(time=val_time,
                 time_type="val",
                 path_to_log=path_to_experiment_log)

        metrics = evaluator.compute_metrics()
        print(
            "\n********************************************************************"
        )
        print(" Train Time ....... : {:.4f}".format(train_time))
        tl_log = " | ".join([
            "L{} {:.4f}".format(i + 1, tl.avg)
            for i, tl in enumerate(train_losses[:-1])
        ])
        print(" AVG Train Loss ... : [ {} | MAL: {:.4f} ]".format(
            tl_log, train_losses[-1].avg))
        if val_time > 0.1:
            print(
                "...................................................................."
            )
            print(" Val Time ......... : {:.4f}".format(val_time))
            vl_log = " | ".join([
                "L{} {:.4f}".format(i + 1, vl.avg)
                for i, vl in enumerate(val_losses[:-1])
            ])
            print(" AVG Val Loss: .... : [ {} | MAL: {:.4f} ]".format(
                vl_log, val_losses[-1].avg))
            print(
                "...................................................................."
            )
            print_val_metrics(metrics, best_metrics)
        print(
            "********************************************************************\n"
        )

        curr_val_loss = val_losses[-2].avg
        if 0 < curr_val_loss < best_val_loss:
            best_val_loss = curr_val_loss
            best_metrics = evaluator.update_best_metrics()
            print("Saving new best model... \n")
            model.save(os.path.join(path_to_log, "model.pth"))

        log_metrics(train_losses[-1].avg, val_losses[-1].avg, metrics,
                    best_metrics, path_to_metrics_log)
Exemplo n.º 6
0
 def __init__(self):
     self.__loss = LossTracker()
     self.__loss1 = LossTracker()
     self.__loss2 = LossTracker()
     self.__loss3 = LossTracker()